A Novel Approach of Determining the Risks for the Development of Hyperinsulinemia in the Children and Adolescent Population Using Radial Basis Function and Support Vector Machine Learning Algorithm
Abstract
:1. Introduction
1.1. Insulin and Glucose among Children and School Age Adolescents
1.2. Reference Values of Insulin and Glucose among Children and School Age Adolescents
1.3. Consequences of Hyperinsulinemia
1.4. Goal of the Study
2. Previous Research
2.1. Previous Research Globally
2.2. Previous Research in Serbia
2.3. Consequences of Hyperinsulinemia and Identified Risk Factors So Far
3. Methodology
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention/National Center for Health Statistics, CDC Growth Charts, United States, Department of Health and Human Services: Hyattsville, MD, USA. 2000. Available online: https://www.cdc.gov/growthcharts/cdc_charts.htm (accessed on 26 April 2022).
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–S69. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Shen, F.; Yang, Q.; Yi, S.; Qin, Z.; Zhang, Q.; Luo, J.; Gao, X.; He, S. Analysis of genetic variants in four children with congenital hyperinsulinemia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi Zhonghua Yixue Yichuanxue Zazhi Chin. J. Med. Genet. 2021, 38, 635–638. [Google Scholar]
- Thomas, D.D.; Corkey, B.E.; Istfan, N.W.; Apovian, C.M. Hyperinsulinemia: An early indicator of metabolic dysfunction. J. Endocr. Soc. 2019, 3, 1727–1747. [Google Scholar] [CrossRef] [PubMed]
- Močnik, M.; Marčun Varda, N. Cardiovascular Risk Factors in Children with Obesity, Preventive Diagnostics and Possible Interventions. Metabolites 2021, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Lukic, I.; Savic, N.; Simic, M.; Rankovic, N.; Rankovic, D.; Lazic, L. Risk Assessment and Determination of Factors That Cause the Development of Hyperinsulinemia in School-Age Adolescents. Medicina 2021, 58, 9. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Moran, M.; Gamboa-Gómez, C.I.; Preza-Rodríguez, L.; Guerrero-Romero, F. Lipoprotein (a) and Hyperinsulinemia in Healthy Normal-weight, Prepubertal Mexican Children. Endocr. Res. 2021, 46, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.D.; Hui, P.P.; Zhang, W.; Zeng, Q.; Zhang, L.; Liu, M.; Yan, J.; Wu, Y.-j.; Sang, Y.M. Analysis of clinical and genetic characteristics of Chinese children with congenital hyperinsulinemia that is spontaneously relieved. Endocrine 2021, 72, 116–123. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Willms, J.D. Secular trends in the body mass index of Canadian children. CMAJ 2000, 163, 1429–1433. [Google Scholar]
- Lukić, I.; Ranković, N.; Ranković, D. Risk assessment for diabetes type 2 conditions for nature in nutrition in adolescents. Medicinski glasnik Specijalne bolnice za bolesti štitaste žlezde i bolesti metabolizma. Zlatibor 2021, 26, 72–107. [Google Scholar] [CrossRef]
- Macieira, L.; Saraiva, J.; Dos Santos, L.D.C. Short-and Medium-Term Impact of a Structured Medical Intervention in Adolescents with Overweight, Obesity, or Increased Waist Circumference. Obes. Facts 2021, 14, 622–632. [Google Scholar] [CrossRef]
