Risk of Dehydration Due to Sweating While Wearing Personal 2 Protective Equipment in COVID-19 Clinical Care: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting and Sample
2.3. Ethical Considerations
2.4. Simulation Room Setting
2.5. Simulated Scenario Design
2.6. PPE Used
2.7. Experimental Procedure
2.8. Data Collection Instruments
2.9. Data Analysis
3. Results
3.1. Change in the Weight and Comfort Parameters
3.2. Change in the Temperature Parameters
3.3. Bivariate Analysis
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arabi, Y.M.; Azoulay, E.; Al-Dorzi, H.M.; Phua, J.; Salluh, J.; Binnie, A.; Hodgson, C.; Angus, D.C.; Cecconi, M.; Du, B.; et al. How the COVID-19 pandemic will change the future of critical care. Intensive Care Med. 2021, 47, 282–291. [Google Scholar] [CrossRef] [PubMed]
- El-Boghdadly, K.; Wong, D.J.N.; Owen, R.; Neuman, M.D.; Pocock, S.; Carlisle, J.B.; Johnstone, C.; Andruszkiewicz, P.; Baker, P.A.; Biccard, B.M.; et al. Risks to healthcare workers following tracheal intubation of patients with COVID-19: A prospective international multicentre cohort study. Anaesthesia 2020, 75, 1437–1447. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.M.; El-Boghdadly, K.; McGuire, B.; McNarry, A.F.; Patel, A.; Higgs, A. Consensus guidelines for managing the airway in patients with COVID-19. Anaesthesia 2020, 75, 785–799. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; Chu, D.K.; Akl, E.A.; El-harakeh, A.; Bognanni, A.; et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Guidance for Wearing and Removing Personal Protective Equipment in Healthcare Settings for the Care of Patients with Suspected or Confirmed COVID-19. Available online: https://www.ecdc.europa.eu/en/publications-data/guidance-wearing-and-removing-personal-protective-equipment-healthcare-settings (accessed on 12 December 2021).
- Atay, S.; Cura, Ş.Ü. Problems Encountered by Nurses Due to the Use of Personal Protective Equipment During the Coronavirus Pandemic: Results of a Survey. Wound Manag. Prev. 2020, 66, 12–16. [Google Scholar] [CrossRef]
- Ong, J.J.; Bharatendu, C.; Goh, Y.; Tang, J.Z.; Sooi, K.W.; Tan, Y.L.; Tan, B.Y.; Teoh, H.L.; Ong, S.T.; Allen, D.M.; et al. Headaches Associated With Personal Protective Equipment—A Cross-Sectional Study Among Frontline Healthcare Workers During COVID-19. Headache J. Head Face Pain 2020, 60, 864–877. Available online: https://headachejournal.onlinelibrary.wiley.com/doi/10.1111/head.13811 (accessed on 12 December 2021). [CrossRef] [Green Version]
- Dhandapani, M.; Jose, S.; Cyriac, M.C. Health Problems and Skin Damages Caused by Personal Protective Equipment: Experience of Frontline Nurses Caring for Critical COVID-19 Patients in Intensive Care Units. Indian J. Crit. Care Med. 2021, 25, 134–139. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, Y.; Wei, W.; Zhu, D.; Chen, A.; Liu, H.; Wang, J.; Jiang, Z.; Han, Q.; Bai, Y.; et al. The prevalence, characteristics, and related factors of pressure injury in medical staff wearing personal protective equipment against COVID-19 in China: A multicentre cross-sectional survey. Int. Wound J. 2020, 17, 1300–1309. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Kenefick, R.W. CORP: Improving the status quo for measuring whole body sweat losses. J. Appl. Physiol. 2017, 123, 632–636. [Google Scholar] [CrossRef]
