Does Smartphone Addiction, Social Media Addiction, and/or Internet Game Addiction Affect Adolescents’ Interpersonal Interactions?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Questionnaire
2.3. Statistical Analysis
3. Results
3.1. Participant Demography
3.2. Pearson Correlation Coefficient Analysis
3.3. Multiple Linear Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manczak, E.M.; Leigh, A.K.; Chin, C.-P.; Chen, E. Consistency matters: Consistency in the timing and quality of daily interactions between parents and adolescents predicts production of proinflammatory cytokines in youths. Dev. Psychopathol. 2018, 30, 373–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesi, J.; Burke, T.A.; Caltabiano, A.; Spirito, A.; Wolff, J.C. Digital media-related precursors to psychiatric hospitalization among youth. J. Affect. Disord. 2022, 310, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.A.; Donnellan, M.B.; Robins, R.W. Personality traits and parent–adolescent interactions: An observational study of Mexican origin families. J. Fam. Psychol. 2018, 32, 544. [Google Scholar] [CrossRef] [PubMed]
- Shearin, S.A. Parent-adolescent interaction: Influence on the academic achievement of African American adolescent males. J. Health Soc. Policy 2002, 16, 125–137. [Google Scholar] [CrossRef]
- Abbasi, G.A.; Jagaveeran, M.; Goh, Y.-N.; Tariq, B. The impact of type of content use on smartphone addiction and academic performance: Physical activity as moderator. Technol. Soc. 2021, 64, 101521. [Google Scholar] [CrossRef]
- Manczak, E.M.; Ham, P.J.; Sinard, R.N.; Chen, E. Beyond positive or negative: Variability in daily parent-adolescent interaction quality is associated with adolescent emotion dysregulation. Cogn. Emot. 2019, 33, 840–847. [Google Scholar] [CrossRef]
- Waite, P.; Creswell, C. Observing interactions between children and adolescents and their parents: The effects of anxiety disorder and age. J. Abnorm. Child Psychol. 2015, 43, 1079–1091. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.P.; Zinberg, J.L.; Bearden, C.E.; Lopez, S.R.; Kopelowicz, A.; Daley, M.; Cannon, T.D. Parent attitudes and parent adolescent interaction in families of youth at risk for psychosis and with recent-onset psychotic symptoms. Early Interv. Psychiatry 2008, 2, 268–276. [Google Scholar] [CrossRef]
- Nyman, J.; Parisod, H.; Axelin, A.; Salanterä, S. Finnish adolescents’ self-efficacy in peer interactions: A critical incident study. Health Promot. Int. 2018, 34, 961–969. [Google Scholar] [CrossRef]
- Motoca, L.M.; Williams, S.; Silverman, W.K. Social skills as a mediator between anxiety symptoms and peer interactions among children and adolescents. J. Clin. Child Adolesc. Psychol. 2012, 41, 329–336. [Google Scholar] [CrossRef]
- Brown, B.B.; Lohr, M.J. Peer-group affiliation and adolescent self-esteem: An integration of ego-identity and symbolic-interaction theories. J. Personal. Soc. Psychol. 1987, 52, 47. [Google Scholar] [CrossRef]
- Wright, L.D.; Muir, K.E.; Perrot, T.S. Enhanced stress responses in adolescent versus adult rats exposed to cues of predation threat, and peer interaction as a predictor of adult defensiveness. Dev. Psychobiol. 2012, 54, 47–69. [Google Scholar] [CrossRef] [PubMed]
- Markovits, H.; Benenson, J.; Dolenszky, E. Evidence that children and adolescents have internal models of peer interactions that are gender differentiated. Child Dev. 2001, 72, 879–886. [Google Scholar] [CrossRef]
- Cheadle, J.E.; Schwadel, P. The ‘friendship dynamics of religion’, or the ‘religious dynamics of friendship’? A social network analysis of adolescents who attend small schools. Soc. Sci. Res. 2012, 41, 1198–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyngdoh, M.; Akoijam, B.S.; Agui, R.S.; Singh, K.S. Diet, physical activity, and screen time among school students in Manipur. Indian J. Community Med. 2019, 44, 134. [Google Scholar]
- Twenge, J.M.; Martin, G.N.; Campbell, W.K. Decreases in psychological well-being among American adolescents after 2012 and links to screen time during the rise of smartphone technology. Emotion 2018, 18, 765–780. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, G.S.; Clarke-Pearson, K. The impact of social media on children, adolescents, and families. Pediatrics 2011, 127, 800–804. [Google Scholar] [CrossRef] [Green Version]
- Lenhart, A.; Purcell, K.; Smith, A.; Zickuhr, K.; Social Media & Mobile Internet Use among Teens and Young Adults. Millennials. Pew Internet Am. Life Proj. 2010. Available online: https://files.eric.ed.gov/fulltext/ED525056.pdf (accessed on 20 February 2021).
