Can Different Admissions to Medical School Predict Performance of Non-Technical Skill Performance in Simulated Clinical Settings?
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Outcomes
- Planning tasks, prioritising, and problem-solving;
- Teamwork and leadership;
- Team orientation.
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trapmann, S.; Hell, B.; Weigand, S.; Schuler, H. Die Validität von Schulnoten zur Vorhersage des Studienerfolgs-eine Metaanalyse. Z. Für Pädagogische Psychol. 2007, 21, 11–27. [Google Scholar] [CrossRef] [Green Version]
- McManus, I.; Smithers, E.; Partridge, P.; Keeling, A.; Fleming, P.R. A levels and intelligence as predictors of medical careers in UK doctors: 20 year prospective study. BMJ 2003, 327, 139–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trost, G.; Begabungsforschung, B.I.f.T.-u. Evaluation des Tests für Medizinische Studiengänge (TMS): Synopse der Ergebnisse; Institut für Test- und Begabungsforschung: Bonn, Germany, 1998. [Google Scholar]
- Kadmon, G.; Resch, F.; Duelli, R.; Kadmon, M. Der Vorhersagewert der Abiturdurchschnittsnote und die Prognose der unterschiedlichen Zulassungsquoten für Studienleistung und-kontinuität im Studiengang Humanmedizin-eine Längsschnittanalyse. GMS Z. Für Med. Ausbild. 2014, 31, page. [Google Scholar]
- Ferguson, E.; James, D.; Madeley, L. Factors associated with success in medical school: Systematic review of the literature. BMJ 2002, 324, 952–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, F.; Knight, A.; Dowell, J.; Nicholson, S.; Cousans, F.; Cleland, J. How effective are selection methods in medical education? A systematic review. Med. Educ. 2016, 50, 36–60. [Google Scholar] [CrossRef] [Green Version]
- Rindermann, H.; Oubaid, V. Auswahl von Studienanfängern durch Universitäten-Kriterien, Verfahren und Prognostizierbarkeit des Studienerfolgs. Z. Für Differ. Und Diagn. Psychol. 1999, 20, 172–191. [Google Scholar] [CrossRef]
- Schwibbe, A.; Lackamp, J.; Knorr, M.; Hissbach, J.; Kadmon, M.; Hampe, W. Medizinstudierendenauswahl in Deutschland. Bundesgesundheitsblatt-Gesundh.-Gesundh. 2018, 61, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, E.; Sanders, A.; O’Hehir, F.; James, D. Predictive validity of personal statements and the role of the five-factor model of personality in relation to medical training. J. Occup. Organ. Psychol. 2000, 73, 321–344. [Google Scholar] [CrossRef]
- Werwick, K.; Winkler-Stuck, K.; Hampe, W.; Albrecht, P.; Robra, B.-P. Introduction of the HAM-Nat examination–applicants and students admitted to the Medical Faculty in 2012–2014. GMS Z. Für Med. Ausbild. 2015, 32, page. [Google Scholar]
- McManus, I.; Dewberry, C.; Nicholson, S.; Dowell, J.S. The UKCAT-12 study: Educational attainment, aptitude test performance, demographic and socio-economic contextual factors as predictors of first year outcome in a cross-sectional collaborative study of 12 UK medical schools. BMC Med. 2013, 11, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Emery, J.L.; Bell, J.F.; Vidal Rodeiro, C.L. The BioMedical admissions test for medical student selection: Issues of fairness and bias. Med. Teach. 2011, 33, 62–71. [Google Scholar] [CrossRef] [PubMed]
- McGaghie, W.C. Assessing readiness for medical education: Evolution of the medical college admission test. Jama 2002, 288, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Donnon, T.; Paolucci, E.O.; Violato, C. The predictive validity of the MCAT for medical school performance and medical board licensing examinations: A meta-analysis of the published research. Acad. Med. 2007, 82, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Hissbach, J.; Feddersen, L.; Sehner, S.; Hampe, W. Eignung von HAM-Nat und TMS-Modul „Medizinisch-naturwissenschaftliches Grundverständnis “für die Studienbewerberauswahl in der Medizin. GMSZMedAusbild29: Doc72 2012. [Google Scholar]
