Evaluation of 34 Cytokines and Vitamin D Status Reveal A Sexually-Dimorphic Active Immune Response to SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometry and Blood Collection
2.3. Biochemical Analyses
2.4. Data Analysis and Sample Size Determination
3. Results
3.1. Comparison of Serum Cytokine and Chemokine Levels in COVID-19 Patients and Controls
3.2. Comparison of Cytokine and Chemokine Expression According to SARS-CoV-2 Status and Sex
3.3. Associations of Vitamin D Status, Cytokines, and Chemokines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larkin, H.D. Global COVID-19 death toll may be triple the reported deaths. JAMA 2022, 327, 1438. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yang, J.; Zhou, C.; Chen, B.; Fang, H.; Chen, S.; Zhang, X.; Wang, L.; Zhang, L. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Front. Med. 2021, 8, 628370. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, S.; Herbert, J.A.; McNamara, P.S.; Hedrich, C.M. COVID-19: Immunology and treatment options. Clin. Immunol. 2020, 215, 108448. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science 2020, 368, 473–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA 2020, 117, 10970–10975. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zhan, Y.; Wu, L.; Yu, X.; Zhang, W.; Ye, L.; Xu, S.; Sun, R.; Wang, Y.; et al. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect. Immun. 2004, 72, 4410–4415. [Google Scholar] [CrossRef]
- Mahallawi, W.H.; Khabour, O.F.; Zhang, Q.; Makhdoum, H.M.; Suliman, B.A. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 2018, 104, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Pérez-Gómez, H.R.; Morfín-Otero, R.; González-Díaz, E.; Esparza-Ahumada, S.; León-Garnica, G.; Rodríguez-Noriega, E. The Multifaceted Manifestations of Multisystem Inflammatory Syndrome during the SARS-CoV-2 Pandemic. Pathogens 2022, 11, 556. [Google Scholar] [CrossRef] [PubMed]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Wu, Z.; Li, J.-W.; Zhao, H.; Wang, G.-Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents 2020, 55, 105954. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.J.; Bermejo-Martin, J.F.; Danesh, A.; Muller, M.P.; Kelvin, D.J. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 2008, 133, 13–19. [Google Scholar] [CrossRef]
- Williams, A.E.; Chambers, R.C. The mercurial nature of neutrophils: Still an enigma in ARDS? Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 306, L217-30. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Wang, M.; Fan, Y.; Chai, Y.; Cheng, W.; Wang, K.; Cao, J.; Hu, X. Association of Clinical and Immunological Characteristics with Disease Severity and Outcomes in 211 Patients With COVID-19 in Wuhan, China. Front. Cell Infect. Microbiol. 2021, 11, 667487. [Google Scholar] [CrossRef]
- Gois, P.H.F.; Ferreira, D.; Olenski, S.; Seguro, A.C. Vitamin D and Infectious Diseases: Simple Bystander or Contributing Factor? Nutrients 2017, 24, 651. [Google Scholar] [CrossRef]
- Heaney, R.P. Vitamin D in health and disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1535–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Lahav, M.; Douvdevani, A.; Chaimovitz, C.; Shany, S. The anti-inflammatory activity of 1,25-dihydroxyvitamin D3 in macrophages. J. Steroid Biochem. Mol. Biol. 2007, 103, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Nezhad, A.; Mirzaei, K.; Keshavarz, S.A.; Ansar, H.; Saboori, S.; Tootee, A. Evidences of dual role of vitamin D through cellular energy homeostasis and inflammation pathway in risk of cancer in obese subjects. Minerva Med. 2013, 104, 295–307. [Google Scholar] [PubMed]
- Calton, E.K.; Keane, K.N.; Newsholme, P.; Soares, M.J. The Impact of Vitamin D Levels on Inflammatory Status: A Systematic Review of Immune Cell Studies. PLoS ONE 2015, 10, e0141770. [Google Scholar] [CrossRef] [Green Version]
- Beard, J.A.; Bearden, A.; Striker, R. Vitamin D and the anti-viral state. J. Clin. Virol. Off. Publ. Pan. Am. Soc. Clin. Virol. 2011, 50, 194–200. [Google Scholar] [CrossRef]
- Teymoori-Rad, M.; Shokri, F.; Salimi, V.; Marashi, S.M. The interplay between vitamin D and viral infections. Rev. Med. Virol. 2019, 29, e2032. [Google Scholar] [CrossRef]
- Alguwaihes, A.M.; Sabico, S.; Hasanato, R.; Al-Sofiani, M.E.; Megdad, M.; Albader, S.S.; Alsari, M.H.; Alelayan, A.; Alyusuf, E.Y.; Alzahrani, S.H.; et al. Severe vitamin D deficiency is not related to SARS-CoV-2 infection but may increase mortality risk in hospitalized adults: A retrospective case-control study in an Arab Gulf country. Aging Clin. Exp. Res. 2021, 33, 1415–1422. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Amer, O.E.; Alotaibi, N.H.; Aldisi, D.A.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Alshingetti, N.; Alomar, S.Y.; Alfawaz, H.; et al. Vitamin D status of Arab Gulf residents screened for SARS-CoV-2 and its association with COVID-19 infection: A multi-centre case-control study. J. Transl. Med. 2021, 19, 166. [Google Scholar] [CrossRef]
- Alguwaihes, A.M.; Al-Sofiani, M.E.; Megdad, M.; Albader, S.S.; Alsari, M.H.; Alelayan, A.; Alzahrani, S.H.; Sabico, S.; Al-Daghri, N.M.; Jammah, A.A. Diabetes and Covid-19 among hospitalized patients in Saudi Arabia: A single-centre retrospective study. Cardiovasc. Diabetol. 2020, 19, 205. [Google Scholar] [CrossRef]
- Bechmann, N.; Barthel, A.; Schedl, A.; Herzig, S.; Varga, Z.; Gebhard, C.; Mayr, M.; Hantel, C.; Beuschlein, F.; Wolfrum, C.; et al. Sexual dimorphism in COVID-19: Potential clinical and public health implications. Lancet Diabetes Endocrinol. 2022, 10, 221–230. [Google Scholar] [CrossRef]
- Saudi Center for Disease Prevention and Control (Weqaya). Laboratory Diagnosis of COVID-19 in Suspected Cases. Available online: https://covid19.cdc.gov.sa/professionals-health-workers/laboratory-diagnosis/ (accessed on 4 August 2022).