- Fernández-Méndez, M.; Otero-Agra, M.; Fernández-Méndez, F.; Martínez-Isasi, S.; Santos-Folgar, M.; Barcala-Furelos, R.; Rodríguez-Núñez, A. Analysis of Physiological Response during Cardiopulmonary Resuscitation with Personal Protective Equipment: A Randomized Crossover Study. Int. J. Environ. Res. Public Health 2021, 18, 7093. [Google Scholar] [CrossRef]
- Rauch, S.; van Veelen, M.J.; Oberhammer, R.; Cappello, T.D.; Roveri, G.; Gruber, E.; Strapazzon, G. Effect of Wearing Personal Protective Equipment (PPE) on CPR Quality in Times of the COVID-19 Pandemic—A Simulation, Randomised Crossover Trial. J. Clin. Med. 2021, 10, 1728. [Google Scholar] [CrossRef] [PubMed]
- Harvey, G.; Meir, R.; Brooks, L.; Holloway, K. The use of body mass changes as a practical measure of dehydration in team sports. J. Sci. Med. Sport 2008, 11, 600–603. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, H.; Cooper, S.; Bandelow, S.; Malcolm, R.; Sunderland, C. Effects of heat stress and dehydration on cognitive function in elite female field hockey players. BMC Sports Sci. Med. Rehabil. 2018, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Du, S.M.; Zhang, J.F.; Ma, G.S. Effects of Dehydration and Rehydration on Cognitive Performance and Mood among Male College Students in Cangzhou, China: A Self-Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roussin, C.J.; Weinstock, P. SimZones: An Organizational Innovation for Simulation Programs and Centers. Acad. Med. 2017, 92, 1114–1120. [Google Scholar] [CrossRef]
- Schumacher, J.; Arlidge, J.; Garnham, F.; Ahmad, I. A randomised crossover simulation study comparing the impact of chemical, biological, radiological or nuclear substance personal protection equipment on the performance of advanced life support interventions. Anaesthesia 2017, 72, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, J.; Arlidge, J.; Dudley, D.; Sicinski, M.; Ahmad, I. The impact of respiratory protective equipment on difficult airway management: A randomised, crossover, simulation study. Anaesthesia 2020, 75, 1301–1306. [Google Scholar] [CrossRef]
- Nuccio, R.P.; Barnes, K.A.; Carter, J.M.; Baker, L.B. Fluid Balance in Team Sport Athletes and the Effect of Hypohydration on Cognitive, Technical, and Physical Performance. Sports Med. 2017, 47, 1951–1982. [Google Scholar] [CrossRef] [Green Version]
- Abián-Vicén, J.; Coso, J.D.; González-Millán, C.; Salinero, J.J.; Abián, P. Analysis of Dehydration and Strength in Elite Badminton Players. PLoS ONE 2012, 7, e37821. [Google Scholar] [CrossRef] [Green Version]
- Cox, G.R.; Broad, E.M.; Riley, M.D.; Burke, L.M. Body mass changes and voluntary fluid intakes of elite level water polo players and swimmers. J. Sci. Med. Sport 2002, 5, 183–193. [Google Scholar] [CrossRef]
- Perrone, C.; Sehl, P.; Martins, J.B.; Meyer, F. Hydration Status and Sweating Responses of Boys Playing Soccer and Futsal. Med. Sport. 2011, 15, 188–193. [Google Scholar] [CrossRef]
- Fortes, L.S.; Nascimento-Júnior, J.R.; Mortatti, A.L.; Lima-Júnior, D.R.; Ferreira, M.E. Effect of Dehydration on Passing Decision Making in Soccer Athletes. Res. Q. Exerc. Sport 2018, 89, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Jacklitsch, B.L.; Williams, W.J.; Musolin, K.; Coca, A.; Kim, J.H.; Turner, N. Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments; DHHS (NIOSH): Cincinnati, OH, USA, 2016. [Google Scholar]
- Jacklitsch, B.L.; Williams, W.J.; Musolin, K.; Coca, A.; Kim, J.H.; Turner, N. Occupational Exposure to Heat and Hot Environments. Revised Criteria 2016; Publication No. 2016-106; Department Of Health And Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH): Cincinnati, OH, USA, 2016.