- Leung, H.; Pakpour, A.H.; Strong, C.; Lin, Y.-C.; Tsai, M.-C.; Griffiths, M.D.; Lin, C.-Y.; Chen, I.-H. Measurement invariance across young adults from Hong Kong and Taiwan among three internet-related addiction scales: Bergen Social Media Addiction Scale (BSMAS), Smartphone Application-Based Addiction Scale (SABAS), and Internet Gaming Disorder Scale-Short form (IGDS-SF9) (Study Part A). Addict. Behav. 2020, 101, 105969. [Google Scholar]
- Männikkö, N.; Billieux, J.; Kääriäinen, M. Problematic digital gaming behavior and its relation to the psychological, social and physical health of Finnish adolescents and young adults. J. Behav. Addict. 2015, 4, 281–288. [Google Scholar] [CrossRef]
- Lin, M.-P.; Wu, J.Y.-W.; You, J.; Hu, W.-H.; Yen, C.-F. Prevalence of internet addiction and its risk and protective factors in a representative sample of senior high school students in Taiwan. J. Adolesc. 2018, 62, 38–46. [Google Scholar] [CrossRef]
- Lin, M.-P.; Ko, H.-C.; Wu, J.Y.-W. Prevalence and psychosocial risk factors associated with Internet addiction in a nationally representative sample of college students in Taiwan. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-H.; Wan, Y.-B. Personality trait, social interaction and mobile phone usage dependence. In Proceedings of the 5th Communication Policy Research South Conference (CPRsouth5), Xi’an, China, 8 December 2010. [Google Scholar]
- Cho, J. Roles of smartphone app use in improving social capital and reducing social isolation. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.L.; Ingels, D.J.; Kazmi, M.A.; Ohu, E.A.; Belle, C.; Spitzmueller, C. Adolescents’ problematic internet use in secondary school students in Lagos, Nigeria: A preliminary examination of individual and family-based predictors and consequences. Comput. Hum. Behav. 2022, 132, 107247. [Google Scholar] [CrossRef]
- Liu, C.-H.; Lin, S.-H.; Pan, Y.-C.; Lin, Y.-H. Smartphone gaming and frequent use pattern associated with smartphone addiction. Medicine 2016, 95, e4068. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Huang, B.-Y. A Study on Correlations among Smartphone Use, Smartphone Dependence and Interpersonal Relationships of Vocational High School Students. J. Educ. Theory Pract. 2018, 37, 1–28. [Google Scholar]
- Yang, S.-Y.; Chen, M.-D.; Huang, Y.-C.; Lin, C.-Y.; Chang, J.-H. Association between smartphone use and musculoskeletal discomfort in adolescent students. J. Community Health 2017, 42, 423–430. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Lin, C.-Y.; Huang, Y.-C.; Chang, J.-H. Gender differences in the association of smartphone use with the vitality and mental health of adolescent students. J. Am. Coll. Health 2018, 66, 693–701. [Google Scholar] [CrossRef]
- Osorio-Molina, C.; Martos-Cabrera, M.; Membrive-Jiménez, M.; Vargas-Roman, K.; Suleiman-Martos, N.; Ortega-Campos, E.; Gómez-Urquiza, J. Smartphone addiction, risk factors and its adverse effects in nursing students: A systematic review and meta-analysis. Nurse Educ. Today 2021, 98, 104741. [Google Scholar] [CrossRef]
