Adapting and Validating the COVID-19 Vaccine Hesitancy and Vaccine Conspiracy Beliefs Scales in Korea
Abstract
:1. Introduction
2. Research Purpose
3. Materials and Methods
3.1. Study Design
3.2. Study Participants
3.3. Study Tools
3.3.1. The COVID-19 Vaccine Hesitancy Scale and Korean COVID-19 Vaccine Hesitancy Scale
3.3.2. Vaccine Conspiracy Beliefs Scale
3.3.3. Self-Efficacy Scale
3.4. Study Procedure
3.4.1. Translation–Back Translation
3.4.2. Verifying Content Validity
3.4.3. Preliminary Survey
3.5. Data Collection Method and Ethical Considerations
3.6. Data Analysis Method
4. Results
4.1. General Characteristics of the Participants
4.2. Verifying Scale Validity
4.2.1. Analysis of the Exploratory Factors
4.2.2. Confirmatory Factor Analysis
4.2.3. Verifying Reliability
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fauci, A.S.; Lane, H.C.; Redfield, R.R. COVID-19—Navigating the uncharted. N. Engl. J. Med. 2020, 382, 1268–1269. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Naming the Coronavirus Disease (COVID-19) and the Virus that Causes It. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed on 24 February 2022).
- Chou, W.S.; Budenz, A. Considering emotion in COVID-19 vaccine communication: Addressing vaccine hesitancy and fostering vaccine confidence. Health Commun. 2020, 35, 1718–1722. [Google Scholar] [CrossRef] [PubMed]
- Lwin, M.O.; Lu, J.; Sheldenkar, A.; Schulz, P.J.; Shin, W.; Gupta, R.; Yang, Y. Global sentiments surrounding the COVID-19 pandemic on Twitter: Analysis of Twitter trends. JMIR Public Health Surveill. 2020, 6, e19447. [Google Scholar] [CrossRef] [PubMed]
- Milošević Đorđević, J.; Mari, S.; Vdović, M.; Milošević, A. Links between conspiracy beliefs, vaccine knowledge, and trust: Anti-vaccine behavior of Serbian adults. Soc. Sci. Med. 2021, 277, 113930. [Google Scholar] [CrossRef] [PubMed]
- Omer, S.B.; Salmon, D.A.; Orenstein, W.A.; deHart, M.P.; Halsey, N. Vaccine refusal, mandatory immunization, and the risks of vaccine-preventable diseases. N. Engl. J. Med. 2009, 360, 1981–1988. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency (KDCA). COVID-19 incidence and vaccination in Republic of Korea. Available online: https://www.kdca.go.kr/board/board.es?mid=a20501010000&bid=0015&act=view&list_no=713615 (accessed on 11 June 2021).
- Park, J.Y.; Ha, J. Factors influencing the COVID-19 vaccination intentions in nurses: Korea, February 2021. J. Korean Acad. Nurs. 2021, 51, 537–548. [Google Scholar] [CrossRef]
- Hanqing, H. Exploring the factors affecting the intention to vaccinate against COVID-19 by applying the rational behavior theory. Master’s Thesis, Graduate School of Kyung Hee University, Seoul, Korea, 2021. [Google Scholar]
- MacDonald, N.E.; SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef]
- World Health Organization. Ten Threats to Global Health in 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 24 February 2022).