- Lee, J.; Venugopal, V.; Latha, P.K.; Alhadad, S.B.; Leow, C.H.W.; Goh, N.Y.D.; Tan, E.; Kjellstrom, T.; Morabito, M.; Lee, J.K.W. Heat Stress and Thermal Perception amongst Healthcare Workers during the COVID-19 Pandemic in India and Singapore. Int. J. Environ. Res. Public Health 2020, 17, 8100. [Google Scholar] [CrossRef] [PubMed]
- Davey, S.L.; Lee, B.J.; Robbins, T.; Randeva, H.; Thake, C.D. Heat stress and PPE during COVID-19: Impact on healthcare workers’ performance, safety and well-being in NHS settings. J. Hosp. Infect. 2021, 108, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Messeri, A.; Bonafede, M.; Pietrafesa, E.; Pinto, I.; de’Donato, F.; Crisci, A.; Lee, J.K.W.; Marinaccio, A.; Levi, M.; Morabito, M.; et al. A Web Survey to Evaluate the Thermal Stress Associated with Personal Protective Equipment among Healthcare Workers during the COVID-19 Pandemic in Italy. Int. J. Environ. Res. Public Health 2021, 18, 3861. [Google Scholar] [CrossRef]
- López-Sánchez, J.I.; Hancock, P.A. Thermal effects on cognition: A new quantitative synthesis. Int. J. Hyperth. 2018, 34, 423–431. [Google Scholar] [CrossRef]
- Luze, H.; Nischwitz, S.P.; Kotzbeck, P.; Fink, J.; Holzer, J.C.J.; Popp, D.; Kamolz, L.-P. Personal protective equipment in the COVID-19 pandemic and the use of cooling-wear as alleviator of thermal stress. Wien. Klin. Wochenschr. 2021, 133, 312–320. [Google Scholar] [CrossRef]
- Kenny, G.P.; Flouris, A.D. The human thermoregulatory system and its response to thermal stress. In Protective Clothing; Wang, F., Gao, C., Eds.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2014; pp. 319–365. ISBN 978-1-78242-032-3. [Google Scholar]
- Flouris, A.D.; Dinas, P.C.; Ioannou, L.G.; Nybo, L.; Havenith, G.; Kenny, G.P.; Kjellstrom, T. Workers’ health and productivity under occupational heat strain: A systematic review and meta-analysis. Lancet Planet. Health 2018, 2, e521–e531. [Google Scholar] [CrossRef] [Green Version]
- Havenith, G.; den Hartog, E.; Martini, S. Heat stress in chemical protective clothing: Porosity and vapour resistance. Ergonomics 2011, 54, 497–507. [Google Scholar] [CrossRef]
- Adams, W.M.; Vandermark, L.W.; Belval, L.N.; Casa, D.J. The Utility of Thirst as a Measure of Hydration Status Following Exercise-Induced Dehydration. Nutrients 2019, 11, 2689. [Google Scholar] [CrossRef] [Green Version]
- Carroll, H.A.; Chen, Y.-C.; Templeman, I.; James, L.J.; Betts, J.A.; Trim, W.V. The effect of hydration status on plasma FGF21 concentrations in humans: A subanalysis of a randomised crossover trial. PLoS ONE 2020, 15, e0235557. [Google Scholar] [CrossRef]
- Kenefick, R.W. Author’s Reply to Goulet: Comment on: “Drinking Strategies: Planned Drinking Versus Drinking to Thirst”. Sports Med. 2019, 49, 635–636. [Google Scholar] [CrossRef] [PubMed]
- Gantois, P.; Ferreira, M.E.C.; Lima-Junior, D.D.; Nakamura, F.Y.; Batista, G.R.; Fonseca, F.S.; Fortes, L.D.S. Effects of mental fatigue on passing decision-making performance in professional soccer athletes. Eur. J. Sport Sci. 2020, 20, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Hew-Butler, T.; Ayus, J.C.; Kipps, C.; Maughan, R.J.; Mettler, S.; Meeuwisse, W.H.; Page, A.J.; Reid, S.A.; Rehrer, N.J.; Roberts, W.O.; et al. Statement of the Second International Exercise-Associated Hyponatremia Consensus Development Conference, New Zealand, 2007. Clin. J. Sport Med. 2008, 18, 111–121. [Google Scholar] [CrossRef]
