The Analysis of Blood Inflammation Markers as Prognostic Factors in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
3.1. Comparations of Demographic Features and Laboratory Indicators of the Two Groups
3.1.1. Demographic Features of the Two Groups
3.1.2. Laboratory Findings
3.1.3. Correlations and Predictors Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lökk, J. Caregiver strain in Parkinson’s disease and the impact of disease duration. Eur. J. Phys. Rehabil. Med. 2008, 44, 39–44. [Google Scholar] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Yazar, T.; Yazar, H.O.; Zayimoğlu, E.; Çankaya, S. Incidence of sarcopenia and dynapenia according to stage in patients with idiopathic Parkinson’s disease. Neurol. Sci. 2018, 39, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Markó-Kucsera, M.; Vécsei, L.; Paulik, E. Association of cardiovascular risk factors and Parkinson’s Disease—A casa control study in South East Hungary. Ideggyogy. Sz. 2018, 71, 57–62. [Google Scholar] [CrossRef]
- Jankovic, J. Parkinson’s Disease: Clinical Features and Diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Masliah, E.; Rockenstein, E.; Veinbergs, I.; Mallory, M.; Hashimoto, M.; Takeda, A.; Sagara, Y.; Sisk, A.; Mucke, L. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science 2000, 287, 1265–1269. [Google Scholar] [CrossRef]
- Campbell, B.C.; McLean, C.A.; Culvenor, J.G.; Gai, W.P.; Blumbergs, P.C.; Jakala, P.; Beyreuther, K.; Masters, C.L.; Li, Q.X. The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J. Neurochem. 2001, 76, 87–96. [Google Scholar] [CrossRef]
- Hirsch, E.C.; Vyas, S.; Hunot, S. Neuroinflammation in Parkinson’s disease. Park. Relat. Disord. 2012, 18 (Suppl. 1), S210–S212. [Google Scholar] [CrossRef]
- Harms, A.S.; Ferreira, S.A.; Romero-Ramos, M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol. 2021, 141, 527–545. [Google Scholar] [CrossRef]
- Li, J.Y.; Ma, S.S.; Huang, Q.Y.; Li, M.T. The function of neuroinflammation in Parkinson disease. Sheng Li Ke Xue Jin Zhan 2015, 46, 175–179. [Google Scholar]
- Lopez Gonzalez, I.; Garcia-Esparcia, P.; Llorens, F.; Ferrer, I. Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies. Int. J. Mol. Sci. 2016, 17, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempuraj, D.; Thangavel, R.; Selvakumar, G.P.; Zaheer, S.; Ahmed, M.E.; Raikwar, S.P.; Zahoor, H.; Saeed, D.; Natteru, P.A.; Iyer, S.; et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci. 2017, 11, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, P.C.; Pal, R. The potential role of neuroinflammation and transcription factors in Parkinson disease. Dialogues Clin. Neurosci. 2017, 19, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Ghadery, C.; Koshimori, Y.; Coakeley, S.; Harris, M.; Rusjan, P.; Kim, J.; Houle, S.; Strafella, A.P. Microglial activation in Parkinson’s disease using [F]-FEPPA. J. Neuroinflamm. 2017, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Nicastro, N.; Surendranathan, A.; Mak, E.; Rowe, J.B.; O’Brien, J.T. 11C-PK11195 PET imaging and white matter changes in Parkinson’s disease dementia. Ann. Clin. Transl. Neurol. 2019, 6, 2133–2136. [Google Scholar] [CrossRef] [Green Version]
- Kustrimovic, N.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Comi, C.; Mauri, M.; Minafra, B.; Riboldazzi, G.; et al. Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson’s disease. Sci. Rep. 2016, 6, 3738–3753. [Google Scholar] [CrossRef] [Green Version]
- Kuyumcu, M.E.; Yesil, Y.; Oztürk, Z.A.; Kizilarslanoglu, M.C.; Etgül, S.; Halil, M.; Ulger, Z.; Cankurtaran, M.; Ariogul, S. The evaluation of neutrophil-lymphocyte ratio in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2012, 34, 69–74. [Google Scholar] [CrossRef]