- Ahmed, N.; Quinn, S.C.; Hancock, G.R.; Freimuth, V.S.; Jamison, A. Social media use and influenza vaccine uptake among White and African American adults. Vaccine 2018, 36, 7556–7561. [Google Scholar] [CrossRef]
- Dunn, A.G.; Leask, J.; Zhou, X.; Mandl, K.D.; Coiera, E. Associations between exposure to and expression of negative opinions about human papillomavirus vaccines on social media: An observational study. J. Med. Internet Res. 2015, 17, e144. [Google Scholar] [CrossRef]
- Lyons, B.; Merola, V.; Reifler, J. Not just asking questions: Effects of implicit and explicit conspiracy information about vaccines and genetic modification. Health Commun. 2019, 34, 1741–1750. [Google Scholar] [CrossRef]
- Wilson, S.L.; Wiysonge, C. Social media and vaccine hesitancy. BMJ Glob. Health 2020, 5, e004206. [Google Scholar] [CrossRef]
- Lewandowsky, S.; Oberauer, K.; Gignac, G.E. NASA faked the moon landing--therefore, (climate) science is a hoax: An anatomy of the motivated rejection of science. Psychol. Sci. 2013, 24, 622–633. [Google Scholar] [CrossRef] [Green Version]
- Jolley, D.; Douglas, K.M. Prevention is better than cure: Addressing anti-vaccine conspiracy theories. J. Appl. Soc. Psychol. 2017, 47, 459–469. [Google Scholar] [CrossRef]
- Brotherton, R.; French, C.C.; Pickering, A.D. Measuring belief in conspiracy theories: The Generic Conspiracist Beliefs Scale. Front. Psychol. 2013, 4, 279. [Google Scholar] [CrossRef] [Green Version]
- Bruder, M.; Haffke, P.; Neave, N.; Nouripanah, N.; Imhoff, R. Measuring individual differences in generic beliefs in conspiracy theories across cultures: Conspiracy mentality questionnaire. Front. Psychol. 2013, 4, 225. [Google Scholar] [CrossRef] [Green Version]
- Seong, M.H.; Kim, I.S.; Kang, M.R.; Lee, M.S. Validity and reliability of the Korean version of the fear measurement tool for COVID-19. J. Korean Wellness Soc. 2020, 15, 391–399. [Google Scholar] [CrossRef]
- Lee, K.M.; Shin, N.Y.; Kang, Y.H. Evaluation of reliability and validity of the Korean version of the mask wearing implementation measuring tool: For general public living in the community. J. Korean Acad. Nurs. 2021, 51, 549–560. [Google Scholar] [CrossRef]
- Kim, J.H.; Kong, M.Y.; Oh, Y.H. Validity and reliability of the Peer Group Caring Interaction Scale-Korean version. J. Korean Acad. Nurs. 2016, 46, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Bolatov, A.K.; Seisembekov, T.Z.; Askarova, A.Z.; Pavalkis, D. Barriers to COVID-19 vaccination among medical students in Kazakhstan: Development, validation, and use of a new COVID-19 Vaccine Hesitancy Scale. Hum. Vaccin. Immunother. 2021, 17, 4982–4992. [Google Scholar] [CrossRef]
- Shapiro, G.K.; Holding, A.; Perez, S.; Amsel, R.; Rosberger, Z. Validation of the vaccine conspiracy beliefs scale. Papillomavirus Res. 2016, 2, 167–172. [Google Scholar] [CrossRef]
- Chapman, D.W.; Carter, J.F. Translation procedures for the cross cultural use of measurement instruments. Educ. Eval. Policy Anal. 1979, 1, 71–76. [Google Scholar] [CrossRef]
- Arora, A.S.; Rajput, H.; Changotra, R. Current perspective of COVID-19 spread across South Korea: Exploratory data analysis and containment of the pandemic. Environ. Dev. Sustain. 2021, 23, 6553–6563. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus (COVID-19), Republic of Korea. Available online: http://ncov.mohw.go.kr/ (accessed on 24 February 2022).