- Licina, A.; Silvers, A.; Stuart, R.L. Use of powered air-purifying respirator (PAPR) by healthcare workers for preventing highly infectious viral diseases—a systematic review of evidence. Syst. Rev. 2020, 9, 173. [Google Scholar] [CrossRef]
- Licina, A.; Silvers, A. Use of powered air-purifying respirator(PAPR) as part of protective equipment against SARS-CoV-2-a narrative review and critical appraisal of evidence. Am. J. Infect. Control 2021, 49, 492–499. [Google Scholar] [CrossRef]
- Verbeek, J.H.; Rajamaki, B.; Ijaz, S.; Tikka, C.; Ruotsalainen, J.H.; Edmond, M.B.; Sauni, R.; Balci, F.S.K. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst. Rev. 2020, 4, CD011621. [Google Scholar] [CrossRef]
- Ti, L.K.; Ang, L.S.; Foong, T.W.; Ng, B.S.W. What we do when a COVID-19 patient needs an operation: Operating room preparation and guidance. Can. J. Anesth. Can. Anesth. 2020, 67, 756–758. [Google Scholar] [CrossRef] [Green Version]
Basic Care (Mild Physical Activity) (Figure 2) | Advanced Life Support Care (High Physical Activity) (Figure 3) |
---|---|
Hygiene of the patient; oral hygiene-orotracheal tube, according to the Spanish Society of Intensive and Critical Medicine and Coronary Units (SEMICYUC) Pneumonia Zero protocol; cure and care of venous (peripheral and central) and arterial catheters, according to Bacteremia Zero protocols; change of fluid therapy systems; venous and arterial blood sample extraction; extraction and culture of bronchial secretions; performance of routine electrocardiogram; and adjustment of infusions and change of pump systems. | Advanced life support, according to the European Resuscitation Council (ERC-2020) regulations, on resuscitation in COVID-19 patients: defibrillation, external cardiac massage, and administration of drugs. |
PPE-Conventional | PPE-PAPR | |
---|---|---|
Body Protection (Joint Equipment) | Disposable soft surgical medical uniforms. Medline P35PBL—35 g/m2 CoverStar Plus. Disposable full-body suit, made of 100% polypropylene material, with sealed seams and an elasticated hood, cuffs, and ankles, with certified protection against particles, liquid splashes, and low-pressure aerosols (cat III type 4/5/6). CAT III Type 4B/5B/6B. | Disposable soft surgical medical uniforms. Medline P35PBL—35 g/m2 CoverStar Plus. Disposable full-body suit, made of 100% polypropylene material, with sealed seams and an elasticated hood, cuffs, and ankles, with certified protection against particles, liquid splashes, and low-pressure aerosols (cat III type 4/5/6). CAT III Type 4B/5B/6B |
Respiratory Protection | Respiratory protection mask FFP2-KN95 without an exhalation valve, and a surgical mask over it. | Versaflow 3M equipment, composed of: -3M™ S-655 hood with head suspension and coverage for head, face, neck, and shoulders; -3M TR-302E ventilator, Versaflow TR-300 series, with nozzle and filter 3M™ Versaflow™ TR-3712E certified FFP3 protection. With a combined weight of 1.8 kg. |