- Chen, Y. Personality Traits, Real and Internet Relationships, and Well-being among Senior High School Students. Master’s Thesis, National Pingtung University of Education, Pingtung, Taiwan, 2002. [Google Scholar]
- Yam, C.-W.; Pakpour, A.H.; Griffiths, M.D.; Yau, W.-Y.; Lo, C.-L.M.; Ng, J.M.; Lin, C.-Y.; Leung, H. Psychometric testing of three Chinese online-related addictive behavior instruments among Hong Kong university students. Psychiatr. Q. 2019, 90, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Csibi, S.; Griffiths, M.D.; Cook, B.; Demetrovics, Z.; Szabo, A. The psychometric properties of the smartphone application-based addiction scale (SABAS). Int. J. Ment. Health Addict. 2018, 16, 393–403. [Google Scholar] [CrossRef]
- Griffiths, M. Internet addiction-time to be taken seriously? Addict. Res. 2000, 8, 413–418. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Broström, A.; Nilsen, P.; Griffiths, M.D.; Pakpour, A.H. Psychometric validation of the Persian Bergen Social Media Addiction Scale using classic test theory and Rasch models. J. Behav. Addict. 2017, 6, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.-H.; Strong, C.; Lin, Y.-C.; Tsai, M.-C.; Leung, H.; Lin, C.-Y.; Pakpour, A.H.; Griffiths, M.D. Time invariance of three ultra-brief internet-related instruments: Smartphone Application-Based Addiction Scale (SABAS), Bergen Social Media Addiction Scale (BSMAS), and the nine-item Internet Gaming Disorder Scale-Short Form (IGDS-SF9) (Study Part B). Addict. Behav. 2020, 101, 105960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.-H.; Ahorsu, D.K.; Pakpour, A.H.; Griffiths, M.D.; Lin, C.-Y.; Chen, C.-Y. Psychometric properties of three simplified Chinese online-related addictive behavior instruments among mainland Chinese primary school students. Front. Psychiatry 2020, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Pontes, H.M.; Griffiths, M.D. Measuring DSM-5 Internet gaming disorder: Development and validation of a short psychometric scale. Comput. Hum. Behav. 2015, 45, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-Y.; Lin, C.-Y.; Årestedt, K.; Griffiths, M.D.; Broström, A.; Pakpour, A.H. Psychometric validation of the Persian nine-item Internet Gaming Disorder Scale–Short Form: Does gender and hours spent online gaming affect the interpretations of item descriptions? J. Behav. Addict. 2017, 6, 256–263. [Google Scholar] [CrossRef]
- Poon, L.Y.; Tsang, H.W.; Chan, T.Y.; Man, S.W.; Ng, L.Y.; Wong, Y.L.; Lin, C.-Y.; Chien, C.-W.; Griffiths, M.D.; Pontes, H.M. Psychometric Properties of the Internet Gaming Disorder Scale–Short-Form (IGDS9-SF): Systematic Review. J. Med. Internet Res. 2021, 23, e26821. [Google Scholar] [CrossRef]
- Chen, I.-H.; Chen, C.-Y.; Liu, C.-H.; Ahorsu, D.K.; Griffiths, M.D.; Chen, Y.-P.; Kuo, Y.-J.; Lin, C.-Y.; Pakpour, A.H.; Wang, S.-M. Internet addiction and psychological distress among Chinese schoolchildren before and during the COVID-19 outbreak: A latent class analysis. J. Behav. Addict. 2021, 10, 731–746. [Google Scholar] [CrossRef]
