Research on the Recognition of Various Muscle Fatigue States in Resistance Strength Training
Abstract
:1. Introduction
2. Experiment Design
2.1. Subjects
2.2. Data Acquisition
2.3. Experimental Process
2.3.1. Pre-Experiment Preparation
2.3.2. Acquisition of Experimental Basic Data
2.3.3. Knee Joint Isokinetic Training Fatigue Experiment
2.3.4. Experimental Data Processing and Analysis
2.4. Experimental Data Processing and Analysis
2.4.1. Preprocessing of Experimental Data
2.4.2. sEMG Signal Processing and Analysis
2.4.3. Dynamic Fatigue Recognition Based on CNN Fatigue Feature Extraction
Construction of the CNN Model Based on Deep Learning
Learning and Training of the CNN Model
2.4.4. Experimental Sample Construction
2.4.5. Evaluation Index of Exercise Fatigue Identification
3. Results and Discussion
3.1. CNN Training Process and Results
3.2. Exercise Fatigue Recognition Results Based on Test Samples
3.3. Verification of the CNN Exercise Fatigue Recognition Model Based on New Samples
4. Conclusions
5. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, H.; Alkhawam, H.; Madanieh, R.; Shah, N.; Kosmas, C.E.; Vittorio, T.J. Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J. Cardiol. 2017, 9, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Lopes, K.G.; das Graças Coelho de Souza, M.; da Costa Tavares Bezerra, M.; Bessa, L.M.; Farinatti, P.; Bouskela, E.; Madeira, M.; Kraemer-Aguiar, L.G. Effects of physical training on physical and functional fitness, physical activity level, endothelial function, hemodynamic variables, bone metabolism, and quality of life of post-bariatric patients: Study protocol for a randomized controlled trial. Trials 2022, 23, 733. [Google Scholar] [CrossRef] [PubMed]
- Tae, S.B.; Museong, M. Effect of lumbar lordotic angle on lumbosacral joint during isokinetic exercise: A simulation study. Clin. Biomech. 2010, 25, 628–635. [Google Scholar]
- Vassis, K.; Kanellopoulos, A.; Spanos, S.; Kakolyri, D.; Loukopoulou, A.; Papanikolakou, V.; Aivaliotis, D.; Poulis, I. Association between Isokinetic Knee Strength Characteristics and Single-Leg Hop Performance in Healthy Young Participants. J. Chiropr. Med. 2022, in press. [Google Scholar] [CrossRef]
- Minki, S.; Won-Seok, K.; Daegeun, P.; Yu-Sun, M.; Woo, J.K.; Kyujin, C.; Nam-Jong, P. Electromyographic analysis of upper limb muscles during standardized isotonic and isokinetic robotic exercise of spastic elbow in patients with stroke. J. Electromyogr. Kinesiol. 2014, 24, 11–17. [Google Scholar]
- Ebid, A.A.; Omar, M.T.; Abd El Baky, A.M. Effect of 12-week isokinetic training on muscle strength in adult with healed thermal burn. Burns 2011, 38, 61–68. [Google Scholar] [CrossRef]
- Marlon, F.V.; Bruno, M.B.; Alexandre, F.M.; Márcio, M.; Ricardo, L.; Gilnei, L.P.; Marcelo, F.S. Isokinetic eccentric training is more effective than constant load eccentric training on the quadriceps rehabilitation following partial meniscectomy: A randomized clinical trial. Phys. Ther. Sport 2019, 39, 120–125. [Google Scholar]
- Clancy, E.A.; Negro, F.; Farina, D. 4 Single-Channel Techniques for Information Extraction from the Surface Emg Signal; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Özgören, N.; Arıtan, S. Peak counting in surface electromyography signals for quantification of muscle fatigue during dynamic contractions. Med. Eng. Phys. 2022, 107, 103844. [Google Scholar] [CrossRef]
- Ravier, P.; Buttelli, O.; Jennane, R.; Couratier, P. An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2005, 15, 210–221. [Google Scholar] [CrossRef]
- Mannion, A.F.; Dolan, P. Electromyographic median frequency changes during isometric contraction of the back extensors to fatigue. Spine 1994, 19, 1223–1229. [Google Scholar] [CrossRef]
- Kazumi, M.; Tadashi, M.; Tsugutake, S.; Mitsuharu, I.; Shigeru, K. Changes in surface EMG parameters during static and dynamic fatiguing contractions. J. Electromyogr. Kinesiol. 1999, 9, 39–46. [Google Scholar]