Facial Protection | Face shield (full-face protection screen with a foam band on the forehead to absorb sweat and prevent chafing and to provide enough space for optical or safety glasses) and safety glasses (wide pressure tape, with indirect ventilation that improves air circulation and reduces fogging in hot/humid conditions). | |
Hand Protection | Double gloves: sterile gloves over nitrile gloves. | Double gloves: sterile gloves over nitrile gloves. |
Example Subjects: Joint Protective Equipment |
RECEPTION (15 min) | ACCLIMATION (10–15 min) | SIMULATED SCENARIO (45–60 min) | CLOSURE-RE-HYDRATION (15–20 min) | ||
---|---|---|---|---|---|
Reception of the Participants | Situation Briefing | PPE Fitting | Initial Checks | Simulated Scene | Sim Room Exit |
Exchange of impressions. Exhibition of work plan. Change of clothes. Putting on paper medical uniforms. Initial weighing. Determination of thirst | Explanation of the environment. Show arrangement and location of resources. | Conventional PPE vs. EPP PAPR | Determination of the physical conditions of the room (Tª, humidity, and noise). | Basic care (30 min minimum). Complete patient hygiene; change sheets; mouth hygiene and TOT; care of catheters and wounds; administration of medication; calculation of water balance; conducting additional tests. | Removal of used PPE and soft surgical medical uniforms. Putting on new dry soft surgical medical uniforms. Final weighing. Wet PPE and soft surgical medical uniform weighing. Determination of thirst. Register self-administered scales. Rehydration and exchange of impressions. |
SVA care (15 min max.). Realization of MCE; defibrillation and administration of medication ordered via Tlf. |
n | % | Mean ± SD | Min.–Max. | |
---|---|---|---|---|
Age | 35 ± 5.86 | (44–24) | ||
Gender | ||||
Male | 4 | 25.0 | ||
Female | 12 | 75.0 | ||
BMI | 23.7 ± 3.10 | (20.6–32.7) | ||
Male BMI | 27.67 ± 3.11 | 32.7–25.6 | ||
Female BMI | 22.37 ± 1.72 | 25.6–20.6 | ||
Experience | ||||
<6 months | 6 | 37.5 | ||
6–12 months | 5 | 12.5 | ||
1–2 years | 1 | 6.3 | ||
>2 years | 7 | 43.8 | ||
Type PPE used in a real setting | ||||
PPE-Conv | 16 | 100 | ||
PPE-PAPR | 4 | 25 | ||
Max. PPE time in a real setting | 3.75 ± 0.86 | (2–5) |
Descriptive Statistics | Normality Measures | ||||
---|---|---|---|---|---|
Mean ± SD | Min.–Max. | Skewness (Error Tip) | Kurtosis (Error Tip) | Shapiro–Wilk (Sig.) > 0.05 | |
BMI (kg/m2) | |||||
PPE-Conv (n = 16) | 23.7 ± 3.02 | 20.6–32.7 | 1.72 (0.564) | 3.826 (1.091) | 0.834 (0.008) |
PPE-PAPR (n = 16) | 23.7 ± 3.01 | 20.6–32.8 | 1.79 (0.564) | 4.02 (1.091) | 0.824 (0.006) |
Differential Personal Weight (PW) Before/After (kg) | |||||
PPE-Conv (n = 16) | 0.200 ± 0.13 | 0.1–0.4 | 0.90 (0.564) | 0.96 (1.091) | 0.902 (0.086) |
PPE-PAPR (n = 16) | 0.206 ± 0.11 | 0.1–0.4 | 0.83 (0.564) | −0.54 (1.091) | 0.800 (0.003) |
% Lost Weight | |||||
PPE-Conv (n = 16) | 0.28 ± 0.13 | 0–0.46 | −0.55 (0.564) | −0.74 (1.091) | 0.925 (0.205) |