- Eva, K.W.; Reiter, H.I.; Rosenfeld, J.; Norman, G.R. The ability of the multiple mini-interview to predict preclerkship performance in medical school. Acad. Med. 2004, 79, S40–S42. [Google Scholar] [CrossRef] [Green Version]
- Patterson, F.; Zibarras, L.; Ashworth, V. Situational judgement tests in medical education and training: Research, theory and practice: AMEE Guide No. 100. Med. Teach. 2016, 38, 3–17. [Google Scholar] [CrossRef]
- Knorr, M.; Hissbach, J. Multiple mini-interviews: Same concept, different approaches. Med. Educ. 2014, 48, 1157–1175. [Google Scholar] [CrossRef]
- Rees, E.L.; Hawarden, A.W.; Dent, G.; Hays, R.; Bates, J.; Hassell, A.B. Evidence regarding the utility of multiple mini-interview (MMI) for selection to undergraduate health programs: A BEME systematic review: BEME Guide No. 37. Med. Teach. 2016, 38, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Pau, A.; Jeevaratnam, K.; Chen, Y.S.; Fall, A.A.; Khoo, C.; Nadarajah, V.D. The multiple mini-interview (MMI) for student selection in health professions training–a systematic review. Med. Teach. 2013, 35, 1027–1041. [Google Scholar] [CrossRef]
- Paton, L.W.; McManus, I.C.; Cheung, K.Y.F.; Smith, D.T.; Tiffin, P.A. Can achievement at medical admission tests predict future performance in postgraduate clinical assessments? A UK-based national cohort study. BMJ Open 2022, 12, e056129. [Google Scholar] [CrossRef]
- Ellis, R.; Brennan, P.; Scrimgeour, D.S.; Lee, A.J.; Cleland, J. Performance at medical school selection correlates with success in part A of the intercollegiate membership of the Royal College of surgeons (MRCS) examination. Postgrad. Med. J. 2022, 98, e19. [Google Scholar] [CrossRef] [PubMed]
- Greif, R.; Bhanji, F.; Bigham, B.L.; Bray, J.; Breckwoldt, J.; Cheng, A.; Duff, J.P.; Gilfoyle, E.; Hsieh, M.-J.; Iwami, T. Education, Implementation, and Teams: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020, 142 (Suppl. 1), S222–S283. [Google Scholar] [CrossRef]
- Kiesewetter, J.; Gutmann, J.; Drossard, S.; Salas, D.G.; Prodinger, W.; Mc Dermott, F.; Urban, B.; Staender, S.; Baschnegger, H.; Hoffmann, G. The Learning Objective Catalogue for Patient Safety in Undergraduate Medical Education—A Position Statement of the Committee for Patient Safety and Error Management of the German Association for Medical Education. GMS J. Med. Educ. 2016, 33, page. [Google Scholar]
- World Health Organization. Patient Safety: Making Health Care Safer; World Health Organization: Geneva, Switzerland, 2017.
- Flin, R.; Patey, R. Improving patient safety through training in non-technical skills. Br. Med. J. Publ. Group 2009, 339, b3595. [Google Scholar] [CrossRef] [PubMed]
- Greif, R.; Lockey, A.; Breckwoldt, J.; Carmona, F.; Conaghan, P.; Kuzovlev, A.; Pflanzl-Knizacek, L.; Sari, F.; Shammet, S.; Scapigliati, A. European Resuscitation Council Guidelines 2021: Education for resuscitation. Resuscitation 2021, 161, 388–407. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.; Darbyshire, D.; Baker, P. Non-technical skills training to enhance patient safety: A systematic review. Med. Educ. 2012, 46, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Gawronski, O.; Thekkan, K.R.; Genna, C.; Egman, S.; Sansone, V.; Erba, I.; Vittori, A.; Varano, C.; Dall’Oglio, I.; Tiozzo, E. Instruments to evaluate non-technical skills during high fidelity simulation: A systematic review. Front. Med. 2022, 9, 986296. [Google Scholar] [CrossRef]
- Flin, R.H.; O’Connor, P.; Crichton, M. Safety at the Sharp End: A Guide to Non-Technical Skills; Ashgate Publishing, Ltd.: Surrey, UK, 2008. [Google Scholar]
- Weinger, M.B. Experience≠ ExpertiseCan Simulation Be Used to Tell the Difference? J. Am. Soc. Anesthesiol. 2007, 107, 691–694. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Patient Safety Curriculum Guide for Medical Schools. 2009. Available online: https://www.who.int/patientsafety/activities/technical/who_ps_curriculum.pdf (accessed on 20 January 2019).
