Is Static Alignment a Good Predictor of Dynamic Alignment after Total Knee Arthroplasty?
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Surgery and Clinical Assessment
2.3. Gait Analysis
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Association between Static Mechanical Alignment and Dynamic Alignment
3.3. Association between Mechanical Alignment and KAM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Dreyer, H.C.; Strycker, L.A.; Senesac, H.A.; Hocker, A.D.; Smolkowski, K.; Shah, S.N.; Jewett, B.A. Essential amino acid supplementation in patients following total knee arthroplasty. J. Clin. Investig. 2013, 123, 4654–4666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niinimäki, T.; Eskelinen, A.; Mäkelä, K.; Ohtonen, P.; Puhto, A.P.; Remes, V. Unicompartmental knee arthroplasty survivorship is lower than TKA survivorship: A 27-year Finnish registry study. Clin. Orthop. Relat. Res. 2014, 472, 1496–1501. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.T.; Walker, R.W.; Evans, J.P.; Blom, A.W.; Sayers, A.; Whitehouse, M.R. How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019, 393, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Degen, R.M.; Matz, J.; Teeter, M.G.; Lanting, B.A.; Howard, J.L.; McCalden, R.W. Does Posterior Condylar Offset Affect Clinical Results following Total Knee Arthroplasty? J. Knee Surg. 2018, 31, 754–760. [Google Scholar] [CrossRef]
- Jeffery, R.S.; Morris, R.W.; Denham, R.A. Coronal alignment after total knee replacement. J. Bone Jt. Surg. Br. Vol. 1991, 73, 709–714. [Google Scholar] [CrossRef]
- Hetaimish, B.M.; Khan, M.M.; Simunovic, N.; Al-Harbi, H.H.; Bhandari, M.; Zalzal, P.K. Meta-analysis of navigation vs conventional total knee arthroplasty. J. Arthroplast. 2012, 27, 1177–1182. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, M.; Liu, Y.; Fu, Q. Alignment outcomes in navigated total knee arthroplasty: A meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1075–1082. [Google Scholar] [CrossRef]
- Cherian, J.J.; Kapadia, B.H.; Banerjee, S.; Jauregui, J.J.; Issa, K.; Mont, M.A. Mechanical, Anatomical, and Kinematic Axis in TKA: Concepts and Practical Applications. Curr. Rev. Musculoskelet. Med. 2014, 7, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Larose, G.; Fuentes, A.; Lavoie, F.; Aissaoui, R.; de Guise, J.; Hagemeister, N. Can total knee arthroplasty restore the correlation between radiographic mechanical axis angle and dynamic coronal plane alignment during gait? Knee 2019, 26, 586–594. [Google Scholar] [CrossRef]
- Werner, F.W.; Ayers, D.C.; Maletsky, L.P.; Rullkoetter, P.J. The effect of valgus/varus malalignment on load distribution in total knee replacements. J. Biomech. 2005, 38, 349–355. [Google Scholar] [CrossRef]
- Mandeville, D.; Osternig, L.R.; Lantz, B.A.; Mohler, C.G.; Chou, L.S. The effect of total knee replacement on the knee varus angle and moment during walking and stair ascent. Clin. Biomech. 2008, 23, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Matziolis, G.; Adam, J.; Perka, C. Varus malalignment has no influence on clinical outcome in midterm follow-up after total knee replacement. Arch. Orthop. Trauma Surg. 2010, 130, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.J.; Pagnano, M.W.; Kaufman, K.R. Tibiofemoral alignment in posterior stabilized total knee arthroplasty: Static alignment does not predict dynamic tibial plateau loading. J. Orthop. Res. 2014, 32, 1068–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudarham, J.; Roche, N.; Pradon, D.; Bonnyaud, C.; Bensmail, D.; Zory, R. Variations in kinematics during clinical gait analysis in stroke patients. PLoS ONE 2013, 8, e66421. [Google Scholar] [CrossRef] [PubMed]