PPE-PAPR (n = 16) | 0.29 ± 0.12 | 0.15–0.53 | 0.56 (0.564) | (−0.75) (1.091) | 0.896 (0.068) |
Differential BMI Before/After (kg/m2) | |||||
PPE-Conv (n = 16) | –0.068 ± 0.04 | –0.13 to 0 | −0.102 (0.564) | 0.336 (1.091) | 0.956 (0.585) |
PPE-PAPR (n = 16) | –0.07 ± 0.03 | –0.13 to –0.03 | −0.613 (0.564) | −0.857 (1.091) | 0.885 (0.046) |
Differential Weight PPE (PPE-W) Before/After (g) | |||||
PPE-Conv (n = 16) | 75.75 ± 57.62 | 0–186 | 0.285 (0.564) | −0.22 (1.091) | 0.914 (0.134) |
PPE-PAPR (n = 16) | 65.06 ± 45.96 | 8–165 | 0.99 (0.564) | 0.56 (1.091) | 0.896 (0.07) |
PAPR-out (n = 8) | 83.13 ± 33.4 | 52–157 | |||
PAPR-in (n = 8) | 47.0 ± 51.64 | 8–165 | |||
Differential Thirst Before/After (0 = Min./5 = Max.) | |||||
PPE-Conv (n = 16) | 2.56 ±1.09 | 1–5 | 0.692 (0.564) | 0.23 (1.091) | |
PPE-PAPR (n = 16) | 2.44 ± 0.73 | 1–4 | 0.25 (0.564) | 0.25 (1.091) | |
General Heat Sensation (0 = Worst/5 = Best) | |||||
PPE-Conv (n = 16) | 1.44 ± 1.75 | 0–5 | 1.27 (0.564) | 0.45 (1.091) | |
PPE-PAPR (n = 16) | 2.94 ± 1.61 | 0–5 | −1.09 (0.564) | 0.05 (1.091) | |
Facial Heat Sensation (0 = Worst/5 = Best) | |||||
PPE-Conv (n = 16) | 1.01 ± 1.932 | 0–5 | 0.95 (0.564) | −0.714 (1.091) | |
PPE-PAPR (n = 16) | 3.19 ± 1.60 | 0–5 | −1.02 (0.564) | 0.27 (1.091) | |
Sensation of Perspiration (0 = Min./5 = Max.) | |||||
PPE-Conv (n = 16) | 4.56 ± 1.26 | 0–5 | −3.56 (0.564) | 13.27 (1.091) | |
PPE-PAPR (n = 16) | 3.44 ± 1.21 | 1–5 | −0.48 (0.564) | (−0.60 (1.091) |
Confidence Interval for the Difference | |||||
---|---|---|---|---|---|
Paired t-Test PW | Mean ± SD | Standard Error of the Mean | Lower | Higher | Sig. (Bilateral) |
PW after–PW before PPE-Conv (n = 16) | 0.2000 ± 0.126 | 0.03162 | 0.13260 | 0.26740 | 0.000 |
PW after–PW before PPE-PAPR (n = 16) | 0.20625 ± 0.112 | 0.02809 | 0.14638 | 0. 26612 | 0.000 |
Paired t-Test JPEW | |||||
JPEW after–JPEW before PPE-Conv (n = 16) | −75.75 ± 57.626 | 14.41 | −106.46 | −45.04 | 0.000 |
JPEW after–JPEW before PPE-PAPR (n = 16) | −65.063 ± 45.96 | 11.49 | −89.55 | −40.57 | 0.000 |
Descriptive Statistics | Normality Measures | ||||
---|---|---|---|---|---|
Mean ± SD | Min.–Max. | Skewness (Error Tip) | Kurtosis (Error Tip) | Shapiro–Wilk (Sig.) > 0.05 | |
Temple Temperature Before/After (°C) | |||||
PPE-Conv (n = 16) | 36.51 ± 0.21 | 35.8–36.8 | |||
PPE-PAPR (n = 16) | 36.4 ± 0.26 | 35.6–36.4 | |||
Differential Temple Temperature Before/After (°C) | |||||
PPE-Conv (n = 16) | 0.237 ± 0.24 | −0.3 to 0.6 | −0.606 (0.564) | −0.314 (1.091) | 0.946 (0.422) |
PPE-PAPR (n = 16) | −0.29 ± 0.18 | −0.6 to 0.1 | −0.453 (0.564) | −0.883 (1.091) | 0.911 (0.12) |
Facial Temperature Before/After (°C) | |||||
PPE-Conv (n = 16) | 33.85 ± 0.77 | 32.0–35.0 | |||
PPE-PAPR (n = 16) | 33.80 ± 0.95 | 32.3–35.6 | |||
Differential Facial Temperature Before/After (°C) | |||||
PPE-Conv (n = 16) | −0.13 ± 0.71 | −1.5 to 1.2 | −0.057 (0.564) | −0.570 (1.091) | 0.971 (0.847) |
PPE-PAPR (n = 16) | −0.17 ± 0.75 | −2 to 0.9 | −0.883 (0.564) | 1.221 (1.091) | 0.941 (0.360) |
Body Temperature Before/After (°C) | |||||
PPE-Conv (n = 16) | 32.38 ± 1.33 | 30.5–34.5 | |||
PPE-PAPR (n = 16) | 31.04 ± 1.27 | 28.9–34.0 | |||