- Frank, J.R.; Danoff, D. The CanMEDS initiative: Implementing an outcomes-based framework of physician competencies. Med. Teach. 2007, 29, 642–647. [Google Scholar] [CrossRef]
- Gaba, D.M.; Howard, S.K.; Fish, K.J.; Smith, B.E.; Sowb, Y.A. Simulation-based training in anesthesia crisis resource management (ACRM): A decade of experience. Simul. Gaming 2001, 32, 175–193. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.L.; Barrick, M.R. Team structure and performance: Assessing the mediating role of intrateam process and the moderating role of task type. Acad. Manag. J. 2000, 43, 135–148. [Google Scholar] [CrossRef]
- Schulte-Uentrop, L.; Cronje, J.S.; Zöllner, C.; Kubitz, J.C.; Sehner, S.; Moll-Khosrawi, P. Correlation of medical students’ situational motivation and performance of non-technical skills during simulation-based emergency training. BMC Med. Educ. 2020, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Niessen, A.S.M.; Meijer, R.R. Selection of medical students on the basis of non-academic skills: Is it worth the trouble? Clin. Med. 2016, 16, 339. [Google Scholar] [CrossRef] [Green Version]
- Harden, R.M. What is a spiral curriculum? Med. Teach. 1999, 21, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Sweller, J. Cognitive load theory. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherland, 2011; Volume 55, pp. 37–76. [Google Scholar]
- Moll-Khosrawi, P.; Kamphausen, A.; Hampe, W.; Schulte-Uentrop, L.; Zimmermann, S.; Kubitz, J.C. Anaesthesiology students’ Non-Technical skills: Development and evaluation of a behavioural marker system for students (AS-NTS). BMC Med. Educ. 2019, 19, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Team, R. Core. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Team, R. Core: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 20 January 2019).
- Werwick, K.; Winkler-Stuck, K.; Robra, B.-P. From HAM-Nat to the “Physikum”—Analysis of the study success parameters before and after the introduction of a science test in the approval procedure. GMS J. Med. Educ. 2018, 35, page. [Google Scholar]
- Tiffin, P.A.; Finn, G.M.; McLachlan, J.C. Evaluating professionalism in medical undergraduates using selected response questions: Findings from an item response modelling study. BMC Med. Educ. 2011, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Conrad, N.; Patry, M.W. Conscientiousness and academic performance: A mediational analysis. Int. J. Scholarsh. Teach. Learn. 2012, 6, n1. [Google Scholar] [CrossRef] [Green Version]
- Patterson, F.; Tiffin, P.A.; Lopes, S.; Zibarras, L. Unpacking the dark variance of differential attainment on examinations in overseas graduates. Med. Educ. 2018, 52, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, J.C.; Stansfield, R.B.; Vohra, T.; Losman, E.; Turner-Lawrence, D.; Hopson, L.R. Prognostic value of the multiple mini-interview for emergency medicine residency performance. J. Emerg. Med. 2015, 49, 196–202. [Google Scholar] [CrossRef]