- Baker, R. The history of gait analysis before the advent of modern computers. Gait Posture 2007, 26, 331–342. [Google Scholar] [CrossRef]
- Wang, J.; Severin, A.C.; Mears, S.C.; Stambough, J.B.; Barnes, C.L.; Mannen, E.M. Changes in Mediolateral Postural Control Mechanisms During Gait After Total Knee Arthroplasty. J. Arthroplast. 2021, 36, 3326–3332. [Google Scholar] [CrossRef]
- Syczewska, M.; Szczerbik, E.; Kalinowska, M.; Swiecicka, A.; Graff, G. Are Gait and Balance Problems in Neurological Patients Interdependent? Enhanced Analysis Using Gait Indices, Cyclograms, Balance Parameters and Entropy. Entropy 2021, 23, 359. [Google Scholar] [CrossRef]
- Khalaj, N.; Abu Osman, N.A.; Mokhtar, A.H.; Mehdikhani, M.; Wan Abas, W.A. Effect of exercise and gait retraining on knee adduction moment in people with knee osteoarthritis. Proc. Inst. Mech. Engineers. Part H J. Eng. Med. 2014, 228, 190–199. [Google Scholar] [CrossRef]
- Niki, Y.; Nagura, T.; Nagai, K.; Kobayashi, S.; Harato, K. Kinematically aligned total knee arthroplasty reduces knee adduction moment more than mechanically aligned total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1629–1635. [Google Scholar] [CrossRef]
- Manal, K.; Buchanan, T.S. An Efficient One-Step Moment Balancing Algorithm for Computing Medial and Lateral Knee Compartment Contact Forces. J. Biomech. Eng. 2022, 144, 034501. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.E.; O’Bryan, M.E. Bilateral frontal plane mechanics after unilateral total knee arthroplasty. Arch. Phys. Med. Rehabil. 2008, 89, 1965–1969. [Google Scholar] [CrossRef] [PubMed]
- Wasielewski, R.C.; Galante, J.O.; Leighty, R.M.; Natarajan, R.N.; Rosenberg, A.G. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin. Orthop. Relat. Res. 1994, 299, 31–43. [Google Scholar] [CrossRef]
- Halder, A.; Kutzner, I.; Graichen, F.; Heinlein, B.; Beier, A.; Bergmann, G. Influence of limb alignment on mediolateral loading in total knee replacement: In vivo measurements in five patients. J. Bone Jt. Surg. 2012, 94, 1023–1029. [Google Scholar] [CrossRef]
- Jeong, H.S.; Lee, S.C.; Jee, H.; Song, J.B.; Chang, H.S.; Lee, S.Y. Proprioceptive Training and Outcomes of Patients With Knee Osteoarthritis: A Meta-Analysis of Randomized Controlled Trials. J. Athl. Train. 2019, 54, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Maier, M.W.; Aschauer, S.; Wolf, S.I.; Dreher, T.; Merle, C.; Bitsch, R.G. Three dimensional gait analysis in patients with symptomatic component mal-rotation after total knee arthroplasty. Int. Orthop. 2019, 43, 1371–1378. [Google Scholar] [CrossRef]
- D’Anchise, R.; Andreata, M.; Balbino, C.; Manta, N. Posterior cruciate ligament-retaining and posterior-stabilized total knee arthroplasty: Differences in surgical technique. Joints 2013, 1, 5–9. [Google Scholar]
- Mullaji, A.B.; Shetty, G.M. Surgical technique: Computer-assisted sliding medial condylar osteotomy to achieve gap balance in varus knees during TKA. Clin. Orthop. Relat. Res. 2013, 471, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee replacement. Lancet 2012, 379, 1331–1340. [Google Scholar] [CrossRef]