- An-Chih, T.; Tsung-Han, H.; Jer-Junn, L.; Ta-Te, L. A comparison of upper-limb motion pattern recognition using EMG signals during dynamic and isometric muscle contractions. Biomed. Signal Process. Control 2014, 11, 17–26. [Google Scholar]
- David, J.P.; Terry, J.H. An examination of the electromyographic fatigue threshold test. Hum. Perform. Lab. 1993, 67, 305–308. [Google Scholar]
- Petrofsky, J.; Laymon, M. Muscle temperature and EMG amplitude and frequency during isometric exercise. Aviat. Space Environ. Med. 2005, 76, 1024–1030. [Google Scholar]
- Potvin, J.R.; Bent, L.R. A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks. J. Electromyogr. Kinesiol. 1997, 7, 131–139. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Peng, C.K.; Lipsitz, L.A. What is physiologic complexity and how does it change with ageing and disease? Neurobiol. Aging 2002, 23, 23–26. [Google Scholar] [CrossRef]
- Silva, L.E.V.; Cabella, B.C.T.; da Costa Neves, U.P.; Junior, L.O.M. Multiscale entropy-based methods for heart rate variability complexity analysis. Physica A. 2015, 422, 143–152. [Google Scholar] [CrossRef]
- Ibáñez-Molina, A.J.; Iglesias-Parro, S.; Soriano, M.F.; Aznarte, J.I. Multiscale Lempel-Ziv complexity for EEG measures. Clin. Neurophysiol. 2015, 126, 541–548. [Google Scholar] [CrossRef]
- Jelena, P.G.; Tijana, I.; Nik, I.; Feodora, P.P.; Nikola, G. Non-linear dynamics in muscle fatigue and strength model during maximal self-perceived elbow extensors training. J. Biomech. 2010, 43, 2440–2443. [Google Scholar]
- Wang, S.R.; Tang, H.; Wang, B.; Mo, J. Analysis of fatigue in the biceps brachii by using rapid refined composite multiscale sample entropy. Biomed. Signal Process. Control 2021, 67, 102510. [Google Scholar] [CrossRef]
- Vineet, G.; Srikanth, S.; Narender, P.R. Fractal analysis of surface EMG signals from the biceps. Int. J. Med. Inform. 1997, 45, 185–192. [Google Scholar]
- Andrea, A.; Manuela, G.; Chiara, R.; Giorgio, A. Linear correlation between fractal dimension of surface EMG signal from Rectus Femoris and height of vertical jump. Chaos Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilibrium Complex Phenom. 2014, 66, 120–126. [Google Scholar]
- Guo, Y.; Naik, G.R.; Huang, S.; Abraham, A.; Nguyen, H.T. Nonlinear multiscale Maximal Lyapunov Exponent for accurate myoelectric signal classification. Appl. Soft Comput. 2015, 36, 633–640. [Google Scholar] [CrossRef]
- Alcaraz, R.; Rieta, J.J. Application of Wavelet Entropy to predict atrial fibrillation progression from the surface ECG. Comput. Math. Methods Med. 2012, 2012, 245213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi-Ting, C.; Edward, W.S.; Yi-Bing, L. Coherent quality management for big data systems: A dynamic approach for stochastic time consistency. Ann. Oper. Res. 2019, 277, 3–32. [Google Scholar]
- Schwilden, H. Concepts of EEG processing: From power spectrum to bispectrum, fractals, entropies and all that. Best Pract. Res. Clin. Anaesthesiol. 2006, 20, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Zhaomin, C.; Chai, K.Y.; Bu, S.L.; Chiew, T.L. Power spectrum entropy based detection and mitigation of low-rate DoS attacks. Comput. Netw. 2018, 136, 80–94. [Google Scholar]
- Karthick, P.A.; Ghosh, D.M.; Ramakrishnan, S. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Comput. Methods Programs Biomed. 2018, 154, 45–56. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Lin, P.; Wang, J. The consistency of the subjective feelings of Exercise-induced muscle fatigue and the objective changes in surface EMG. Chin. J. Ergon. 2016, 22, 81–86. [Google Scholar]