- Al-Daghri, N.M.; Al-Saleh, Y.; Aljohani, N.; Sulimani, R.; Al-Othman, A.M.; Alfawaz, H.; Fouda, M.; Al-Amri, F.; Shahrani, A.; Alharbi, M.; et al. Vitamin D status correction in Saudi Arabia: An experts’ consensus under the auspices of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis, and Musculoskeletal Diseases (ESCEO). Arch. Osteoporos 2017, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Saleh, Y.; Beshyah, S.A.; Hussein, W.; Almadani, A.; Hassoun, A.; Al Mamari, A.; Ba-Essa, E.; Al-Dhafiri, E.; Hassanein, M.; Fouda, M.A.; et al. Diagnosis and management of vitamin D deficiency in the Gulf Cooperative Council (GCC) countries: An expert consensus summary statement from the GCC vitamin D advisory board. Arch. Osteoporos 2020, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect. 2020, 9, 1123–1130. [Google Scholar] [CrossRef]
- Shepherd, R.; Cheung, A.S.; Pang, K.; Saffery, R.; Novakovic, B. Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and Epigenetics. Front. Immunol. 2021, 11, 604000. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Kim, R.; Chung, W. Sex-Specific Association between Underlying Diseases and the Severity and Mortality Due to COVID-19 Infection: A Retrospective Observational Cohort Analysis of Clinical Epidemiological Information Collected by the Korea Disease Control and Prevention Agency. Healthcare 2022, 10, 1846. [Google Scholar] [CrossRef]
- Notz, Q.; Schmalzing, M.; Wedekink, F.; Schlesinger, T.; Gernert, M.; Herrmann, J.; Sorger, L.; Weismann, D.; Schmid, B.; Sitter, M.; et al. Pro- and Anti-Inflammatory Responses in Severe COVID-19-Induced Acute Respiratory Distress Syndrome-An Observational Pilot Study. Front. Immunol. 2020, 11, 581338. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, C.; Li, J.; Yuan, J.; Wei, J.; Huang, F.; Wang, F.; Li, G.; Li, Y.; Xing, L.; et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J. Allergy Clin. Immunol. 2020, 146, 119–127.e4. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef]
- Nedeva, C.; Menassa, J.; Puthalakath, H. Sepsis: Inflammation Is a Necessary Evil. Front. Cell Dev. Biol. 2019, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Goodman, R.B.; Pugin, J.; Lee, J.S.; Matthay, M.A. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev. 2003, 14, 523–535. [Google Scholar] [CrossRef]
- D’Avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; De Nicolò, A.; Lucchini, R.; Keller, F.; Cantù, M. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients 2020, 12, 1359. [Google Scholar] [CrossRef] [PubMed]