- Bonnefoy-Mazure, A.; Favre, T.; Praplan, G.; Armand, S.; Sagawa Junior, Y.; Hannouche, D.; Turcot, K.; Lübbeke, A.; Miozzari, H.H. Associations between gait analysis parameters and patient satisfaction one year following primary total knee arthroplasty. Gait Posture 2020, 80, 44–48. [Google Scholar] [CrossRef]
- Rivière, C.; Ollivier, M.; Girerd, D.; Argenson, J.N.; Parratte, S. Does standing limb alignment after total knee arthroplasty predict dynamic alignment and knee loading during gait? Knee 2017, 24, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Parratte, S.; Pagnano, M.W.; Trousdale, R.T.; Berry, D.J. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J. Bone Jt. Surg. 2010, 92, 2143–2149. [Google Scholar] [CrossRef] [PubMed]
- Orishimo, K.F.; Kremenic, I.J.; Deshmukh, A.J.; Nicholas, S.J.; Rodriguez, J.A. Does total knee arthroplasty change frontal plane knee biomechanics during gait? Clin. Orthop. Relat. Res. 2012, 470, 1171–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mündermann, A.; Dyrby, C.O.; Andriacchi, T.P. A comparison of measuring mechanical axis alignment using three-dimensional position capture with skin markers and radiographic measurements in patients with bilateral medial compartment knee osteoarthritis. Knee 2008, 15, 480–485. [Google Scholar] [CrossRef]
- Ushio, T.; Mizu-Uchi, H.; Okazaki, K.; Miyama, K.; Akasaki, Y.; Ma, Y.; Nakashima, Y. Medial soft tissue contracture does not always exist in varus osteoarthritis knees in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1642–1650. [Google Scholar] [CrossRef]
- Tsukiyama, H.; Kuriyama, S.; Kobayashi, M.; Nakamura, S.; Furu, M.; Ito, H.; Matsuda, S. Medial rather than lateral knee instability correlates with inferior patient satisfaction and knee function after total knee arthroplasty. Knee 2017, 24, 1478–1484. [Google Scholar] [CrossRef]
- Blakeney, W.; Beaulieu, Y.; Puliero, B.; Kiss, M.O.; Vendittoli, P.A. Bone resection for mechanically aligned total knee arthroplasty creates frequent gap modifications and imbalances. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1532–1541. [Google Scholar] [CrossRef]
- Gao, Z.X.; Long, N.J.; Zhang, S.Y.; Yu, W.; Dai, Y.X.; Xiao, C. Comparison of Kinematic Alignment and Mechanical Alignment in Total Knee Arthroplasty: A Meta-analysis of Randomized Controlled Clinical Trials. Orthop. Surg. 2020, 12, 1567–1578. [Google Scholar] [CrossRef]
Variables | Neutral Alignment Group (n = 58) | Varus Alignment Group (n = 20) | Valgus Alignment Group (n = 9) | p Value |
---|---|---|---|---|
ANOVA | ||||
Age (years) | 68.64 ± 8.10 | 70.95 ± 5.96 | 64.22 ± 9.30 | 0.104 |
Gender, males/females | 14/44 | 5/15 | 0/9 | - |
Height (cm) | 158.84 ± 6.98 | 156.85 ± 8.22 | 158.00 ± 5.20 | 0.557 |
Weight (kg) | 66.22 ± 10.79 | 61.75 ± 8.08 | 62.94 ± 8.45 | 0.196 |
BMI (kg/m2) | 26.19 ± 3.62 | 25.13 ± 2.96 | 25.20 ± 3.04 | 0.413 |
Surgical side, right/left | 39/19 | 12/8 | 3/6 | - |
Postoperative static HKA (°) | 0.46 ± 1.51 | 6.17 ± 3.31 | −4.34 ± 0.92 | <0.001 |
Postoperative dynamic HKA (°) | −5.88 ± 5.64 | −1.88 ± 4.40 | −9.49 ± 6.47 | 0.002 |
Static HKA variation (°) | 3.63 ± 9.19 | 5.26 ± 4.97 | 6.01 ± 10.90 | 0.623 |
Dynamic HKA variation (°) | 4.96 ± 13.77 | 2.95 ± 7.37 | 4.09 ± 13.58 | 0.824 |
Variables | Neutral Alignment Group (n = 58) | Varus Alignment Group (n = 20) | Valgus Alignment Group (n = 9) | p Value |
---|---|---|---|---|
ANOVA | ||||
Cadence (step/min) | 87.14 ± 15.84 | 92.09 ± 13.95 | 88.32 ± 21.98 | 0.498 |
Stride time (s) | 1.43 ± 0.29 | 1.35 ± 0.25 | 1.45 ± 0.42 | 0.497 |