- Ten, S.; Maclaren, N. Insulin resistance syndrome in children. J. Clin. Endocrinol. Metab. 2004, 89, 2526–2539. [Google Scholar] [CrossRef] [PubMed]
- Giannini, C.; Weiss, R.; Cali, A.; Bonadonna, R.; Santoro, N.; Pierpont, B.; Shaw, M.; Caprio, S. Evidence for early defects in insulin sensitivity and secretion before the onset of glucose dysregulation in obese youths: A longitudinal study. Diabetes 2012, 61, 606–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meigs, J.B.; Nathan, D.M.; Wilson, P.W.; Cupples, L.A.; Singer, D.E. Metabolic risk factors worsen continuously across the spectrum of nondiabetic glucose tolerance. The Framingham Offspring Study. Ann Intern. Med. 1998, 128, 524–533. [Google Scholar] [CrossRef] [PubMed]
- The Healthy Study Group A School-Based Intervention for Diabetes Risk Reduction. N. Engl. J. Med. 2010, 363, 443–453. [CrossRef] [Green Version]
- Astudillo, M.; Tosur, M.; Castillo, B.; Rafaey, A.; Siller, A.F.; Nieto, J.; Sisley, S.; McKay, S.; Nella, A.A.; Redondo, M.J.; et al. Type 2 diabetes in prepubertal children. Pediatric Diabetes 2021, 22, 946–950. [Google Scholar] [CrossRef]
- Egshatyan, L.; Kashtanova, D.; Popenko, A.; Tkacheva, O.; Tyakht, A.; Alexeev, D.; Karamnova, N.; Kostryukova, E.; Babenko, V.; Boytsov, S.; et al. Gut microbiota and diet in patients with different glucose tolerance. Endocr. Connect. 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Gobato, A.O.; Vasques, A.C.J.; Zambon, M.P.; Barros, A.D.A.; Hessel, G. Metabolic syndrome and insulin resistance in obese adolescents. Rev. Paul. Pediatr. 2014, 32, 55–59. [Google Scholar] [CrossRef]
- Koren, D.; Gozal, D.; Philby, M.F.; Bhattacharjee, R.; Kheirandish-Gozal, L. Impact of obstructive sleep apnoea on insulin resistance in nonobese and obese children. Eur. Respir. J. 2016, 47, 1152–1161. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Lustig, R.H.; Fleming, S.E. Peer Reviewed: Identifying Metabolic Syndrome in African American Children Using Fasting HOMA-IR in Place of Glucose. Prev. Chronic Dis. 2011, 8, A64. [Google Scholar]
- Kurtiş, B.; Develioğlu, H.; Taner, I.L.; Baloş, K.; Tekin, I.O. IL-6 levels in gingival crevicular fluid (GCF) from patients with non-insulin dependent diabetes mellitus (NIDDM), adult periodontitis and healthy subjects. Pub. Med. 1999, 41, 163–167. [Google Scholar] [CrossRef]
- Tchang, B.G.; Saunders, K.H.; Igel, L.I. Best practices in the management of overweight and obesity. Med. Clin. 2021, 105, 149–174. [Google Scholar] [CrossRef] [PubMed]
- Whitley, A.; Yahia, N. Efficacy of clinic-based telehealth vs. face-to-face interventions for obesity treatment in children and adolescents in the United States and Canada: A systematic review. Child. Obes. 2021, 17, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Amiel, S.A.; Caprio, S.; Sherwin, R.S.; Plewe, G.; Haymond, M.W.; Tamborlane, W.V. Insulin resistance of puberty: A defect restricted to peripheral glucose metabolism. J. Clin. Endocrinol. Metab. 