- Ilie, P.C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020, 32, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.K.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 2009, 183, 5458–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastie, C.E.; Mackay, D.F.; Ho, F.; Celis-Morales, C.A.; Katikireddi, S.V.; Niedzwiedz, C.L.; Jani, B.D.; Welsh, P.; Mair, F.S.; Gray, S.R.; et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab. Syndr. 2020, 14, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Sabico, S.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Aldisi, D.A.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Alnaami, A.M.; Amer, O.E.; et al. Effects of a 2-Week 5000 IU versus 1000 IU Vitamin D3 Supplementation on Recovery of Symptoms in Patients with Mild to Moderate Covid-19: A Randomized Clinical Trial. Nutrients 2021, 13, 2170. [Google Scholar] [CrossRef]
- Fiore, V.; De Vito, A.; Bagella, P.; Princic, E.; Mariani, A.A.; Denti, L.; Fois, A.G.; Madeddu, G.; Babudieri, S.; Maida, I. Effectiveness of Vitamin D Supplements among Patients Hospitalized for COVID-19: Results from a Monocentric Matched-Cohort Study. Healthcare 2022, 10, 956. [Google Scholar] [CrossRef]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
# | Parameters | * | ** | |
---|---|---|---|---|
Growth Factors | Definition | |||
1 | EGF (pg/mL) | Epidermal growth factor | 2.3 | 5.8 |
2 | FGF-2 (pg/mL) | Basic fibroblast growth factor 2 | 2.3 | 4.8 |
3 | TGFα (pg/mL) | Transforming growth factor alpha | 4.1 | 9.5 |
4 | VEGF (pg/mL) | Vascular endothelial growth factor | 3.7 | 10.4 |
Colony Stimulating Factors | ||||
5 | G-CSF (pg/mL) | Granulocyte colony-stimulating factor | 1.8 | 15.5 |
6 | GM-CSF (pg/mL) | Granulocyte macrophage colony-stimulating factor | 3.1 | 10.1 |
Interleukins | ||||
7 | IL-1ra (pg/mL) | Interleukin-1 receptor antagonist | 2.1 | 10.7 |
8 | IL-1α (pg/mL) | Interleukin-1 alpha | 3.3 | 12.8 |
9 | IL-1β (pg/mL) | Interleukin-1 beta | 2.3 | 6.7 |
10 | IL-2 (pg/mL) | Interleukin-2 | 2.1 | 6.3 |
11 | IL-4 (pg/mL) | Interleukin-4 | 2.9 | 14.2 |
12 | IL-5 (pg/mL) | Interleukin-5 | 2.6 | 10.8 |
13 | IL-6 (pg/mL) | Interleukin-6 | 2.0 | 18.3 |
14 | IL-7 (pg/mL) | Interleukin-7 | 1.7 | 16.1 |
15 | IL-8 (pg/mL) | Interleukin-8 | 1.9 | 3.5 |
16 | IL-10 (pg/mL) | Interleukin-10 | 1.6 | 16.8 |
17 | IL-13 (pg/mL) | Interleukin-13 | 2.2 | 9.2 |
18 | IL-15 (pg/mL) | Interleukin-15 | 2.7 | 8.1 |
19 | IL-17α (pg/mL) | Interleukin-17 alpha | 2.2 | 7.9 |
20 | IL-23 (pg/mL) | Interleukin-23 | 3.2 | 5.1 |
Chemokines | ||||
21 | EOTAXIN (pg/mL) | 7.2 | 10.8 | |
22 | Fractalkine (pg/mL) | 4.5 | 9.4 | |
23 | GRO (pg/mL) | Growth-regulated oncogene | 2.1 | 9.2 |
24 | IP-10 (pg/mL) | Interferon-inducible protein 10 | 2.6 | 15.3 |
25 | MCP-3 (pg/mL) | Monocyte chemotactic protein-3 | 1.6 | 6.4 |
26 | MDC (pg/mL) | Macrophage-derived chemokine | 1.6 | 7.2 |
27 | MCP-1 (pg/mL) | Monocyte chemoattractant protein-1 | 1.5 | 7.9 |
28 | MIP-1α (pg/mL) | Macrophage inflammatory protein-1 alpha | 1.9 | 14.5 |
29 | MIP-1β (pg/mL) | Macrophage inflammatory protein-1 beta | 2.4 | 8.8 |
