Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19, Work Efficiency and Sensorimotor Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Testing Procedure
2.2.1. Trunk Impairment Scale
2.2.2. Berg Balance Scale
2.2.3. Modified Barthel Index
2.2.4. Modified Ashworth Scale
2.2.5. Fugl–Meyer Assessment
2.2.6. Postquestionnaire
2.3. Intervention
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaiser, M.S.; Al Mamun, S.; Mahmud, M.; Tania, M.H. Healthcare robots to combat COVID-19. In COVID-19: Prediction, Decision-Making, and Its Impacts; Springer: Singapore, 2021; pp. 83–97. [Google Scholar]
- Tavakoli, M.; Carriere, J.; Torabi, A. Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID-19 pandemic: An analysis of the state of the art and future vision. Adv. Intell. Syst. 2020, 2, 2000071. [Google Scholar] [CrossRef]
- Smania, N.; Picelli, A.; Gandolfi, M.; Fiaschi, A.; Tinazzi, M. Rehabilitation of sensorimotor integration deficits in balance impairment of patients with stroke hemiparesis: A before/after pilot study. Neurol. Sci. 2008, 29, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Thibaut, A.; Chatelle, C.; Ziegler, E.; Bruno, M.-A.; Laureys, S.; Gosseries, O. Spasticity after stroke: Physiology, assessment and treatment. Brain Inj. 2013, 27, 1093–1105. [Google Scholar] [CrossRef]
- Sommerfeld, D.K.; Eek, E.U.B.; Svensson, A.-K.; Holmqvist, L.W.; Von Arbin, M.H. Spasticity after stroke: Its occurrence and association with motor impairments and activity limitations. Stroke 2004, 35, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Criekinge, T.; Saeys, W.; Hallemans, A.; Velghe, S.; Viskens, P.-J.; Vereeck, L.; De Hertogh, W.; Truijen, S. Trunk biomechanics during hemiplegic gait after stroke: A systematic review. Gait Posture 2017, 54, 133–143. [Google Scholar] [CrossRef]
- Tyson, S.F.; Hanley, M.; Chillala, J.; Selley, A.; Tallis, R.C. Balance Disability After Stroke. Phys. Ther. 2006, 86, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercier, L.; Audet, T.; Hébert, R.; Rochette, A.; Dubois, M.-F. Impact of Motor, Cognitive, and Perceptual Disorders on Ability to Perform Activities of Daily Living After Stroke. Stroke 2001, 32, 2602–2608. [Google Scholar] [CrossRef] [Green Version]
- Hömberg, V. Neurorehabilitation approaches to facilitate motor recovery. Handb. Clin. Neurol. 2013, 110, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Kollen, B.J.; Lennon, S.; Lyons, B.; Wheatley-Smith, L.; Scheper, M.; Buurke, J.H.; Halfens, J.; Geurts, A.C.; Kwakkel, G. The effectiveness of the Bobath concept in stroke rehabilitation: What is the evidence? Stroke 2009, 40, e89–e97. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Oh-Park, M.; Bialek, A.; Friel, K.; Edwards, D.; You, J.S.H. Abnormal synergistic gait mitigation in acute stroke using an innovative ankle–knee–hip interlimb humanoid robot: A preliminary randomized controlled trial. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Oh-Park, M.; Dohle, C.; Bialek, A.; Friel, K.; Edwards, D.; Krebs, H.I.; You, J.H. Effects of innovative hip-knee-ankle interlimb coordinated robot training on ambulation, cardiopulmonary function, depression, and fall confidence in acute hemiplegia. NeuroRehabilitation 2020, 46, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Baronchelli, F.; Zucchella, C.; Serrao, M.; Intiso, D.; Bartolo, M. The Effect of Robotic Assisted Gait Training with Lokomat® on Balance Control After Stroke: Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 1073. [Google Scholar] [CrossRef] [PubMed]
- Nedergård, H.; Arumugam, A.; Sandlund, M.; Bråndal, A.; Häger, C.K. Effect of robotic-assisted gait training on objective biomechanical measures of gait in persons post-stroke: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2021, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Talaty, M. Robotics for lower limb rehabilitation. Phys. Med. Rehabil. Clin. 2019, 30, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Lystad, R.; Brown, B.; Swain, M.; Engel, R. Impact of the COVID-19 Pandemic on Manual Therapy Service Utilization within the Australian Private Healthcare Setting. Healthcare 2020, 8, 558. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, C.W.; Osmotherly, P.G.; Rivett, A.D. COVID-19 wash your hands but don’t erase them from our profession—Considerations on manual therapy past and present. J. Man. Manip. Ther. 2020, 28, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H. Robotic assisted rehabilitation therapy for enhancing gait and motor function after stroke. Precis. Futur. Med. 2019, 3, 103–115. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yang, L.; Park, I.J.; Kim, E.J.; Park, M.S.; You, S.H.; Kim, Y.-H.; Ko, H.Y.; Shin, Y.I. Correction to Effects of Innovative WALKBOT Robotic-Assisted Locomotor Training on Balance and Gait Recovery in Hemiparetic Stroke: A Prospective, Randomized, Experimenter Blinded Case Control Study with a Four-Week Follow-Up [Jul 15 636-642]. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 1128. [Google Scholar] [CrossRef] [PubMed]