- Chen, I.-H.; Chen, C.-Y.; Pakpour, A.H.; Griffiths, M.D.; Lin, C.-Y.; Li, X.-D.; Tsang, H.W. Problematic internet-related behaviors mediate the associations between levels of internet engagement and distress among schoolchildren during COVID-19 lockdown: A longitudinal structural equation modeling study. J. Behav. Addict. 2021, 10, 135–148. [Google Scholar] [CrossRef]
- Chen, I.-H.; Pakpour, A.H.; Leung, H.; Potenza, M.N.; Su, J.-A.; Lin, C.-Y.; Griffiths, M.D. Comparing generalized and specific problematic smartphone/internet use: Longitudinal relationships between smartphone application-based addiction and social media addiction and psychological distress. J. Behav. Addict. 2020, 9, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Fung, X.C.; Siu, A.M.; Potenza, M.N.; O’brien, K.S.; Latner, J.D.; Chen, C.-Y.; Chen, I.-H.; Lin, C.-Y. Problematic use of internet-related activities and perceived weight stigma in schoolchildren: A longitudinal study across different epidemic periods of COVID-19 in China. Front. Psychiatry 2021, 12, 675839. [Google Scholar] [CrossRef] [PubMed]
- Bányai, F.; Zsila, Á.; Király, O.; Maraz, A.; Elekes, Z.; Griffiths, M.D.; Andreassen, C.S.; Demetrovics, Z. Problematic social media use: Results from a large-scale nationally representative adolescent sample. PLoS ONE 2017, 12, e0169839. [Google Scholar] [CrossRef] [PubMed]
- Albarello, F.; Crocetti, E.; Rubini, M. I and us: A longitudinal study on the interplay of personal and social identity in adolescence. J. Youth Adolesc. 2018, 47, 689–702. [Google Scholar] [CrossRef]
- Lee, J.; Sung, M.-J.; Song, S.-H.; Lee, Y.-M.; Lee, J.-J.; Cho, S.-M.; Park, M.-K.; Shin, Y.-M. Psychological factors associated with smartphone addiction in south korean adolescents. J. Early Adolesc. 2018, 38, 288–302. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Chen, K.-L.; Yang, S.-Y.; Lin, P.-H. Relationship of sleep quality, smartphone dependence, and health-related behaviors in female junior college students. PLoS ONE 2019, 14, e0214769. [Google Scholar] [CrossRef]
- Lin, P.-H.; Lee, Y.-C.; Chen, K.-L.; Hsieh, P.-L.; Yang, S.-Y.; Lin, Y.-L. The Relationship Between Sleep Quality and Internet Addiction Among Female College Students. Front. Neurosci. 2019, 13, 599. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-Y.; Chen, K.-L.; Lin, P.-H.; Wang, P.-Y. Relationships among health-related behaviors, smartphone dependence, and sleep duration in female junior college students. Soc. Health Behav. 2019, 2, 26. [Google Scholar]
- Yang, S.-Y.; Fu, S.-H.; Chen, K.-L.; Hsieh, P.-L.; Lin, P.-H. Relationships between depression, health-related behaviors, and internet addiction in female junior college students. PLoS ONE 2019, 14, e0220784. [Google Scholar] [CrossRef] [Green Version]
- Hogan, B. The presentation of self in the age of social media: Distinguishing performances and exhibitions online. Bull. Sci. Technol. Soc. 2010, 30, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Barker, V. Older adolescents’ motivations for social network site use: The influence of gender, group identity, and collective self-esteem. Cyberpsychol. Behav. 2009, 12, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, D.; Leaman, C.; Tramposch, R.; Osborne, C.; Liss, M. Extraversion, neuroticism, attachment style and fear of missing out as predictors of social media use and addiction. Personal. Individ. Differ. 2017, 116, 69–72. [Google Scholar] [CrossRef]