Interferons | ||||
30 | IFNγ (pg/mL) | Interferon gamma | 1.6 | 12.0 |
31 | IFNα2 (pg/mL) | Interferon alpha 2 | 2.4 | 13.3 |
Inflammatory Cytokines | ||||
32 | sCD40L (pg/mL) | Soluble CD40 Ligand | 3.7 | 18.9 |
Inflammatory Proteins | ||||
33 | TNFα (pg/mL) | Tumor necrosis factor alpha | 2.6 | 13.0 |
34 | CRP (ug/dL) | C-reactive protein | 4.4 | 6.6 |
Parameters | Overall | SARS-CoV-2 Status | p-Value | p-Value * | |
---|---|---|---|---|---|
Negative | Positive | ||||
N | 220 | 82 (37.3) | 138 (62.7) | ||
Age (years) | 43.2 ± 15.3 | 32.3 ± 13.1 | 49.7 ± 12.6 | <0.001 | -- |
BMI (kg/m2) | 28.1 ± 5.5 | 26.6 ± 5.1 | 28.9 ± 5.5 | <0.001 | -- |
WHR | 1.0 ± 0.1 | 1.0 ± 0.1 | 1.0 ± 0.1 | 0.45 | 0.13 |
Systolic BP (mmHg) | 126.0 ± 16.2 | 119.0 ± 9.6 | 130.1 ± 17.8 | <0.001 | <0.001 |
Diastolic BP (mmHg) | 75.4 ± 11.2 | 75.7 ± 8.7 | 75.2 ± 12.4 | 0.75 | 0.75 |
Temperature (°C) | 37.1 ± 1.1 | 36.6 ± 0.5 | 37.5 ± 1.2 | <0.001 | <0.001 |
Pulse rate | 92.5 ± 16.4 | 94.0 ± 15.3 | 91.6 ± 16.9 | 0.31 | 0.77 |
Respiratory rate | 22.3 ± 3.9 | 19.7 ± 2.6 | 23.5 ± 3.8 | <0.001 | <0.001 |
25(OH)D (nmol/L) | 57.5 ± 27.5 | 61.8 ± 22.8 | 55.0 ± 28.8 | 0.06 | 0.009 |
Growth factors | |||||
EGF (ng/mL) | 0.8 (0.4–1.2) | 0.9 (0.5–1.2) | 0.6 (0.3–1.2) | 0.004 | 0.001 |
FGF-2 (ng/mL) | 0.2 (0.2–0.3) | 0.3 (0.2–0.4) | 0.2 (0.2–0.3) | 0.001 | 0.16 |
TGFα (pg/mL) | 13.3 (6–24) | 18.7 (8–25) | 10.4 (6–16) | 0.006 | <0.001 |
VEGF (ng/mL) | 0.5 (0.2–0.9) | 0.5 (0.2–0.9) | 0.5 (0.3–1.0) | 0.25 | 0.94 |
Colony Stimulating Factors | |||||
G-CSF (pg/mL) | 89.8 (43–178) | 129.6 (75–194) | 55.2 (29–122) | <0.001 | 0.006 |
GM-CSF (pg/mL) | 25.7 (12–43) | 34.2 (21–58) | 14.4 (8–24) | <0.001 | <0.001 |
Interleukins | |||||
IL-1ra (pg/mL) | 145.9 (66–280) | 200.9 (125–401) | 86.0 (44–140) | <0.001 | <0.001 |
IL-1α(pg/mL) | 130.7 (56–252) | 233.4 (134–435) | 48.5 (10–80) | <0.001 | <0.001 |
IL-1β (pg/mL) | 3.0 (1–8) | 7.7 (4–10) | 1.1 (0.4–2) | <0.001 | <0.001 |
IL-2 (pg/mL) | 7.7 (2–25) | 16.8 (9–29) | 2.0 (0.7–4) | <0.001 | <0.001 |
IL-4 (pg/mL) | 224 (112–456) | 387.6 (264–548) | 98.1 (52–141) | <0.001 | <0.001 |
IL-5 (pg/mL) | 2.8 (2–5) | 3.2 (2–5) | 2.5 (1.8–4) | 0.14 | 0.36 |
IL-6 (pg/mL) | 5.2 (2–13) | 3.1 (2–7) | 10.0 (5–20) | <0.001 | 0.05 |
IL-7 (pg/mL) | 33.2 (18–66) | 52.2 (30–88) | 16.7 (9–28) | <0.001 | <0.001 |
IL-8 (pg/mL) | 26.6 (17–49) | 28.6 (20–40) | 21.7 (14–56) | 0.07 | 0.01 |
IL-10 (pg/mL) | 13.7 (8–24) | 9.9 (6–17) | 21.7 (9–32) | <0.001 | 0.01 |
IL-13 (pg/mL) | 5.6 (3–10) | 4.2 (2–6) | 9.6 (6–18) | <0.001 | <0.001 |
IL-15 (pg/mL) | 13.7 (8–30) | 22.1 (11–36) | 10.9 (5–17) | <0.001 | 0.001 |
IL-17α (pg/mL) | 5.8 (4–8) | 5.8 (4–8) | 6.0 (4–8) | <0.001 | 0.72 |
IL-23 (pg/mL) | 187.1 (93–276) | 129.5 (72–235) | 236.3 (170–310) | <0.001 | <0.001 |
Chemokines | |||||