- Verheyden, G.; Nieuwboer, A.; Mertin, J.; Preger, R.; Kiekens, C.; De Weerdt, W. The Trunk Impairment Scale: A new tool to measure motor impairment of the trunk after stroke. Clin. Rehabil. 2004, 18, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Verheyden, G.; Willems, A.-M.; Ooms, L.; Nieuwboer, A. Validity of the Trunk Impairment Scale as a Measure of Trunk Performance in People with Parkinson’s Disease. Arch. Phys. Med. Rehabil. 2007, 88, 1304–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, K.; Wood-Dauphine, S.; Williams, J.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Wirz, M.; Müller, R.; Bastiaenen, C. Falls in Persons with Spinal Cord Injury: Validity and Reliability of the Berg Balance Scale. Neurorehabilit. Neural Repair 2009, 24, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Ohura, T.; Hase, K.; Nakajima, Y.; Nakayama, T. Validity and reliability of a performance evaluation tool based on the modified Barthel Index for stroke patients. BMC Med. Res. Methodol. 2017, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ghotbi, N.; Ansari, N.N.; Naghdi, S.; Hasson, S. Measurement of lower-limb muscle spasticity: Intrarater reliability of Modified Modified Ashworth Scale. J. Rehabil. Res. Dev. 2011, 48, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Gregson, J.M.; Leathley, M.; Moore, A.; Sharma, A.K.; Smith, T.L.; Watkins, C. Reliability of the tone assessment scale and the modified ashworth scale as clinical tools for assessing poststroke spasticity. Arch. Phys. Med. Rehabil. 1999, 80, 1013–1016. [Google Scholar] [CrossRef]
- Gladstone, D.; Danells, C.J.; Black, S. The Fugl-Meyer Assessment of Motor Recovery after Stroke: A Critical Review of Its Measurement Properties. Neurorehabilit. Neural Repair 2002, 16, 232–240. [Google Scholar] [CrossRef]
- Sanford, J.; Moreland, J.; Swanson, L.R.; Stratford, P.W.; Gowland, C. Reliability of the Fugl-Meyer Assessment for Testing Motor Performance in Patients Following Stroke. Phys. Ther. 1993, 73, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.R.; Shin, Y.K.; Park, J.-H.; You, J.H. Concurrent validity and test-retest reliability of the walkbot-k system for robotic gait training. J. Mech. Med. Biol. 2016, 16, 1640029. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.-H.; Lee, N.-G.; You, J.-H.; Lee, D.-C. Validity and feasibility of intelligent Walkbot system. Electron. Lett. 2009, 45, 1016–1017. [Google Scholar] [CrossRef]
- O’Sullivan, S.B.; Schmitz, T.J. Improving Functional Outcomes in Physical Rehabilitation; FA Davis: Philadelphia, PA, USA, 2016. [Google Scholar]
- Dewald, J. Sensorimotor neurophysiology and the basic of neurofacilitation therapeutic techniques. In Stroke Rehabilitation; Williams and Wilkins: Philadelphia, PA, USA, 1987. [Google Scholar]
- Graham, J.V.; Eustace, C.; Brock, K.; Swain, E.; Irwin-Carruthers, S. The Bobath Concept in Contemporary Clinical Practice. Top. Stroke Rehabil. 2009, 16, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Mayston, M. Bobath Concept: Bobath@ 50: Mid-life crisis—What of the future? Physiother. Res. Int. 2008, 13, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.-M.; The Neurorestore Study Group; Pradines, M.; Ghédira, M.; Loche, C.-M.; Mardale, V.; Hennegrave, C.; Gault-Colas, C.; Audureau, E.; Hutin, E.; et al. Guided Self-rehabilitation Contract vs. conventional therapy in chronic stroke-induced hemiparesis: NEURORESTORE, a multicenter randomized controlled trial. BMC Neurol. 2019, 19, 39. [Google Scholar] [CrossRef]