- Koklu, E.; Yuksel, I.O.; Arslan, S.; Bayar, N.; Cagirci, G.; Gencer, E.S.; Alparslan, A.S.; Çay, S.; Kuş, G. Is elevated neutrophil-to-lymphocyte ratio a predictor of stroke in patients with intermediate carotid artery stenosis? J. Stroke Cereb. Dis. 2016, 25, 578–584. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.; Mezlini, A.M.; Hyman, B.T.; Serrano-Pozo, A.; Das, S. Systematic review and meta-analysis of human transcriptomics reveals neuroinflammation, deficient energy metabolism, and proteostasis failure across neurodegeneration. Neurobiol. Dis. 2021, 149, 105225. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Grozdanov, V.; Bousset, L.; Hoffmeister, M.; Bliederhaeuser, C.; Meier, C.; Madiona, K.; Pieri, L.; Kiechle, M.; McLean, P.J.; Kassubek, J.; et al. Increased immune activation by pathologic α-synuclein in Parkinson’s disease. Ann. Neurol. 2019, 86, 593–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tecchio, C.; Cassatella, M.A. Neutrophil-derived chemokines on the road to immunity. Semin. Immunol. 2016, 28, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Gao, H.; Luo, Q.; Wang, P.; Yang, X. The correlation of lymphocyte subsets, natural killer cell, and Parkinson’s disease: A meta-analysis. Neurol. Sci. 2017, 38, 1373–1380. [Google Scholar] [CrossRef]
- Akıl, E.; Bulut, A.; Kaplan, I.; Özdemir, H.H.; Arslan, D.; Aluçlu, M.U. The increase of carcinoembryonic antigen (CEA), high-sensitivity C-reactive protein, and neutrophil/lymphocyte ratio in Parkinson’s disease. Neurol. Sci. 2015, 36, 423–428. [Google Scholar] [CrossRef]
- Uçar, A.C.; Gokçe Çokal, B.; Unal Artık, H.A.; İnan, L.E.; Yoldaş, T.K. Comparison of neutrophil-lymphocyte ratio (NLR) in Parkinson’s disease subtypes. Neurol. Sci. 2017, 38, 287–293. [Google Scholar] [CrossRef]
- Fuzzati-Armentero, M.T.; Cerri, S.; Blandini, F. Peripheral-Central Neuroimmune Crosstalk in Parkinson’s Disease: What Do Patients and Animal Models Tell Us? Front. Neurol. 2019, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- Tansey, M.G.; Romero-Ramos, M. Immune system responses in Parkinson’s disease: Early and dynamic. Eur. J. Neurosci. 2019, 49, 364–383. [Google Scholar] [CrossRef]
- Álvarez-Luquín, D.D.; Arce-Sillas, A.; Leyva-Hernández, J.; Sevilla-Reyes, E.; Boll, M.C.; Montes-Moratilla, E.; Vivas-Almazán, V.; Pérez-Correa, C.; Rodríguez-Ortiz, U.; Espinoza-Cárdenas, R.; et al. Regulatory impairment in untreated Parkinson’s disease is not restricted to Tregs: Other regulatory populations are also involved. J. Neuroinflamm. 2019, 16, 212. [Google Scholar] [CrossRef] [PubMed]
- Solmaz, V.; Pekdaş Genç, E.; Aksoy, D.; Çevik, B.; Kurt, S.G.; Benli, İ. Serum neutrophil-lymphocyte ratios, C-reactive protein and sedimentation levels in Parkinson’s disease. Cukurova Med. J. 2018, 43, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Delgado, L.; Macías-García, D.; Jesús, S.; Martín-Rodríguez, J.F.; Labrador-Espinosa, M.Á.; Jiménez-Jaraba, M.V.; Adarmes-Gómez, A.; Carrillo, F.; Mir, P. Peripheral Immune Profile and Neutrophil-to-Lymphocyte Ratio in Parkinson’s Disease. Mov. Disord. 2021, 36, 2426–2430. [Google Scholar] [CrossRef] [PubMed]
- Leiter, O.; Walker, T.L. Platelets in neurodegenerative conditions-friend or foe? Front. Immunol. 2020, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Carvey, P.M.; Hendey, B.; Monahan, A.J. The blood-brain barrier in neurodegenerative disease: A rhetorical perspective. J. Neurochem. 2009, 111, 291–314. [Google Scholar] [CrossRef] [PubMed]
Variables | PD | CG | p-Values | |
---|---|---|---|---|
n | 45 | 46 | - | |
Age, y | 65.91 ± 8.65 | 62.65 ± 13.39 | 0.08 | |
Male gender (%) | 26 (57.77%) | 23 (50%) | 1.00 | |
Urban provenience (%) | 25 (54.3%) | 22 (47.8%) | 1.00 | |
Disease duration, y | 7.22 ± 5.52 | - | - | |
H&Y stage | 1 | 7 (15.5%) | - | - |