Opposite foot off (%) | 14.72 ± 3.82 | 13.50 ± 2.69 | 15.04 ± 4.53 | 0.394 |
Opposite foot contact (%) | 49.44 ± 2.46 | 48.86 ± 2.34 | 49.49 ± 1.72 | 0.632 |
Step time (s) | 0.73 ± 0.16 | 0.69 ± 0.12 | 0.73 ± 0.20 | 0.609 |
Single support (s) | 0.49 ± 0.10 | 0.48 ± 0.10 | 0.50 ± 0.18 | 0.823 |
Double support (s) | 0.42 ± 0.16 | 0.36 ± 0.11 | 0.42 ± 0.15 | 0.393 |
Foot off (%) | 63.21 ± 3.50 | 62.05 ± 3.37 | 62.87 ± 2.60 | 0.429 |
Stride length (m) | 0.72 ± 0.20 | 0.77 ± 0.21 | 0.64 ± 0.20 | 0.241 |
Step length (m) | 0.34 ± 0.11 | 0.38 ± 0.11 | 0.32 ± 0.11 | 0.321 |
Walking speed (m/s) | 0.53 ± 0.21 | 0.60 ± 0.21 | 0.48 ± 0.23 | 0.291 |
Dynamic range of motion (°) | 32.22 ± 14.89 | 35.00 ± 19.47 | 28.95 ± 18.04 | 0.636 |
Extension moment (N·m/kg) | 0.29 ± 0.18 | 0.46 ± 0.59 | 0.27 ± 0.17 | 0.110 |
Internal rotation moment (N·m/kg) | 0.05 ± 0.04 | 0.53 ± 2.06 | 0.05 ± 0.02 | 0.163 |
Extension force (N/kg) | 1.33 ± 0.58 | 1.69 ± 0.90 | 1.20 ± 0.43 | 0.074 |
Maximum flexion angle (°) | 36.83 ± 17.28 | 38.63 ± 12.69 | 37.14 ± 18.13 | 0.915 |
WOMAC score | 53 ± 17 | 53 ± 14 | 46 ± 11 | 0.473 |
Variables | Neutral Alignment Group (n = 58) | Varus Alignment Group (n = 20) | Valgus Alignment Group (n = 9) | p Value |
---|---|---|---|---|
ANOVA | ||||
Cadence (step/min) | 92.42 ± 11.19 | 92.38 ± 8.41 | 92.26 ± 11.99 | 0.999 |
Stride time (s) | 1.32 ± 0.17 | 1.31 ± 0.12 | 1.32 ± 0.17 | 0.969 |
Opposite foot off (%) | 11.91 ± 2.02 | 11.48±1.75 | 10.93 ± 0.84 | 0.294 |
Opposite foot contact (%) | 49.78 ± 1.62 | 49.08±1.93 | 50.05 ± 1.76 | 0.218 |
Step time (s) | 0.66 ± 0.09 | 0.67±0.65 | 0.66 ± 0.08 | 0.975 |
Single support (s) | 0.50 ± 0.05 | 0.49±0.45 | 0.52 ± 0.07 | 0.491 |
Double support (s) | 0.31 ± 0.08 | 0.31 ± 0.61 | 0.29 ± 0.36 | 0.757 |
Foot off (%) | 61.02 ± 2.15 | 60.85 ± 1.78 | 61.05 ± 2.03 | 0.950 |
Stride length (m) | 0.75 ± 0.16 | 0.72 ± 0.14 | 0.69 ± 0.20 | 0.570 |
Step length (m) | 0.37 ± 0.08 | 0.36 ± 0.76 | 0.33 ± 0.13 | 0.484 |
Walking speed (m/s) | 0.57 ± 0.15 | 0.56 ± 0.11 | 0.53 ± 0.15 | 0.594 |
Dynamic range of motion (°) | 15.41 ± 9.04 | 15.03 ± 9.55 | 16.07 ± 13.60 | 0.964 |
Extension moment (N·m/kg) | 0.26 ± 0.16 | 0.28 ± 0.16 | 0.26 ± 0.13 | 0.880 |
Internal rotation moment (N·m/kg) | 0.03 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.01 | 0.526 |
Extension force (N/kg) | 1.02 ± 0.62 | 1.06 ± 0.64 | 1.08 ± 0.60 | 0.946 |
Maximum flexion angle (°) | 37.09 ± 16.21 | 33.45 ± 11.11 | 40.06 ± 13.17 | 0.490 |
WOMAC score | 15 ± 10 | 16 ± 8 | 12 ± 5 | 0.494 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, C.; Mao, Y.; Dong, H.; Cui, Y.; Fu, M. Is Static Alignment a Good Predictor of Dynamic Alignment after Total Knee Arthroplasty? Healthcare 2022, 10, 418. https://doi.org/10.3390/healthcare10030418
Gu C, Mao Y, Dong H, Cui Y, Fu M. Is Static Alignment a Good Predictor of Dynamic Alignment after Total Knee Arthroplasty? Healthcare. 2022; 10(3):418. https://doi.org/10.3390/healthcare10030418
Chicago/Turabian StyleGu, Cheng, Yurong Mao, Haiyan Dong, Yu Cui, and Ming Fu. 2022. "Is Static Alignment a Good Predictor of Dynamic Alignment after Total Knee Arthroplasty?" Healthcare 10, no. 3: 418. https://doi.org/10.3390/healthcare10030418
APA StyleGu, C., Mao, Y., Dong, H., Cui, Y., & Fu, M. (2022). Is Static Alignment a Good Predictor of Dynamic Alignment after Total Knee Arthroplasty? Healthcare, 10(3), 418. https://doi.org/10.3390/healthcare10030418