- Kim, H.Y.; Shin, J.-H.; Yang, S.P.; Shin, M.A.; Lee, S.H. Robot-assisted gait training for balance and lower extremity function in patients with infratentorial stroke: A single-blinded randomized controlled trial. J. Neuroeng. Rehabil. 2019, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, D.Y.; Chun, M.H.; Kim, S.W.; Jeon, H.R.; Hwang, C.H.; Choi, J.K.; Bae, S. Effects of robot-(Morning Walk®) assisted gait training for patients after stroke: A randomized controlled trial. Clin. Rehabil. 2018, 33, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, I.; Sajin, A.; Fisher, I.; Neeb, M.; Shochina, M.; Katz-Leurer, M.; Meiner, Z. The Effectiveness of Locomotor Therapy Using Robotic-Assisted Gait Training in Subacute Stroke Patients: A Randomized Controlled Trial. PM&R 2009, 1, 516–523. [Google Scholar] [CrossRef]
- Chung, B.P.H. Effectiveness of robotic-assisted gait training in stroke rehabilitation: A retrospective matched control study. Hong Kong Physiother. J. 2017, 36, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Young, J.A.; Tolentino, M. Neuroplasticity and Its Applications for Rehabilitation. Am. J. Ther. 2011, 18, 70–80. [Google Scholar] [CrossRef]
- O’Malley, M.K.; Ro, T.; Levin, H.S. Assessing and Inducing Neuroplasticity with Transcranial Magnetic Stimulation and Robotics for Motor Function. Arch. Phys. Med. Rehabil. 2006, 87, 59–66. [Google Scholar] [CrossRef]
- Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017, 13, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Banala, S.K.; Kim, S.H.; Agrawal, S.K.; Scholz, J.P. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 17, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.; Park, C.; Oh, S.; You, S.J.H. Stage 2: Who Are the Best Candidates for Robotic Gait Training Rehabilitation in Hemiparetic Stroke? J. Clin. Med. 2021, 10, 5715. [Google Scholar] [CrossRef] [PubMed]
FCR (n = 32) | MRR (n = 32) | p-Value | |
---|---|---|---|
Age (years) | 63.03 ± 10.62 | 69.72 ± 14.72 | 0.07 |
Sex (%) | 0.448 | ||
Men | 20 (62.5%) | 17 (53.1%) | |
Women | 12 (37.5%) | 15 (46.9%) | |
Height (cm) | 164.66 ± 8.93 | 164.47 ± 11.73 | 0.943 |
Weight (kg) | 62.56 ± 11.72 | 61.48 ± 12.20 | 0.719 |
Diagnosis type (%) | 0.442 | ||
Ischemic | 21 (65.6%) | 18 (56.3%) | |
Hemorrhagic | 11 (34.4%) | 14 (43.7%) | |
Affected side (%) | 0.800 | ||
Left | 19 (59.4%) | 18 (56.3%) | |
Right | 13 (40.6%) | 14 (43.7%) |
MRR | FCR | p-Value | |
---|---|---|---|
Labor intensiveness | 3.60 ± 0.84 | 7 ± 1.15 | 0.02 * |
Physical stress | 3.78 ± 0.38 | 6.11 ± 0.98 | 0.03 * |
Social distance time (min) | 23.50 ± 4.74 | 1.00 ± 2.10 | 0.001 * |
Duration of contact time (min) | 11.00 ± 3.94 | 29.00 ± 2.11 | 0.001 * |
Perceived risk of COVID-19 transmission | 1.10 ± 2.07 | 4.81 ± 1.15 | 0.001 * |
MRR | FCR | p-Value | |||||
---|---|---|---|---|---|---|---|
Pretest | Posttest | Pretest | Posttest | Time Effect | Between Groups | Time × Group | |
FMA | 29.06 ± 21.71 | 35.97 ± 23.61 | 29.19 ± 31.08 | 30.41 ± 32.55 | 0.001 * | 0.21 | 0.001 * |
MRR | FCR | p-Value | |||||
---|---|---|---|---|---|---|---|
Pretest | Posttest | Pretest | Posttest | Time Effect | Between Groups | Time × Group | |
BBS | 10.38 ± 9.60 | 17.03 ± 10.21 | 10.84 ± 18.00 | 13.47 ± 18.71 | 0.001 * | 0.488 | 0.001 * |
MAS | 1.02 ± 0.85 | 0.93 ± 0.79 | 1.01 ± 1.55 | 1.01 ± 1.35 | 0.460 | 0.230 | 0.570 |
MRR | FCR | p-Value | |||||
---|---|---|---|---|---|---|---|
Pretest | Posttest | Pretest | Posttest | Time Effect | Between Groups | Time × Group | |
MBI | 38.75 ± 17.65 | 48.19 ± 19.34 | 34.06 ± 28.97 | 37.91 ± 30.69 | 0.001 * | 0.006 * | 0.003 * |
TIS | 7.44 ± 5.29 | 11.53 ± 5.56 | 7.90 ± 8.10 | 8.31 ± 8.38 | 0.001 * | 0.014 * | 0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, B.H.; Park, C.; You, J.H. Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19, Work Efficiency and Sensorimotor Function. Healthcare 2022, 10, 691. https://doi.org/10.3390/healthcare10040691
Yoon BH, Park C, You JH. Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19, Work Efficiency and Sensorimotor Function. Healthcare. 2022; 10(4):691. https://doi.org/10.3390/healthcare10040691
Chicago/Turabian StyleYoon, Bu Hyun, Chanhee Park, and Joshua (Sung) Hyun You. 2022. "Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19, Work Efficiency and Sensorimotor Function" Healthcare 10, no. 4: 691. https://doi.org/10.3390/healthcare10040691
APA StyleYoon, B. H., Park, C., & You, J. H. (2022). Minimal Contact Robotic Stroke Rehabilitation on Risk of COVID-19, Work Efficiency and Sensorimotor Function. Healthcare, 10(4), 691. https://doi.org/10.3390/healthcare10040691