2 | 13 (28.8%) | |||
3 | 15 (33.3%) | |||
4 | 9 (20.0%) | |||
5 | 1 (2.2%) | |||
Motor phenotype | Tremor-dominant | 12 (26.6%) | - | - |
PIGD | 10 22.2%) | |||
Indeterminate | 23 (51.1%) | |||
MDS-UPDRS Part III Score | 42.2 ± 18.43 | - | - | |
NMSQ | 15.33 ± 5.70 | - | - | |
MMSE | 27.28 ± 2.15 | 29.24 ± 0.76 | <0.001 * |
Laboratory Data | PD (Mean ± SD) | CG (Mean ± SD) | p-Values |
---|---|---|---|
n | 46 | 46 | - |
WBCs (×103/μL) | 7.19 ± 1.70 | 7.32 ±1.69 | 0.36 |
Neutrophils (×103/μL) | 4.76 ± 1.41 | 4.58 ± 1.28 | 0.26 |
Lymphocytes (×103/μL) | 1.89 ± 0.61 | 2.12 ± 0.72 | 0.04 |
Monocytes (×10/3μL) | 0.38 ± 0.12 | 0.46 ± 0.15 | 0.003 |
Platelets (×103/μL) | 257.95 ± 57.26 | 254.54 ± 64.92 | 0.89 |
NLR | 2.64 ± 0.94 | 2.32 ± 0.89 | 0,04 |
PLR | 168.22 ± 51.48 | 128.14 ± 40.99 | <0.001 |
ESR | 14.60 ± 14.94 | 8.34 ± 3.45 | 0.187 * |
Regression Models | |||||||||
---|---|---|---|---|---|---|---|---|---|
Dependent var. | MDS-UPDRS | MDS-UPDRS | MDS-UPDRS | HY | HY | HY | NMSQ | NMSQ | NMSQ |
Predictor var. 1 | ESR | NLR | PLR | ESR | NLR | PLR | ESR | NLR | PLR |
Predictor var. 2 | Age | Age | Age | Age | Age | Age | Age | Age | Age |
Unstand.β (pred. 1) | 0.143 | 4.884 | 0.087 | 0.014 | 0.227 | 0.007 | 0.084 | 1.557 | 0.024 |
Unstand.β (pred. 2) | 0.575 | 0.673 | 0.48 | 0.037 | 0.047 | 0.031 | 0.018 | 0.074 | 0.021 |
N | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
p (pred. 1) | 0.429 | 0.062 | 0.118 | 0.195 | 0.15 | 0.027 | 0.182 | 0.091 | 0.228 |
p (pred. 2) | 0.07 | 0.019 | 0.122 | 0.046 | 0.008 | 0.088 | 0.868 | 0.453 | 0.844 |
Adj. R sqr. | 0.085 | 0.146 | 0.125 | 0.143 | 0.151 | 0.206 | 0.009 | 0.034 | 0.001 |
Regression Models | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent var. | ESR (PD) | ESR (CG) | NLR (PD) | NLR (CG) | PLR (PD) | PLR (CG) | MMSE (PD) | MMSE (CG) | Disease Duration | Disease Duration | Disease Duration | MDS-UPDRS | NMSQ |
Predictor var. 1 | Age | Age | Age | Age | Age | Age | Age | Age | ESR | NLR | PLR | Onset age | Onset age |
Unstand.β (pred. 1) | 0.655 | −0.029 | −0.001 | −0.018 | 2.171 | −0.007 | −0.038 | −0.027 | 0.095 | 0.767 | 0.057 | −0.037 | −0.048 |
N | 44 | 45 | 44 | 45 | 44 | 45 | 44 | 45 | 44 | 44 | 44 | 44 | 44 |
p (pred. 1) | 0.01 | 0.451 | 0.966 | 0.074 | 0.008 | 0.412 | 0.312 | 0.001 | 0.09 | 0.393 | 0.001 | 0.903 | 0.634 |
Adj. R sqr. | 0.124 | −0.009 | −0.023 | 0.049 | 0.133 | −0.379 | 0.001 | 0.198 | 0.044 | −0.006 | 0.226 | −0.023 | −0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanca, I.-D.; Criciotoiu, O.; Neamtu, S.-D.; Vasile, R.-C.; Berceanu-Bora, N.-M.; Minca, T.-N.; Pirici, I.; Rosu, G.-C.; Bondari, S. The Analysis of Blood Inflammation Markers as Prognostic Factors in Parkinson’s Disease. Healthcare 2022, 10, 2578. https://doi.org/10.3390/healthcare10122578
Stanca I-D, Criciotoiu O, Neamtu S-D, Vasile R-C, Berceanu-Bora N-M, Minca T-N, Pirici I, Rosu G-C, Bondari S. The Analysis of Blood Inflammation Markers as Prognostic Factors in Parkinson’s Disease. Healthcare. 2022; 10(12):2578. https://doi.org/10.3390/healthcare10122578
Chicago/Turabian StyleStanca, Iulia-Diana, Oana Criciotoiu, Simona-Daniela Neamtu, Ramona-Constantina Vasile, Nicoleta-Madalina Berceanu-Bora, Teodora-Nicoleta Minca, Ionica Pirici, Gabriela-Camelia Rosu, and Simona Bondari. 2022. "The Analysis of Blood Inflammation Markers as Prognostic Factors in Parkinson’s Disease" Healthcare 10, no. 12: 2578. https://doi.org/10.3390/healthcare10122578
APA StyleStanca, I. -D., Criciotoiu, O., Neamtu, S. -D., Vasile, R. -C., Berceanu-Bora, N. -M., Minca, T. -N., Pirici, I., Rosu, G. -C., & Bondari, S. (2022). The Analysis of Blood Inflammation Markers as Prognostic Factors in Parkinson’s Disease. Healthcare, 10(12), 2578. https://doi.org/10.3390/healthcare10122578