Differential Body Temperature Before/After (°C) | |||||
PPE-Conv (n = 16) | 0.54 ± 0.74 | −1.1 to 1.7 | −0.448 (0.564) | 0.201 (1.091) | 0.974 (0.898) |
PPE-PAPR (n = 16) | −0.33 ± 1.3 | −2.9 to 1.8 | −0.637 (0.564) | 0.67 (1.091) | 0.922 (0.184) |
(Sig. < 0.05) | DIF. WEIGH | % LOSS | GEN. HEAT | FAC. HEAT | SENS. PERSP | DIF. THIRST | DIF.–WEIGH PPE |
---|---|---|---|---|---|---|---|
BMI | 0.33 (0.21) | 0.07 (0.79) | −0.13 (0.63) | −0.13 (0.63) | −0.37 (0.159) | 0.08 (0.97) | 0.544 (0.029) |
DIF. WEIGH | 0.949 (0.000) | −0.172 (0.52) | 0.012 (0.97) | 0.078 (0.078) | 0.486 (0.056) | 0.510 (0.044) | |
% LOSS | −0.062 (0.82) | 0.065 (0.81) | 0.270 (0.31) | 0.464 (0.07) | 0.460 (0.073) | ||
GEN. HEAT | 0.563 (0.023) | 0.051 (0.852) | −0.24 (0.37) | −0.377 (0.150) | |||
FAC. HEAT | 0.028 (0.919) | −0.11 (0.68) | −0.097 (0.72) | ||||
SENS. PERSP | −0.263 (0.325) | 0.121 (0.656) | |||||
DIF. THIRST | 0.250 (0.35) |
(Sig. < 0.05) | DIF. WEIGH | % LOSS | GEN. HEAT | FAC. HEAT | SENS. PERSP | DIF. THIRST | DIF.–WEIGH PPE |
---|---|---|---|---|---|---|---|
BMI | 0.39 (0.126) | 0.25 (0.93) | −0.351 (0.18) | −0.259 (0.33) | 0.45 (0.08) | −0.15 (0.58) | 0.29 (0.28) |
DIF. WEIGH | 0.912 (0.000) | −0.139 (0.608) | −0.268 (0.316) | −0.122 (0.653) | 0.377 (0.150) | 0.245 (0.361) | |
% LOSS | −0.044 (0.87) | −0.255 (0.340) | 0.098 (0.718) | 0.467 (0.068) | 0.205 (0.446) | ||
GEN. HEAT | 0.411 (0.11) | 0.08 (0.77) | −0.167 (0.537) | −0.267 (317) | |||
FAC. HEAT | −0.38 (0.146) | −0.571 (0.021) | −0.473 (0.063) | ||||
SENS. PERSP | 0.357 (0.174) | 0.163 (0.546) | |||||
DIF. THIRST | 0.254 (0.342) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojo-Rojo, A.; Pujalte-Jesús, M.J.; Hernández-Sánchez, E.; Melendreras-Ruiz, R.; García-Méndez, J.A.; Muñoz-Rubio, G.M.; Leal-Costa, C.; Díaz-Agea, J.L. Risk of Dehydration Due to Sweating While Wearing Personal 2 Protective Equipment in COVID-19 Clinical Care: A Pilot Study. Healthcare 2022, 10, 267. https://doi.org/10.3390/healthcare10020267
Rojo-Rojo A, Pujalte-Jesús MJ, Hernández-Sánchez E, Melendreras-Ruiz R, García-Méndez JA, Muñoz-Rubio GM, Leal-Costa C, Díaz-Agea JL. Risk of Dehydration Due to Sweating While Wearing Personal 2 Protective Equipment in COVID-19 Clinical Care: A Pilot Study. Healthcare. 2022; 10(2):267. https://doi.org/10.3390/healthcare10020267
Chicago/Turabian StyleRojo-Rojo, Andrés, Maria José Pujalte-Jesús, Encarna Hernández-Sánchez, Rafael Melendreras-Ruiz, Juan Antonio García-Méndez, Gloria María Muñoz-Rubio, César Leal-Costa, and José Luis Díaz-Agea. 2022. "Risk of Dehydration Due to Sweating While Wearing Personal 2 Protective Equipment in COVID-19 Clinical Care: A Pilot Study" Healthcare 10, no. 2: 267. https://doi.org/10.3390/healthcare10020267
APA StyleRojo-Rojo, A., Pujalte-Jesús, M. J., Hernández-Sánchez, E., Melendreras-Ruiz, R., García-Méndez, J. A., Muñoz-Rubio, G. M., Leal-Costa, C., & Díaz-Agea, J. L. (2022). Risk of Dehydration Due to Sweating While Wearing Personal 2 Protective Equipment in COVID-19 Clinical Care: A Pilot Study. Healthcare, 10(2), 267. https://doi.org/10.3390/healthcare10020267