- Hinkin, T.R. A brief tutorial on the development of measures for use in survey questionnaires. Organ. Res. Methods 1998, 1, 104–121. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy mechanism in human agency. Am. Psychol. 1982, 37, 122–147. [Google Scholar] [CrossRef]
- Sherer, M.; Maddux, J.E.; Mercandante, B.; Prentice-Dunn, S.; Jacobs, B.; Rogers, R.W. The Self-Efficacy Scale: Construction and validation. Psychol. Rep. 1982, 51, 663–671. [Google Scholar] [CrossRef]
- Jeong, A.S. A study on the relationship between nurses’ health promotion behavior and self-Efficacy. Master’s Thesis, Graduate School of Public Administration, Hanyang University, Seoul, Korea, 2007. [Google Scholar]
- Lynn, M.R. Determination and quantification of content validity. Nurs. Res. 1986, 35, 382–385. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory 3E; McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Yu, J.P. The Concept and Understanding of Structural Equation Modeling; Hannare Publishing, Co.: Seoul, Korea, 2012; pp. 160–370. [Google Scholar]
- Geldhof, G.J.; Preacher, K.J.; Zyphur, M.J. Reliability estimation in a multilevel confirmatory factor analysis framework. Psychol. Methods 2014, 19, 72–91. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.J.; Park, Y.R.; Eun, Y. Validity and reliability of the Korean version of the spiritual nursing competency measurement tool. J. Korean Acad. Nurs. 2016, 46, 871–880. [Google Scholar]
- DeVellis, R.F.; Thorpe, C.T. Scale Development: Theory and Applications; Sage Publications Inc.: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Worldometer. Reported cases and deaths by country or territory. Available online: https://www.worldometers.info/coronavirus/#countries (accessed on 24 February 2022).
- Kroke, A.M.; Ruthig, J.C. Conspiracy beliefs and the impact on health behaviors. Appl. Psychol. Health Well Being 2022, 14, 311–328. [Google Scholar] [CrossRef]
- Lee, E.O.; Lim, N.Y.; Park, H.A.; Lee, I.S.; Kim, J.I.; Bae, J.; Lee, S.M.; et al. Nursing Research and Statistics; Paju: Soomoonsa, Korea, 2009. [Google Scholar]
- Pellegrini, V.; Giacomantonio, M.; De Cristofaro, V.; Salvati, M.; Brasini, M.; Carlo, E.; Mancini, F.; Leone, L. Is COVID-19 a natural event? COVID-19 pandemic and conspiracy beliefs. Personal. Individ. Differ. 2021, 181, 111011. [Google Scholar] [CrossRef]
- Giacomantonio, M.; Pellegrini, V.; De Cristofaro, V.; Brasini, M.; Mancini, F. Expectations about the “Natural Order of Things” and Conspiracy Beliefs about COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 9499. [Google Scholar] [CrossRef]
- Uscinski, J.E.; Klofstad, C.; Atkinson, M.D. What drives conspiratorial beliefs? The role of informational cues and predispositions. Political Res. Q. 2016, 69, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Douglas, K.M. COVID-19 conspiracy theories. Group Processes Intergroup Relat. 2021, 24, 270–275. [Google Scholar] [CrossRef]
Characteristics | Categories | Data Set A (n = 220) N (%) or M ± SD | Data Set B (n = 219) N (%) or M ± SD |
---|---|---|---|