1991, 72, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Siu, A.L. US Preventive Services Task Force. Screening for abnormal blood glucose and type 2 diabetes mellitus: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2015, 163, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.; Weigensberg, M.; Huang, T.; Ball, G.; Shaibi, G.; Goran, M. The metabolic syndrome in overweight Hispanic youth and the role of insulin sensitivity. J. Clin. Endocrinol. Metab. 2004, 89, 108–113. [Google Scholar] [CrossRef]
- Rosenberg, B.; Moran, A.; Sinaiko, A.R. Insulin resistance (metabolic) syndrome in children. Panminerva Med. 2005, 47, 229–244. [Google Scholar]
- Ješić, M.D.; Milenković, T.; Mitrović, K.; Todorović, S.; Zdravković, V.; Ješić, M.M.; Tatjana, B.-T.; Slavica, M.; Ivana, V.; Sajić, S.; et al. Problems in diabetes management in school setting in children and adolescents with type 1 diabetes in Serbia. Vojnosanit. Pregl. 2016, 73, 273–276. [Google Scholar] [CrossRef]
- Reisinger, C.; Nkeh-Chungag, B.N.; Fredriksen, P.M.; Goswami, N. The prevalence of pediatric metabolic syndrome—A critical look on the discrepancies between definitions and its clinical importance. Int. J. Obes. 2021, 45, 12–24. [Google Scholar] [CrossRef]
- Yildizel, S.A.; Çöğürcü, M.T.; Mehmet, U.Z.U.N.; Armağan, K. Optimal retirement age for construction workers exposed to vibration: A case study in Turkey. Avrupa Bilim Teknol. Derg. 2019, 17, 1294–1306. [Google Scholar]
- De Luca, F.; Salzano, G. Obesity: What are the long-term consequuences? Jt. Meet. 2003, 1, 32. [Google Scholar]
- Tejerizo-López, L.C.; Tejerizo-García, A.; Sánchez-Sánchez, M.M.; García-Robles, R.M.; Leiva, A.; Morán, E.; Corredera, F.; Pérez-Escanilla, J.A.; Benavente, J.M. Síndrome de ovarios poliquísticos: Hiperinsulinemia relacionada con riesgo cardiovascular. Clínica Investig. Ginecol. Obstet. 2001, 28, 162–177. [Google Scholar] [CrossRef]
- Iughetti, L.; Bruzzi, P.; Predieri, B.; Vellani, G.; De Simone, M. La sindrome metabolica in età evolutiva. Prospett. Pediatr. 2008, 38, 215–220. [Google Scholar]
- Sakurai, Y.; Kubota, N.; Yamauchi, T.; Kadowaki, T. Role of insulin resistance in MAFLD. Int. J. Mol. Sci. 2021, 22, 4156. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Park, G.; Lee, H.S.; Choi, Y.; Oh, J.S.; Choi, H.S.; Suh, J.; Kwon, A.; Kim, H.-S.; Chae, H.W. Prediction of insulin resistance by modified triglyceride glucose indices in youth. Life 2021, 11, 286. [Google Scholar] [CrossRef] [PubMed]
- Stevic, R.; Zivkovic, T.B.; Erceg, P.; Milosevic, D.; Despotovic, N.; Davidovic, M. Oral glucose tolerance test in the assessment of glucose-tolerance in the elderly people. Age Ageing 2007, 36, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, Z.; Nikolic, S.T.; Doroslovacki, R.; Lalic, B.; Stankovic, J.; Zivkovic, T. Fostering creativity by a specially designed Doris tool. Think. Ski. Creat. 2015, 17, 132–148. [Google Scholar] [CrossRef]