- Lee, Z.W.; Cheung, C.M.; Chan, T.K. Massively multiplayer online game addiction: Instrument development and validation. Inf. Manag. 2015, 52, 413–430. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-C.; Chang, I.-C. Model of online game addiction: The role of computer-mediated communication motives. Telemat. Inform. 2016, 33, 904–915. [Google Scholar] [CrossRef]
- Tsiolka, E.; Bergiannaki, I.; Margariti, M.; Malliori, M.; Papageorgiou, C. Dysfunctional internet behaviour symptoms in association with personality traits. Psychiatriki 2017, 28, 211–218. [Google Scholar] [CrossRef]
- Dalbudak, E.; Evren, C. The relationship of Internet addiction severity with Attention Deficit Hyperactivity Disorder symptoms in Turkish University students; impact of personality traits, depression and anxiety. Compr. Psychiatry 2014, 55, 497–503. [Google Scholar] [CrossRef]
- Xiuqin, H.; Huimin, Z.; Mengchen, L.; Jinan, W.; Ying, Z.; Ran, T. Mental health, personality, and parental rearing styles of adolescents with Internet addiction disorder. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 401–406. [Google Scholar] [CrossRef] [Green Version]
Total | Male | Female | p-Value | |
---|---|---|---|---|
N = 998 | N = 413 | N = 585 | ||
Sex Male Female | 413 (41.4%) 585 (58.6%) | |||
Age (mean ± SD) | 16.73 ± 0.94 | 16.70 ± 0.84 | 16.75 ± 1.00 | |
BMI (mean ± SD) | 20.77 ± 4.03 | 20.90 ± 3.82 | 20.68 ± 4.18 | |
Religion (n, %) | 0.57 | |||
No | 779 (78.1%) | 326 (78.9%) | 453 (77.4%) | |
Yes | 219 (21.9%) | 87 (21.1%) | 132 (22.6%) | |
Exercise per week 0–1 days 2–3 days ≥4 days | 433 (43.4%) 347 (34.8%) 218 (21.8%) | 176 (42.6%) 126 (30.5%) 111 (26.9%) | 257 (43.9%) 221 (37.8%) 107 (18.3%) | <0.01 |
Money can be spent each month | 0.14 | |||
<4000 NTD (÷135 USD) | 547 (54.8%) | 215 (52.1%) | 332 (56.8%) | |
4000–5999 NTD (135–200 USD) | 225 (22.5%) | 106 (25.7%) | 119 (20.3%) | |
6000–7999 NTD (200–270 USD) | 95 (9.5%) | 43 (10.4%) | 52 (8.9%) | |
≥8000 NTD(≥270 USD) | 131 (13.1%) | 49 (11.9%) | 82 (14.0%) | |
Have a boy/girl friend | 0.78 | |||
No Yes | 696 (69.7%) 302 (30.3%) | 290 (70.2%) 123 (29.8%) | 406 (69.4%) 179 (30.6%) | |
Living place | 0.12 | |||
Home | 721 (77.2%) | 286 (69.2%) | 435 (74.4%) | |
School dormitory | 117 (11.7%) | 58 (14.0%) | 59 (10.1%) | |
Off-campus rental house | 160 (16.0%) | 69 (16.7%) | 91 (15.6%) | |
RIIS (mean ± SD) | ||||
Total score | 38.21 ± 8.90 | 37.33 ± 9.57 | 38.83 ± 8.35 | 0.01 * |
Intimacy with parents | 15.07 ± 4.76 | 14.92 ± 4.95 | 15.18 ± 4.63 | 0.39 |
Intimacy with friends | 11.40 ± 2.82 | 11.01 ± 2.99 | 11.68 ± 2.67 | <0.01 |
Informational disclosure with friends | 11.74 ± 2.79 | 11.41 ± 2.99 | 11.97 ± 2.62 | <0.01 |
IIIS (mean ± SD) | ||||
Total score | 17.14 ± 7.59 | 17.70 ± 7.79 | 16.76 ± 7.43 | 0.05 |
Intimacy with online friends | 10.12 ± 4.55 | 10.43 ± 4.65 | 9.90 ± 4.48 | 0.07 |
Informational disclosure with online friends | 7.03 ± 3.20 | 7.27 ± 3.27 | 6.86 ± 3.14 | 0.05 * |