EOTAXIN (pg/mL) | 96.9 (58–185) | 124.8 (76–249) | 60.5 (28–120) | <0.001 | <0.001 |
Fractalkine (pg/mL) | 333.2 (157–564) | 454.1 (216–797) | 208.6 (145–345) | <0.001 | 0.003 |
GRO (ng/mL) | 4.9 (3.9–6.8) | 5.1 (4.2–6.9) | 4.7 (3.5–5.8) | 0.34 | 0.49 |
IP-10 (ng/mL) | 0.4 (0.2–0.5) | 0.4 (0.3–0.6) | 0.2 (0.1–0.4) | 0.18 | 0.004 |
MCP-3 (pg/mL) | 36.3 (19–55) | 42.2 (22–65) | 26.7 (15–40) | 0.07 | 0.22 |
MDC (ng/mL) | 1.8 (0.9–2.7) | 2.6 (1.8–3.2) | 0.9 (0.4–1.4) | <0.001 | <0.001 |
MCP-1 (ng/mL) | 0.9 (0.7–1.6) | 1.0 (0.8–1.6) | 0.8 (0.5–1.4) | 0.06 | 0.03 |
MIP-1α (pg/mL) | 17.7 (9.9–25) | 22.1 (17–29) | 10.4 (6–18) | <0.001 | <0.001 |
MIP-1β (pg/mL) | 54.9 (36–82) | 67.6 (45–94) | 42.3 (32–66) | <0.001 | <0.001 |
Interferons | |||||
IFNγ (pg/mL) | 8.0 (5–15) | 6.1 (4–9) | 17.0 (6–25) | <0.001 | <0.001 |
IFNα2 (pg/mL) | 70.0 (28–145) | 100.0 (58–197) | 26.1 (16–46) | <0.001 | <0.001 |
Inflammatory Cytokines | |||||
sCD40L (pg/mL) | 58.3 (16–371) | 184.6 (61–975) | 14.3 (10–34) | <0.001 | <0.001 |
TNFα (pg/mL) | 7.9 (6–12) | 7.2 (5–10) | 9.5 (7–16) | 0.07 | 0.24 |
Inflammatory Proteins | |||||
CRP (µg/mL) | 10.2 (0.9–32) | 2.3 (0.8–14) | 42.0 (6–75) | <0.001 | 0.002 |
Parameters | Females | Males | ||||||
---|---|---|---|---|---|---|---|---|
Control | Case | p-Value | p-Value * | Control | Case | p-Value | p-Value * | |
N | 41 | 59 | 41 | 79 | ||||
Age (years) | 33.2 ± 12.3 | 49.1 ± 12.4 | <0.001 | -- | 31.4 ± 13.9 | 50.1 ± 12.8 | <0.001 | -- |
BMI (kg/m2) | 26.4 ± 4.8 | 29.9 ± 6.4 | 0.003 | -- | 26.9 ± 5.4 | 28.2 ± 4.6 | 0.17 | -- |
WHR | 1.0 ± 0.1 | 1.0 ± 0.1 | 0.70 | 0.13 | 1.0 ± 0.1 | 1.0 ± 0.1 | 0.39 | 0.50 |
Systolic BP (mmHg) | 116.5 ± 10.3 | 128.9 ± 19.3 | <0.001 | 0.15 | 121.4 ± 8.4 | 130.9 ± 16.7 | 0.001 | 0.22 |
Diastolic BP (mmHg) | 74.0 ± 9.1 | 73.7 ± 13.5 | 0.92 | 0.63 | 77.5 ± 7.9 | 76.3 ± 11.6 | 0.55 | 0.40 |
Temperature (°C) | 36.6 ± 0.5 | 37.3 ± 0.8 | <0.001 | <0.001 | 36.7 ± 0.6 | 37.6 ± 1.4 | <0.001 | 0.001 |
Pulse rate | 96.2 ± 9.0 | 90.4 ± 15.5 | 0.02 | 0.23 | 91.5 ± 20.2 | 92.4 ± 17.9 | 0.80 | 0.22 |
Respiratory rate | 20.0 ± 0.2 | 22.7 ± 3.3 | <0.001 | <0.001 | 19.3 ± 3.9 | 24.0 ± 4.1 | 0.81 | <0.001 |
25(OH) D (nmol/L) | 65.0 ± 26.9 | 58.5 ± 19.8 | 0.36 | 0.03 | 59.0 ± 25.9 | 51.5 ± 17.5 | 0.09 | 0.21 |
Growth factors | ||||||||
EGF (ng/mL) | 0.9 (0.5–1.2) | 0.4 (0.2–1.1) | 0.003 | <0.001 | 0.8 (0.5–1.1) | 0.8 (0.3–1.5) | 0.27 | 0.02 |
FGF-2 (ng/mL) | 0.3 (0.2–0.4) | 0.2 (0.2–0.3) | 0.04 | 0.35 | 0.3 (0.2–0.3) | 0.2 (0.2–0.2) | 0.02 | 0.40 |
TGFα (pg/mL) | 22.4 (11–30) | 10.7 (7–15) | 0.09 | 0.09 | 15.4 (7–24) | 6.7 (6–17) | 0.04 | 0.21 |
VEGF (ng/mL) | 0.4 (0.3–0.7) | 0.3 (0.2–0.7) | 0.62 | 0.33 | 0.5 (0.2–0.9) | 0.7 (0.4–1.1) | 0.07 | 0.50 |
Colony Stimulating factors | ||||||||
G-CSF (pg/mL) | 151.7 (92–194) | 61.3 (31–122) | 0.003 | 0.05 | 88.5 (54–183) | 54.2 (25–151) | 0.04 | 0.06 |