- MacCann, C.; Joseph, D.L.; Newman, D.A.; Roberts, R.D. Emotional intelligence is a second-stratum factor of intelligence: Evidence from hierarchical and bifactor models. Emotion 2014, 14, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knorr, M.; Schwibbe, A.; Ehrhardt, M.; Lackamp, J.; Zimmermann, S.; Hampe, W. Validity evidence for the Hamburg multiple mini-interview. BMC Med. Educ. 2018, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Knorr, M.; Meyer, H.; Sehner, S.; Hampe, W.; Zimmermann, S. Exploring sociodemographic subgroup differences in multiple mini-interview (MMI) performance based on MMI station type and the implications for the predictive fairness of the Hamburg MMI. BMC Med. Educ. 2019, 19, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, D.P.; Day, R.; Salas, E. Teamwork as an essential component of high-reliability organizations. Health Serv. Res. 2006, 41, 1576–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flowerdew, L.; Brown, R.; Vincent, C.; Woloshynowych, M. Development and validation of a tool to assess emergency physicians’ nontechnical skills. Ann. Emerg. Med. 2012, 59, 376–385.e374. [Google Scholar] [CrossRef] [PubMed]
- Albanese, M.A.; Snow, M.H.; Skochelak, S.E.; Huggett, K.N.; Farrell, P.M. Assessing personal qualities in medical school admissions. Acad. Med. 2003, 78, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Ekehammar, B. Interactionism in personality from a historical perspective. Psychol. Bull. 1974, 81, 1026. [Google Scholar] [CrossRef]
- Lievens, F.; De Koster, L.; Schollaert, E. Current theory and practice of assessment centers: The importance of trait activation. In Oxford Handbook of Personnel Psychology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Demange, P.A.; Malanchini, M.; Mallard, T.T.; Biroli, P.; Cox, S.R.; Grotzinger, A.D.; Tucker-Drob, E.M.; Abdellaoui, A.; Arseneault, L.; Van Bergen, E. Investigating the genetic architecture of noncognitive skills using GWAS-by-subtraction. Nat. Genet. 2021, 53, 35–44. [Google Scholar] [CrossRef]
- Jerant, A.; Griffin, E.; Rainwater, J.; Henderson, M.; Sousa, F.; Bertakis, K.D.; Fenton, J.J.; Franks, P. Does applicant personality influence multiple mini-interview performance and medical school acceptance offers? Acad. Med. 2012, 87, 1250–1259. [Google Scholar] [CrossRef]
- Salas, E.E.; Fiore, S.M. Team Cognition: Understanding the Factors that Drive Process and Performance; American Psychological Association: Washington, DC, USA, 2004. [Google Scholar]
- Salas, E.B.C.; Bowers, C.A. Team training in the skies: Does crew resource management (CRM) training work? Hum. Factors 2001, 43, 641–674. [Google Scholar] [CrossRef]
- Flin, R.; Martin, L.; Goeters, K.-M.; Hormann, H.; Amalberti, R.; Valot, C.; Nijhuis, H. Development of the NOTECHS (non-technical skills) system for assessing pilots’ CRM skills. Hum. Factors Aerosp. Saf. 2003, 3, 97–120. [Google Scholar]
- Flin, R. Safe in Their Hands?: Licensing and Competence Assurance for Safety-Critical Roles in High Risk Industries; Department of Health: London, UK, 2005; p. 38.
- Hudson, N.W.; Fraley, R.C. Volitional personality trait change: Can people choose to change their personality traits? J. Personal. Soc. Psychol. 2015, 109, 490. [Google Scholar] [CrossRef] [PubMed]
- McCrae, R.R. Seeking a Philosophical Basis for Trait Psychology. Available online: https://pubmed.ncbi.nlm.nih.gov/36269570/ (accessed on 21 October 2022).