SABAS (mean ± SD) | 12.14 ± 4.42 | 12.44 ± 4.89 | 11.92 ± 4.04 | 0.08 |
BSMAS (mean ± SD) | 18.12 ± 5.57 | 18.19 ± 5.82 | 18.07 ± 5.39 | 0.74 |
IGD9-SF (mean ± SD) | 14.77 ± 6.50 | 16.56 ± 7.23 | 13.52 ± 5.61 | <0.01 |
SABAS | BSMAS | IGD9-SF | |||||||
---|---|---|---|---|---|---|---|---|---|
Total | Male | Female | Total | Male | Female | Total | Male | Female | |
RIIS | |||||||||
Total score | 0.06 | 0.11 * | 0.01 | 0.05 | 0.08 | 0.04 | −0.13 ** | −0.07 | −0.16 ** |
Intimacy with parents | −0.05 | 0.02 | −0.11 ** | −0.00 | 0.03 | −0.03 | −0.07 * | −0.01 | −0.13 ** |
Intimacy with friends | 0.15 ** | 0.17 ** | 0.13 ** | 0.13 ** | 0.11 * | 0.11 ** | −0.14 * | −0.10 * | −0.13 ** |
Informational disclosure with friends | 0.12 ** | 0.16 ** | 0.09 * | 0.07 * | 0.09 | 0.07 | −0.15 * | −0.11 | −0.16 ** |
IIIS | |||||||||
Total score | 0.22 ** | 0.14 ** | 0.28 ** | 0.25 ** | 0.20 ** | 0.28 ** | 0.28 ** | 0.29 ** | 0.25 ** |
Intimacy with online friends | 0.23 ** | 0.15 ** | 0.28 ** | 0.25 ** | 0.21 ** | 0.28 ** | 0.27 ** | 0.29 ** | 0.24 ** |
Informational disclosure with online friends | 0.19 ** | 0.12 * | 0.26 ** | 0.23 ** | 0.19 ** | 0.26 ** | 0.27 ** | 0.28 ** | 0.26 ** |
SABAS † | Male †† | Female †† | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | 95% CI | p | B | SE | Beta | 95% CI | p | B | SE | Beta | 95% CI | p | |
RIIS | |||||||||||||||
Total score | 0.09 | 0.05 | 0.06 | −0.01, 0.19 | 0.09 | 0.20 | 0.08 | 0.12 | 0.04, 0.37 | 0.02 * | −0.01 | 0.07 | −0.01 | −0.14, 0.12 | 0.89 |
Intimacy with parents | −0.04 | 0.03 | −0.04 | −0.09, 0.02 | 0.18 | 0.04 | 0.04 | 0.05 | −0.05, 0.12 | 0.36 | −0.10 | 0.04 | −0.11 | −0.17, −0.03 | <0.01 |
Intimacy with friends | 0.07 | 0.02 | 0.14 | 0.04, 0.10 | <0.01 | 0.09 | 0.03 | 0.17 | 0.04, 0.14 | <0.01 | 0.05 | 0.02 | 0.11 | 0.01, 0.09 | 0.01 * |
Informational disclosure with friends | 0.06 | 0.02 | 0.11 | 0.03, 0.09 | <0.01 | 0.08 | 0.03 | 0.15 | 0.03, 0.13 | <0.01 | 0.04 | 0.02 | 0.07 | −0.01, 0.08 | 0.08 |
IIIS | |||||||||||||||
Total score | 0.30 | 0.04 | 0.22 | 0.21, 0.38 | <0.01 | 0.19 | 0.07 | 0.14 | 0.06, 0.32 | <0.01 | 0.38 | 0.06 | 0.28 | 0.27, 0.49 | <0.01 |
Intimacy with online friends | 0.19 | 0.03 | 0.23 | 0.14, 0.24 | <0.01 | 0.12 | 0.04 | 0.15 | 0.04, 0.20 | <0.01 | 0.24 | 0.03 | 0.29 | 0.18, 0.31 | <0.01 |
Informational disclosure with online friends | 0.11 | 0.02 | 0.19 | 0.07, 0.15 | <0.01 | 0.07 | 0.03 | 0.12 | 0.02, 0.13 | 0.01 * | 0.14 | 0.02 | 0.24 | 0.10, 0.19 | <0.01 |
BSMAS † | Male †† | Female †† | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | 95% CI | p | B | SE | Beta | 95% CI | p | B | SE | Beta | 95% CI | p | |
RIIS | |||||||||||||||
Total score | 0.11 | 0.07 | 0.06 | −0.02, 0.24 | 0.09 | 0.16 | 0.10 | 0.08 | −0.04, 0.36 | 0.12 | 0.07 | 0.09 | 0.04 | −0.10, 0.24 | 0.40 |
Intimacy with parents | 0.01 | 0.04 | 0.00 | −0.07, 0.07 | 0.98 | 0.05 | 0.05 | 0.04 | −0.06, 0.15 | 0.38 | −0.03 | 0.05 | −0.03 | −0.13, 0.06 | 0.49 |
Intimacy with friends | 0.07 | 0.02 | 0.11 | 0.03, 0.11 | <0.01 | 0.06 | 0.03 | 0.10 | 0.00, 0.13 | 0.04 * | 0.07 | 0.03 | 0.10 | 0.02, 0.12 | 0.01 * |