GM-CSF (pg/mL) | 40.1 (22–77) | 16.6 (11–24) | 0.001 | 0.05 | 32.1 (21–44) | 11.6 (7–25) | <0.001 | 0.001 |
Interleukins | ||||||||
IL-1ra (pg/mL) | 289.6 (187–559) | 125.9 (76–176) | 0.001 | 0.03 | 176.9 (110–268) | 64.0 (34–128) | 0.001 | 0.004 |
IL-1α (pg/mL) | 191.4 (134–440) | 68.8 (41–83) | <0.001 | <0.001 | 240.5 (137–385) | 33.8 (7–76) | <0.001 | 0.001 |
IL-1β (pg/mL) | 7.7 (3–12) | 1.2 (0.7–2) | <0.001 | 0.011 | 6.7 (4–10) | 0.8 (0.3–1.5) | <0.001 | <0.001 |
IL-2 (pg/mL) | 25.4 (15–32) | 2.6 (1.5–4.0) | <0.001 | <0.001 | 12.2 (6–22) | 1.4 (0.6–2.5) | <0.001 | <0.001 |
IL-4 (pg/mL) | 383.1 (272–550) | 100.6 (66–143) | <0.001 | <0.001 | 388.5 (249–519) | 93.7 (51–135) | <0.001 | <0.001 |
IL-5 (pg/mL) | 3.3 (2–5) | 2.2 (1–3) | 0.04 | 0.09 | 3.2 (2–5) | 3.2 (2–5) | 0.96 | 0.57 |
IL-6 (pg/mL) | 3.2 (2.5–6.5) | 8.2 (3–16) | 0.06 | 0.83 | 3.0 (2–9) | 13.7 (8–22) | <0.001 | 0.01 |
IL-7 (pg/mL) | 63.9 (34–112) | 15.0 (7–26) | <0.001 | <0.001 | 49.9 (26–73) | 17.6 (9–30) | <0.001 | <0.001 |
IL-8 (pg/mL) | 34.5 (20–56) | 21.3 (11–57) | 0.12 | 0.046 | 25.7 (18–36) | 21.8 (16–49) | 0.40 | 0.20 |
IL-10 (pg/mL) | 13.2 (6–20) | 13.9 (8.1–30) | 0.34 | 0.83 | 9.8 (5–15) | 24.0 (14–32) | <0.001 | 0.001 |
IL-13 (pg/mL) | 4.2 (2–6) | 6.1 (3–15) | 0.06 | 0.47 | 4.1 (3–6) | 14.1 (8–20) | <0.001 | <0.001 |
IL-15 (pg/mL) | 22.1 (11–56) | 15.5 (10–31) | 0.10 | 0.25 | 21.6 (11–35) | 8.1 (3.7–14) | 0.002 | 0.003 |
IL-17α (pg/mL) | 6.2 (4–8) | 5.2 (4–7) | 0.99 | 0.96 | 5.5 (3–8) | 6.9 (5–10) | 0.06 | 0.58 |
IL-23 (pg/mL) | 132.2 (72–235) | 198.5 (134–294) | 0.02 | 0.030 | 124.2 (78–222) | 250.9 (198–315) | 0.002 | 0.003 |
Chemokines | ||||||||
EOTAXIN (pg/mL) | 135.1 (83–268) | 57.8 (31–99) | <0.001 | <0.001 | 105.6 (75–202) | 68.3 (27–175) | 0.010 | 0.001 |
Fractalkine (pg/mL) | 483.9 (333–888) | 201.9 (123–345) | <0.001 | 0.002 | 353.1 (139–743) | 215.3 (145–346) | 0.18 | 0.22 |
GRO (ng/mL) | 5.4 (4.4–6.9) | 4.9 (3.5–5.8) | 0.04 | 0.005 | 4.6 (3.7–6.7) | 4.7 (3.8–5.8) | 0.87 | 0.34 |
IP-10 (ng/mL) | 0.4 (0.2–0.6) | 0.2 (0.1–0.3) | 0.27 | 0.02 | 0.5 (0.3–0.6) | 0.3 (0.2–0.5) | 0.38 | 0.09 |
MCP-3 (pg/mL) | 53.4 (25–77) | 20.5 (15–38) | 0.008 | 0.12 | 34.7 (15–55) | 32.8 (14–41) | 0.83 | 0.98 |
MDC (ng/mL) | 2.6 (1.7–3.1) | 1.2 (0.5–1.5) | <0.001 | <0.001 | 2.6 (1.8–3.7) | 0.7 (0.4–1.1) | <0.001 | <0.001 |
MCP-1 (ng/mL) | 1.0 (0.8–1.6) | 1.2 (0.6–1.5) | 0.33 | 0.30 | 1.0 (0.7–1.7) | 0.7 (0.5–1.2) | 0.12 | 0.05 |
MIP-1α (pg/mL) | 24.2 (18–32) | 13.9 (7–24) | 0.01 | 0.05 | 20.3 (15–27) | 9.6 (6–15) | <0.001 | <0.001 |
MIP-1β (pg/mL) | 75.6 (47–115) | 42.7 (34–63) | 0.002 | <0.001 | 54.7 (42–77) | 41.4 (32–77) | 0.06 | 0.04 |
Interferons | ||||||||
IFNγ (pg/mL) | 6.1 (4–10) | 12.4 (5–20) | 0.002 | 0.05 | 6.1 (4–8) | 21.0 (9–31) | <0.001 | <0.001 |
IFNα2 (pg/mL) | 124.4 (46–252) | 32.4 (25–69) | 0.001 | 0.028 | 81.1 (58–195) | 19.7 (15–30) | <0.001 | 0.003 |