- Ramavandi, B.; Asgari, G.; Faradmal, J.; Sahebi, S.; Roshani, B. Abatement of Cr (VI) from wastewater using a new adsorbent, cantaloupe peel: Taguchi L 16 orthogonal array optimization. Korean J. Chem. Eng. 2014, 31, 2207–2214. [Google Scholar] [CrossRef]
- Han, S.; Qubo, C.; Meng, H. Parameter selection in SVM with RBF kernel function. In Proceedings of the World Automation Congress, Puerto Vallarta, Mexico, 24–28 June 2012; pp. 1–4. [Google Scholar]
- Vishwanathan, S.V.M.; Murty, M.N. SSVM: A simple SVM algorithm. In Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN’02 (Cat. No. 02CH37290), Honolulu, HI, USA, 12–17 May 2002; Volume 3, pp. 2393–2398. [Google Scholar]
- Wen, Q.; Yang, Z.; Song, Y.; Jia, P. Automatic stock decision support system based on box theory and SVM algorithm. Expert Syst. Appl. 2010, 37, 1015–1022. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Xu, L.; Liu, P. Fall detection by wearable sensor and one-class SVM algorithm. In Intelligent Computing in Signal Processing and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
OGTT | Experimental Group | |||||
---|---|---|---|---|---|---|
N = 117 (17.4%) | I group 66 (9.8%) | II group 38 (5.6%) | III group 13 (1.9%) | and Kruskal–Wallis H | p | |
mean ± SD | KW(H) | |||||
I | 0.003 | 0.936 | ||||
II | 0.031 | 0.587 | ||||
III | 0.724 | 0.396 | ||||
mean ± SD | KW(H) | |||||
I | 0.006 | 0.953 | ||||
II | 1.315 | 0.234 | ||||
III | 0.135 | 0.718 | ||||
mean ± SD | KW(H) | |||||
I | 0.210 | 0.647 | ||||
II | 0.179 | 0.672 | ||||
III | 0.463 | 0.496 | ||||
mean ± SD | KW(H) | |||||
I | 48.041 | 0.000 * | ||||
II | 27.063 | 0.000 * | ||||
III | 5.412 | 0.009 * | ||||
mean ± SD | 7.9 | KW(H) | ||||
I | 0.124 | 0.823 | ||||
II | 3.249 | 0.075 | ||||
III | 5.320 | 0.023 * | ||||
Insulin at 120 min of OGTT (U/mL) mean ± SD | 29.7 | 33.5 | 47.4 | KW(H) | ||
I | 4.735 | 0.028 * | ||||
II | 4.234 | 0.031 * | ||||
III | 0.273 | 0.575 |
HOMA-IR | 1.0 < IR < 1.6 | 1.6 < IR < 2 | IR > 2 | Mean | Total |
---|---|---|---|---|---|
Male | 29 (4.3%) | 17 (2.5%) | 5 (0.7%) | (2.50%) | (7.50%) |
Female | 37 (5.5%) | 21 (3.1%) | 8 (1.2%) | (3.30%) | (9.80%) |
Total | 66 (9.8%) | 38 (5.6%) | 13 (1.9%) | (5.80%) | (17.30%) |
Risk Factors | Small Risk | Medium Risk | Large Risk | Kruškal-Wallis H | p |
---|---|---|---|---|---|
Male Female | I group | II group | III group | 5.124 | 0.023 * |
29 (43.9%) | 17 (44.7%) | 5 (38.5%) | |||
37 (56.1%) | 21 (55.3%) | 8 (61.5%) | |||
BMI | 34 (51.5%) | 26 (68.4%) | 9 (69.2%) | 3.125 | 0.068 |
Family history of type 2 diabetes | 32 (48.5%) | 20 (52.6%) | 7 (53.8%) | 1.305 | 0.253 |
Poor nutrition | 27 (40.9%) | 24 (63.2%) | 11 (84.6%) | 4.003 | 0.048 * |
Little physical activity | 30 (45.5%) | 27 (71.1%) | 12 (92.3%) | 0.637 | 0.412 |
Poor socioeconomic conditions | 14 (21.2%) | 13 (34.2%) | 4 (30.8%) | 3.245 | 0.071 |
Mental problems and stress | 8 (12.1%) | 9 (23.7%) | 3 (23.1%) | 0.053 | 0.813 |
Psychoactive substances | 5 (7.5%) | 7 (18.4%) | 2 (15.3%) | 3.517 | 0.059 |
High cholesterol | 34 (51.5%) | 27 (71.1%) | 10 (76.9%) | 4.237 | 0.008 * |
High blood pressure | 22 (33.3%) | 19 (50.0%) | 6 (46.2%) | 5.246 | 0.026 * |