Informational disclosure with friends | 0.04 | 0.02 | 0.07 | 0.00, 0.08 | 0.03 * | 0.05 | 0.03 | 0.08 | −0.01, 0.11 | 0.12 | 0.04 | 0.03 | 0.06 | −0.02, 0.09 | 0.18 |
IIIS | |||||||||||||||
Total score | 0.42 | 0.05 | 0.24 | 0.31, 0.52 | <0.01 | 0.32 | 0.08 | 0.20 | 0.17, 0.48 | <0.01 | 0.50 | 0.07 | 0.27 | 0.36, 0.65 | <0.01 |
Intimacy with online friends | 0.25 | 0.03 | 0.25 | 0.19, 0.32 | <0.01 | 0.20 | 0.05 | 0.21 | 0.10, 0.29 | <0.01 | 0.31 | 0.04 | 0.27 | 0.22, 0.39 | <0.01 |
Informational disclosure with online friends | 0.16 | 0.02 | 0.23 | 0.12, 0.21 | <0.01 | 0.13 | 0.03 | 0.19 | 0.06, 0.19 | <0.01 | 0.20 | 0.03 | 0.25 | 0.14, 0.26 | <0.01 |
IGD9-SF † | Male †† | Female †† | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | Beta | 95% CI | p | B | SE | Beta | 95% CI | p | B | SE | Beta | 95% CI | p | |
RIIS | |||||||||||||||
Total score | −0.15 | 0.05 | −0.11 | −0.24, −0.07 | 0.01 * | −0.09 | 0.07 | −0.07 | −0.22, 0.04 | 0.18 | −0.22 | 0.06 | −0.15 | −0.34, −0.10 | <0.01 |
Intimacy with parents | −0.04 | 0.02 | −0.06 | −0.09, 0.01 | 0.08 | 0.00 | 0.03 | −0.00 | −0.07, 0.07 | 0.99 | −0.09 | 0.03 | −0.11 | −0.16, −0.02 | 0.01 * |
Intimacy with friends | −0.05 | 0.01 | −0.12 | −0.08, −0.02 | <0.01 | −0.04 | 0.02 | −0.10 | −0.08, −0.00 | 0.04 * | −0.06 | 0.02 | −0.12 | −0.10, −0.02 | <0.01 |
Informational disclosure with friends | −0.06 | 0.01 | −0.14 | −0.09, −0.03 | <0.01 | −0.05 | 0.02 | −0.12 | −0.09, −0.01 | 0.02 * | −0.07 | 0.02 | −0.16 | −0.11, −0.04 | <0.01 |
IIIS | |||||||||||||||
Total score | 0.32 | 0.04 | 0.27 | 0.24, 0.39 | <0.01 | 0.30 | 0.05 | 0.28 | 0.20, 0.41 | <0.01 | 0.34 | 0.05 | 0.25 | 0.23, 0.44 | <0.01 |
Intimacy with online friends | 0.18 | 0.02 | 0.26 | 0.14, 0.23 | <0.01 | 0.18 | 0.03 | 0.28 | 0.12, 0.24 | <0.01 | 0.19 | 0.03 | 0.24 | 0.13, 0.26 | <0.01 |
Informational disclosure with online friends | 0.13 | 0.02 | 0.27 | 0.10, 0.16 | <0.01 | 0.12 | 0.02 | 0.27 | 0.08, 0.17 | <0.01 | 0.14 | 0.02 | 0.25 | 0.10, 0.19 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-Y.; Wang, Y.-C.; Lee, Y.-C.; Lin, Y.-L.; Hsieh, P.-L.; Lin, P.-H. Does Smartphone Addiction, Social Media Addiction, and/or Internet Game Addiction Affect Adolescents’ Interpersonal Interactions? Healthcare 2022, 10, 963. https://doi.org/10.3390/healthcare10050963
Yang S-Y, Wang Y-C, Lee Y-C, Lin Y-L, Hsieh P-L, Lin P-H. Does Smartphone Addiction, Social Media Addiction, and/or Internet Game Addiction Affect Adolescents’ Interpersonal Interactions? Healthcare. 2022; 10(5):963. https://doi.org/10.3390/healthcare10050963
Chicago/Turabian StyleYang, Shang-Yu, Yu-Chi Wang, Ya-Chen Lee, Ying-Lien Lin, Pei-Lun Hsieh, and Pin-Hsuan Lin. 2022. "Does Smartphone Addiction, Social Media Addiction, and/or Internet Game Addiction Affect Adolescents’ Interpersonal Interactions?" Healthcare 10, no. 5: 963. https://doi.org/10.3390/healthcare10050963
APA StyleYang, S. -Y., Wang, Y. -C., Lee, Y. -C., Lin, Y. -L., Hsieh, P. -L., & Lin, P. -H. (2022). Does Smartphone Addiction, Social Media Addiction, and/or Internet Game Addiction Affect Adolescents’ Interpersonal Interactions? Healthcare, 10(5), 963. https://doi.org/10.3390/healthcare10050963