- Wu, R.; De, V.G.; Lowery, M.M.; O’Callaghan, B.; Ditroilo, M. Age-related fatigability in knee extensors and knee flexors during dynamic fatiguing contractions. J. Electromyogr. Kinesiol. 2022, 62, 102626. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.; Kameyama, M.; Shibata, M.; Shibata, N.; Kato, C.; Kato, T.; Ota, S. The influence of knee varus and valgus on quadriceps muscle activity changes induced by stretching and kneeling. J. Electromyogr. Kinesiol. 2022, 63, 102636. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Kohei, W.; Hiroshi, A. The highest antagonistic coactivation of the vastus intermedius muscle among quadriceps femoris muscles during isometric knee flexion. J. Electromyogr. Kinesiol. 2013, 23, 831–837. [Google Scholar]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R. The quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sport. Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Keskula, D.R.; Dowling, J.S.; Davis, V.L.; Finley, P.W.; Dell’Omo, D.L. Interrater reliability of isokinetic measures of knee flexion and extension. J. Athl. Train. 1995, 30, 167–170. [Google Scholar]
- Feiring, D.C.; Ellenbecker, T.S.; Derscheid, G.L. Test-retest reliability of the Biodex isokinetic dynamometer. J. Orthop. Sport. Phys. Ther. 1990, 11, 298–300. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.T.; Wang, Z.Z.; Hu, X. Analysis of Fatigue Characteristics of Dynamic Shrinkage sEMG Signal Based on Entropy. Chin. J. Med. Phys. 2006, 3, 204–208. [Google Scholar]
- Chiang, J.; Wang, Z.; McKeown, M.J. A Hidden Markov, Multivariate Autoregressive (HMM-mAR) Network Framework for Analysis of Surface EMG (sEMG) Data. IEEE Trans. Signal Process. A Publ. IEEE Signal Process. Soc. 2008, 56, 4069–4081. [Google Scholar] [CrossRef]
- Genevieve, B.O.; Klaus, R.M. Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Cecotti, H.; Gräser, A. Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 433–445. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
Name of the Target Muscle | Vastus Medialis (VM) | Biceps Femoris (BF) | Vastus Lateralis (VL) | Rectus (REC) | Semitendinosus (SEM) | Semimembranosus (SE) |
---|---|---|---|---|---|---|
Electrode location | ||||||
acquisition channels | sEMG-2R-1 | sEMG-2R-2 | sEMG-2R-3 | sEMG-2R-13 | sEMG-2R-14 | sEMG-2R-15 |
Evaluation Grade | Subjective Exercise Fatigue | Classification Label |
---|---|---|
6 | Not hard at all | Relaxed |
7 | Extremely relaxed | |
8 | ||
9 | Very relaxed | |
10 | ||
11 | Relaxed | |
12 | ||
13 | A little tired | A little tired |
14 | ||
15 | Tired | |
16 | ||
17 | Very tired | Very tired |
18 | ||
19 | Extremely tired | Extremely tired |
20 | Try the best |
Speed | 60°/s | 180°/s | ||
---|---|---|---|---|
Index | PSE | WPE | PSE | WPE |
SEM | 0.663 * (p = 0.017) | 0.746 * (p = 0.034) | 0.672 * (p = 0.045) | 0.690 * (p = 0.029) |
BF | 0.732 ** (p = 0.003) | 0.767 ** (p = 0.002) | 0.698 ** (p = 0.009) | 0.716 ** (p = 0.004) |
SE | 0.681 * (p = 0.031) | 0.722 * (p = 0.026) | 0.712 * (p = 0.022) | 0.733 * (p = 0.014) |
REC | 0.904 ** (p = 0.002) | 0.869 ** (p = 0.003) | 0.831 ** (p = 0.006) | 0.844 ** (p = 0.008) |
VL | 0.791 ** (p = 0.007) | 0.812 ** (p = 0.004) | 0.764 ** (p = 0.002) | 0.775 ** (p = 0.003) |
VM | 0.876 * (p = 0.026) | 0.865 * (p = 0.012) | 0.823 ** (p = 0.006) | 0.817 ** (p = 0.009) |
Accuracy | ||
---|---|---|
60°/s | 180°/s | |
CNN | 91.38% | 89.87% |
Multi-SVM | 90.17% | 89.21% |
Multi-LDA | 88.85% | 87.69% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lu, C.; Zhang, M.; Wu, J.; Tang, Z. Research on the Recognition of Various Muscle Fatigue States in Resistance Strength Training. Healthcare 2022, 10, 2292. https://doi.org/10.3390/healthcare10112292
Wang Y, Lu C, Zhang M, Wu J, Tang Z. Research on the Recognition of Various Muscle Fatigue States in Resistance Strength Training. Healthcare. 2022; 10(11):2292. https://doi.org/10.3390/healthcare10112292
Chicago/Turabian StyleWang, Yinghao, Chunfu Lu, Mingyu Zhang, Jianfeng Wu, and Zhichuan Tang. 2022. "Research on the Recognition of Various Muscle Fatigue States in Resistance Strength Training" Healthcare 10, no. 11: 2292. https://doi.org/10.3390/healthcare10112292
APA StyleWang, Y., Lu, C., Zhang, M., Wu, J., & Tang, Z. (2022). Research on the Recognition of Various Muscle Fatigue States in Resistance Strength Training. Healthcare, 10(11), 2292. https://doi.org/10.3390/healthcare10112292