Age (y) | 40.60 ± 13.23 | ||
Sex | Male | 79 (35.9) | 133 (60.7) |
Female | 141 (64.1) | 86 (39.3) | |
Marital Status | Unmarried | 111 (50.5) | 61 (27.9) |
Married | 98 (44.5) | 144 (65.8) | |
Divorced | 10 (4.5) | 9 (4.1) | |
Others | 1 (0.5) | 5 (2.3) | |
Economic Level | High | 9 (4.1) | 10 (4.6) |
Middle | 143 (65.0) | 137 (62.6) | |
Low | 68 (30.9) | 72 (32.9) | |
Religion | Protestant | 46 (20.9) | 49 (22.4) |
Catholic | 24 (10.9) | 21 (9.6) | |
Buddhist | 24 (10.9) | 32 (14.6) | |
Others | 1 (0.5) | 1 (0.5) | |
None | 125 (56.8) | 116 (53.0) |
Scale | Item | Corrected Item-Total Correlation | Factor Loading | |
---|---|---|---|---|
KCVH-S | Factor 1 | Factor 2 | ||
Factor 1 | 12 | 0.68 | 0.88 | |
11 | 0.61 | 0.88 | ||
7 | 0.70 | 0.78 | ||
5 | 0.63 | 0.69 | ||
4 | 0.78 | 0.66 | ||
Factor 2 | 9 | 0.64 | 0.83 | |
8 | 0.68 | 0.80 | ||
2 | 0.73 | 0.69 | ||
1 | 0.41 | 0.67 | ||
6 | 0.71 | 0.64 | ||
3 | 0.64 | 0.50 | ||
KVCB-S | ||||
1 | 0.85 | 0.94 | ||
2 | 0.87 | 0.92 | ||
3 | 0.88 | 0.90 | ||
4 | 0.90 | 0.88 | ||
5 | 0.93 | 0.87 | ||
6 | 0.92 | 0.85 | ||
7 | 0.84 | 0.84 |
Scale | Fitness | χ2 (p) | DF | CMIN/DF | SRMR | RMSEA | NFI | CFI |
---|---|---|---|---|---|---|---|---|
Index | ||||||||
KCVH-S | Model 1 | 235.95 (p < 0.001) | 43 | 5.49 | 0.08 | 0.14 | 0.76 | 0.80 |
Model 2 | 17.48 (p < 0.001) | 8 | 2.19 | 0.05 | 0.07 | 0.97 | 0.98 | |
KVCB-S | Model 1 | 29.38 (p = 0.002) | 11 | 2.67 | 0.02 | 0.09 | 0.98 | 0.99 |
Scale | Factors | Items | SE (β) | NSE | SE | CR | p | AVE | CR |
---|---|---|---|---|---|---|---|---|---|
KCVH-S | Factor 1 | Item 12 | 0.70 | 1.00 | 0.55 | 0.78 | |||
Item 11 | 0.88 | 1.01 | 0.12 | 8.11 | <0.001 | ||||
Item 7 | 0.61 | 1.02 | 0.12 | 8.31 | <0.001 | ||||
Factor 2 | Item 9 | 0.80 | 1.00 | 0.53 | 0.81 | ||||
Item 8 | 0.81 | 0.95 | 0.09 | 10.88 | <0.001 | ||||
Item 2 | 0.60 | 0.73 | 0.09 | 8.56 | <0.001 | ||||
Item 6 | 66 | 0.76 | 08 | 9.50 | <0.001 | ||||
KVCB-S | Factor 1 | Item 1 | 0.74 | 1.00 | |||||
Item 2 | 0.72 | 1.02 | 0.08 | 12.15 | <0.001 | 0.69 | 0.94 | ||
Item 3 | 0.86 | 1.19 | 0.09 | 13.22 | |||||
Item 4 | 0.90 | 1.20 | 0.09 | 14.00 | |||||
Item 5 | 0.92 | 1.23 | 0.09 | 14.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ock, H.; Seong, M.; Kim, I. Adapting and Validating the COVID-19 Vaccine Hesitancy and Vaccine Conspiracy Beliefs Scales in Korea. Healthcare 2022, 10, 2274. https://doi.org/10.3390/healthcare10112274
Ock H, Seong M, Kim I. Adapting and Validating the COVID-19 Vaccine Hesitancy and Vaccine Conspiracy Beliefs Scales in Korea. Healthcare. 2022; 10(11):2274. https://doi.org/10.3390/healthcare10112274
Chicago/Turabian StyleOck, Hyesung, Mihyeon Seong, and Insook Kim. 2022. "Adapting and Validating the COVID-19 Vaccine Hesitancy and Vaccine Conspiracy Beliefs Scales in Korea" Healthcare 10, no. 11: 2274. https://doi.org/10.3390/healthcare10112274
APA StyleOck, H., Seong, M., & Kim, I. (2022). Adapting and Validating the COVID-19 Vaccine Hesitancy and Vaccine Conspiracy Beliefs Scales in Korea. Healthcare, 10(11), 2274. https://doi.org/10.3390/healthcare10112274