Inflammatory Cytokines | ||||||||
sCD40L (pg/mL) | 184.6 (99–975) | 18.1 (10–43) | <0.001 | <0.001 | 222.8 (47–1235) | 13.8 (10–23) | <0.001 | <0.001 |
TNFα (pg/mL) | 7.9 (6–11) | 8.8 (6–15) | 0.627 | 0.74 | 6.9 (5–9) | 12.3 (8–16) | <0.001 | 0.002 |
Inflammatory Proteins | ||||||||
CRP (µg/mL) | 2.2 (0.9–12.5) | 66.4 (4.6–81.6) | <0.001 | 0.013 | 4.1 (0.7–14.7) | 31.1 (6.2–63.7) | <0.001 | 0.053 |
Parameters | Control | Case | ||||||
---|---|---|---|---|---|---|---|---|
Female | Male | Female | Male | |||||
R | p-Value | R | p-Value | R | p-Value | R | p-Value | |
Age (years) | 0.48 ** | 0.00 | −0.13 | 0.44 | 0.09 | 0.54 | 0.19 | 0.12 |
BMI (kg/m2) | 0.15 | 0.37 | −0.04 | 0.83 | 0.03 | 0.82 | 0.01 | 0.94 |
WHR | 0.18 | 0.30 | 0.02 | 0.92 | 0.03 | 0.89 | 0.09 | 0.60 |
Systolic BP (mmHg) | 0.14 | 0.41 | 0.04 | 0.82 | 0.03 | 0.84 | 0.20 | 0.10 |
Diastolic BP (mmHg) | −0.06 | 0.74 | 0.24 | 0.15 | −0.02 | 0.92 | −0.09 | 0.46 |
Temperature (°C) | 0.11 | 0.52 | 0.07 | 0.71 | 0.07 | 0.65 | −0.03 | 0.81 |
Pulse rate | 0.20 | 0.22 | 0.29 | 0.11 | 0.13 | 0.36 | −0.07 | 0.57 |
Respiratory rate | −0.01 | 0.96 | −0.10 | 0.64 | 0.55 ** | 0.00 | 0.19 | 0.12 |
Growth factors | ||||||||
EGF (ng/mL) | −0.19 | 0.25 | −0.12 | 0.49 | −0.30 | 0.19 | 0.39 * | 0.05 |
F-GF2 (pg/mL) | −0.29 | 0.08 | 0.05 | 0.78 | 0.28 | 0.31 | −0.05 | 0.81 |
TFGα (ng/mL) | −0.04 | 0.80 | 0.01 | 0.96 | 0.09 | 0.71 | 0.20 | 0.30 |
VEGF (ng/mL) | −0.10 | 0.58 | 0.62 ** | 0.00 | 0.15 | 0.52 | 0.11 | 0.64 |
Colony Stimulating Factors | ||||||||
G-CSF (pg/mL) | −0.09 | 0.64 | 0.13 | 0.52 | −0.01 | 0.96 | −0.34 | 0.14 |
GM-CSF (pg/mL) | −0.17 | 0.32 | −0.09 | 0.62 | 0.14 | 0.65 | −0.13 | 0.55 |
Interleukins | ||||||||
IL-1ra (pg/mL) | −0.16 | 0.46 | 0.08 | 0.73 | 0.15 | 0.62 | 0.01 | 0.97 |
IL-1α (pg/mL) | −0.05 | 0.84 | 0.25 | 0.43 | 0.33 | 0.42 | 0.50 | 0.07 |
IL-1β (pg/mL) | −0.07 | 0.75 | 0.08 | 0.74 | −0.33 | 0.23 | −0.02 | 0.94 |
IL-2 (pg/mL) | −0.13 | 0.49 | 0.10 | 0.59 | −0.50 | 0.06 | 0.08 | 0.75 |
IL-4 (pg/mL) | −0.19 | 0.26 | −0.12 | 0.48 | 0.05 | 0.84 | 0.34 | 0.09 |
IL-5 (pg/mL) | −0.06 | 0.73 | 0.14 | 0.42 | 0.05 | 0.82 | 0.15 | 0.46 |
IL-6 (pg/mL) | 0.00 | 0.99 | 0.14 | 0.42 | −0.23 | 0.27 | 0.14 | 0.49 |
IL-7 (pg/mL) | −0.16 | 0.33 | −0.10 | 0.61 | 0.20 | 0.41 | 0.19 | 0.39 |
IL-8 (pg/mL) | 0.21 | 0.20 | −0.19 | 0.27 | 0.06 | 0.80 | 0.13 | 0.52 |
IL-10 (pg/mL) | 0.07 | 0.68 | 0.00 | 1.00 | 0.19 | 0.39 | 0.22 | 0.26 |
IL-13 (pg/mL) | 0.17 | 0.29 | 0.07 | 0.71 | −0.07 | 0.73 | 0.19 | 0.34 |
IL-15 (pg/mL) | 0.02 | 0.91 | 0.30 | 0.20 | −0.23 | 0.37 | 0.39 * | 0.04 |
IL-17α (pg/mL) | −0.05 | 0.75 | −0.25 | 0.14 | −0.36 | 0.06 | 0.10 | 0.63 |
IL-23 (pg/mL) | −0.08 | 0.63 | 0.01 | 0.94 | 0.03 | 0.87 | 0.19 | 0.33 |
Chemokines | ||||||||
EOTAXIN (pg/mL) | −0.20 | 0.22 | −0.04 | 0.80 | 0.05 | 0.84 | 0.06 | 0.78 |