Admission | Number of Students Enrolled (n = 674) | Mean Age in Years | Standard Deviation of Mean Age | Percentage (%) of Female Students |
---|---|---|---|---|
All admissions | 674 | 26.68 | 3.96 | 49 |
Excellent PEA | 93 | 24.65 | 2.08 | 59 |
Ham-NAT | 207 | 25.04 | 2.10 | 40 |
Ham-INT | 153 | 25.10 | 2.53 | 69 |
Waiting quota | 108 | 32.78 | 3.55 | 57 |
Other quota | 72 | 28.10 | 3.23 | 53 |
Designated by armed forces | 22 | 24.90 | 2.65 | 44 |
Non-EU Students | 19 | 26.27 | 2.68 | 22 |
AS-NTS Score | ACLS I MV (SD) | ACLS II MV (SD) | OR-SIM MV (SD) | ACLS III MV (SD) |
---|---|---|---|---|
Sum_score of AS-NTS | 2.18 (0.80) | 2.16 (0.83) | 1.84 (0.68) | 2.01 (0.71) |
Dimension one Planning tasks, prioritising and problem-solving | 2.18 (0.91) | 2.23 (0.93) | 1.93 (0.75) | 2.04 (0.85) |
Dimension two Teamwork and leadership | 2.19 (0.88) | 2.16 (0.92) | 1.79 (0.78) | 2.03 (0.82) |
Dimension three Team orientation | 2.18 (0.91) | 2.08 (0.91) | 1.81 (0.79) | 1.97 (0.79) |
Admission | ACLS I | ACLS II | OR-SIM | ACLS III | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | |
Excellent PEA | 2.28 | 2.28 | 2.28 | 2.07 | 2.14 | 2.02 | 1.80 | 1.70 | 1.60 | 2.10 | 2.01 | 1.95 |
Ham-NAT | 2.19 | 2.17 | 2.19 | 2.30 | 2.21 | 2.21 | 2.03 | 1.92 | 1.86 | 2.05 | 2.01 | 1.98 |
Ham-INT | 2.23 | 2.23 | 2.18 | 2.36 | 2.21 | 1.95 | 1.69 | 1.62 | 1.92 | 2.04 | 1.96 | 1.93 |
Waiting quota | 1.86 | 1.95 | 2.00 | 1.75 | 1.73 | 1.75 | 1.73 | 1.69 | 1.65 | 1.86 | 1.93 | 1.79 |
Other quota | 2.87 | 2.53 | 2.60 | 2.36 | 2.14 | 2.06 | 2.22 | 2.00 | 2.00 | 2.11 | 2.18 | 1.87 |
Designated by the Armed Forces | 1.75 | 1.75 | 1.83 | 2.10 | 1.90 | 1.70 | 2.50 | 1.50 | 2.50 | 1.53 | 1.67 | 1.87 |
Non-EU Students | 2.67 | 2.67 | 1.67 | 2.89 | 3.11 | 3.22 | 2.00 | 2.00 | 2.50 | 2.38 | 2.38 | 2.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moll-Khosrawi, P.; Hampe, W.; Schulte-Uentrop, L.; Zöllner, C.; Zimmermann, S.; Huelmann, T. Can Different Admissions to Medical School Predict Performance of Non-Technical Skill Performance in Simulated Clinical Settings? Healthcare 2023, 11, 46. https://doi.org/10.3390/healthcare11010046
Moll-Khosrawi P, Hampe W, Schulte-Uentrop L, Zöllner C, Zimmermann S, Huelmann T. Can Different Admissions to Medical School Predict Performance of Non-Technical Skill Performance in Simulated Clinical Settings? Healthcare. 2023; 11(1):46. https://doi.org/10.3390/healthcare11010046
Chicago/Turabian StyleMoll-Khosrawi, Parisa, Wolfgang Hampe, Leonie Schulte-Uentrop, Christian Zöllner, Stefan Zimmermann, and Thorben Huelmann. 2023. "Can Different Admissions to Medical School Predict Performance of Non-Technical Skill Performance in Simulated Clinical Settings?" Healthcare 11, no. 1: 46. https://doi.org/10.3390/healthcare11010046
APA StyleMoll-Khosrawi, P., Hampe, W., Schulte-Uentrop, L., Zöllner, C., Zimmermann, S., & Huelmann, T. (2023). Can Different Admissions to Medical School Predict Performance of Non-Technical Skill Performance in Simulated Clinical Settings? Healthcare, 11(1), 46. https://doi.org/10.3390/healthcare11010046