Elevated CRP | 23 (31.8%) | 21 (55.3%) | 9 (69.2%) | 10.317 | 0.001 * |
BMI | 51.5 | 68.4 | 69.2 |
Family history of type 2 diabetes | 48.5 | 52.6 | 53.8 |
Poor nutrition | 40.9 | 63.2 | 84.6 |
Little physical activity | 45.5 | 71.1 | 92.3 |
Poor socioeconomic conditions | 21.2 | 34.2 | 30.8 |
Mental problems and stress | 12.1 | 23.7 | 23.1 |
Psychoactive substances | 7.5 | 18.4 | 15.3 |
High Cholesterol | 51.5 | 71.1 | 76.9 |
High blood pressure | 33.3 | 50 | 46.2 |
Elevated CRP | 31.8 | 55.3 | 69.2 |
Small Risk (%) | Medium Risk (%) | Large Risk (%) | |
---|---|---|---|
Insulin | 2.3 | 3.6 | 4.1 |
Glucose | 2.1 | 3.2 | 3.8 |
BMI | 3.3 | 4.2 | 4.4 |
Family history of type 2 diabetes | 2.1 | 3.3 | 3.9 |
Poor nutrition | 1.9 | 2.2 | 2.6 |
Little physical activity | 1.5 | 2.1 | 2.4 |
Poor socioeconomic conditions | −1.3 | −0.9 | −0.6 |
Mental problems and stress | −1.3 | −0.8 | −0.3 |
Psychoactive substances | −1.5 | −2.3 | −2.2 |
High Cholesterol | 3.2 | 3.5 | 3.8 |
High blood pressure | 3.1 | 3.4 | 3.7 |
Elevated CRP | 2.8 | 3.1 | 3.5 |
Small Risk (%) | Medium Risk (%) | Large Risk (%) | |
---|---|---|---|
Insulin | 4.3 | 6.8 | 9.5 |
Glucose | 3.2 | 3.6 | 4.1 |
BMI | 3.2 | 4.8 | 5.9 |
Family history of type 2 diabetes | 4.1 | 5.2 | 7.1 |
Poor nutrition | 2.3 | 4.4 | 4.8 |
Little physical activity | 2.8 | 9.6 | 3.2 |
Poor socioeconomic conditions | −2.7 | −3.2 | −3.4 |
Mental problems and stress | −5.4 | −3.2 | −1.8 |
Psychoactive substances | −1.2 | −0.2 | −0.1 |
High Cholesterol | 3.6 | 4.1 | 4.6 |
High blood pressure | 2.2 | 3.5 | 3.9 |
Elevated CRP | 2.3 | 4.8 | 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukić, I.; Ranković, N.; Savić, N.; Ranković, D.; Popov, Ž.; Vujić, A.; Folić, N. A Novel Approach of Determining the Risks for the Development of Hyperinsulinemia in the Children and Adolescent Population Using Radial Basis Function and Support Vector Machine Learning Algorithm. Healthcare 2022, 10, 921. https://doi.org/10.3390/healthcare10050921
Lukić I, Ranković N, Savić N, Ranković D, Popov Ž, Vujić A, Folić N. A Novel Approach of Determining the Risks for the Development of Hyperinsulinemia in the Children and Adolescent Population Using Radial Basis Function and Support Vector Machine Learning Algorithm. Healthcare. 2022; 10(5):921. https://doi.org/10.3390/healthcare10050921
Chicago/Turabian StyleLukić, Igor, Nevena Ranković, Nikola Savić, Dragica Ranković, Željko Popov, Ana Vujić, and Nevena Folić. 2022. "A Novel Approach of Determining the Risks for the Development of Hyperinsulinemia in the Children and Adolescent Population Using Radial Basis Function and Support Vector Machine Learning Algorithm" Healthcare 10, no. 5: 921. https://doi.org/10.3390/healthcare10050921
APA StyleLukić, I., Ranković, N., Savić, N., Ranković, D., Popov, Ž., Vujić, A., & Folić, N. (2022). A Novel Approach of Determining the Risks for the Development of Hyperinsulinemia in the Children and Adolescent Population Using Radial Basis Function and Support Vector Machine Learning Algorithm. Healthcare, 10(5), 921. https://doi.org/10.3390/healthcare10050921