Fractalkine (pg/mL) | −0.18 | 0.31 | 0.14 | 0.48 | 0.01 | 0.96 | −0.08 | 0.75 |
GRO (ng/mL) | 0.08 | 0.66 | −0.60 ** | 0.00 | 0.39 | 0.15 | 0.16 | 0.54 |
IP-10 (ng/mL) | 0.36 * | 0.03 | −0.05 | 0.79 | −0.10 | 0.69 | 0.04 | 0.84 |
MCP-3 (pg/mL) | −0.32 | 0.09 | −0.06 | 0.79 | −0.05 | 0.89 | 0.23 | 0.46 |
MDC (ng/mL) | −0.16 | 0.35 | −0.11 | 0.53 | 0.13 | 0.59 | −0.27 | 0.18 |
MCP-1 (ng/mL) | 0.01 | 0.97 | 0.22 | 0.20 | −0.19 | 0.42 | −0.25 | 0.22 |
MIP-1α (pg/mL) | −0.21 | 0.24 | 0.12 | 0.52 | −0.29 | 0.26 | 0.37 | 0.07 |
MIP-1β (pg/mL) | −0.10 | 0.54 | 0.13 | 0.46 | −0.11 | 0.67 | −0.14 | 0.51 |
Interferons | ||||||||
IFNγ (pg/mL) | 0.07 | 0.69 | −0.18 | 0.31 | −0.11 | 0.61 | 0.33 | 0.06 |
IFNα2 (pg/mL) | −0.23 | 0.20 | 0.08 | 0.67 | −0.20 | 0.52 | −0.24 | 0.33 |
Inflammatory Cytokines | ||||||||
sCD40L (pg/mL) | −0.01 | 0.95 | 0.06 | 0.72 | −0.34 | 0.14 | −0.17 | 0.40 |
TNFα (pg/mL) | −0.01 | 0.94 | 0.18 | 0.28 | −0.16 | 0.45 | 0.16 | 0.40 |
Inflammatory Proteins | ||||||||
CRP (ug/mL) | 0.14 | 0.41 | 0.19 | 0.27 | −0.51* | 0.04 | 0.12 | 0.57 |
Parameters | OR (95% CI) | p-Value |
---|---|---|
Age (years) | 1.1 (1.0–1.1) | 0.007 |
BMI (kg/m2) | 1.0 (0.9–1.2) | 0.51 |
Log IP-10 (ng/mL) | 0.1 (0.0–0.3) | 0.002 |
Log IFNγ (ng/mL) | 169.2 (5.5–5200.4) | 0.003 |
Log IL-23 (ng/mL) | 15.5 (1.0–250.7) | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amer, O.E.; Sabico, S.; Sheshah, E.; Alotaibi, N.H.; Aldisi, D.A.; Enani, M.A.; Aljohani, N.J.; Alshingetti, N.; Alomar, S.Y.; Hussain, S.D.; et al. Evaluation of 34 Cytokines and Vitamin D Status Reveal A Sexually-Dimorphic Active Immune Response to SARS-CoV-2. Healthcare 2022, 10, 2571. https://doi.org/10.3390/healthcare10122571
Amer OE, Sabico S, Sheshah E, Alotaibi NH, Aldisi DA, Enani MA, Aljohani NJ, Alshingetti N, Alomar SY, Hussain SD, et al. Evaluation of 34 Cytokines and Vitamin D Status Reveal A Sexually-Dimorphic Active Immune Response to SARS-CoV-2. Healthcare. 2022; 10(12):2571. https://doi.org/10.3390/healthcare10122571
Chicago/Turabian StyleAmer, Osama E., Shaun Sabico, Eman Sheshah, Naif H Alotaibi, Dara A. Aldisi, Mushira A. Enani, Naji J. Aljohani, Naemah Alshingetti, Suliman Y. Alomar, Syed D. Hussain, and et al. 2022. "Evaluation of 34 Cytokines and Vitamin D Status Reveal A Sexually-Dimorphic Active Immune Response to SARS-CoV-2" Healthcare 10, no. 12: 2571. https://doi.org/10.3390/healthcare10122571
APA StyleAmer, O. E., Sabico, S., Sheshah, E., Alotaibi, N. H., Aldisi, D. A., Enani, M. A., Aljohani, N. J., Alshingetti, N., Alomar, S. Y., Hussain, S. D., Alnaami, A. M., Elsaid, M. A., & Al-Daghri, N. M. (2022). Evaluation of 34 Cytokines and Vitamin D Status Reveal A Sexually-Dimorphic Active Immune Response to SARS-CoV-2. Healthcare, 10(12), 2571. https://doi.org/10.3390/healthcare10122571