Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model
Abstract
:1. Introduction
2. Related Works
3. The Proposed Model
3.1. Feature Extraction
3.2. Weighted Voting-Based Ensemble Classification
3.2.1. GRU Model
3.2.2. LSTM Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuko, M.; Pourhomayoun, M. Single and clustered cervical cell classification with the ensemble and deep learning methods. Inf. Syst. Front. 2020, 22, 1039–1051. [Google Scholar] [CrossRef]
- Zhao, S.; He, Y.; Qin, J.; Wang, Z. A Semi-supervised Deep Learning Method for Cervical Cell Classification. Anal. Cell. Pathol. 2022, 2022, 4376178. [Google Scholar] [CrossRef] [PubMed]
- Nirmal Jith, O.U.; Harinarayanan, K.K.; Gautam, S.; Bhavsar, A.; Sao, A.K. DeepCerv: Deep Neural Network for Segmentation Free Robust Cervical Cell Classification. In Computational Pathology and Ophthalmic Medical Image Analysis; Springer: Cham, Switzerland, 2018; pp. 86–94. [Google Scholar]
- Sompawong, N.; Mopan, J.; Pooprasert, P.; Himakhun, W.; Suwannarurk, K.; Ngamvirojcharoen, J.; Vachiramon, T.; Tantibundhit, C. Automated Pap Smear Cervical Cancer Screening Using Deep Learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 7044–7048. [Google Scholar]
- Chen, W.; Gao, L.; Li, X.; Shen, W. Lightweight convolutional neural network with knowledge distillation for cervical cells classification. Biomed. Signal Process. Control. 2022, 71, 103177. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Li, C.; Yao, Y.; Kulwa, F.; Wu, X.; Li, X.; Wang, Q. DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Comput. Biol. Med. 2021, 136, 104649. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, D.; Li, Z.; Wu, N. Auxiliary classification of cervical cells based on multi-domain hybrid deep learning framework. Biomed. Signal Process. Control. 2022, 77, 103739. [Google Scholar] [CrossRef]
- Lin, H.; Hu, Y.; Chen, S.; Yao, J.; Zhang, L. Fine-grained classification of cervical cells using morphological and appearance based convolutional neural networks. IEEE Access 2019, 7, 71541–71549. [Google Scholar] [CrossRef]
- Tripathi, A.; Arora, A.; Bhan, A. Classification of Cervical Cancer Using Deep Learning Algorithm. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1210–1218. [Google Scholar]
- Rahaman, M.M.; Li, C.; Wu, X.; Yao, Y.; Hu, Z.; Jiang, T.; Li, X.; Qi, S. A survey for cervical cytopathology image analysis using deep learning. IEEE Access 2020, 8, 61687–61710. [Google Scholar] [CrossRef]
- Ragab, M.; Albukhari, A.; Alyami, J.; Mansour, R.F. Ensemble deep-learning-enabled clinical decision support system for breast cancer diagnosis and classification on ultrasound images. Biology 2022, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Alsuhibany, S.A.; Abdel-Khalek, S.; Algarni, A.; Fayomi, A.; Gupta, D.; Kumar, V.; Mansour, R.F. Ensemble of Deep Learning Based Clinical Decision Support System for Chronic Kidney Disease Diagnosis in Medical Internet of Things Environment. Comput. Intell. Neurosci. 2021, 2021, 4931450. [Google Scholar] [CrossRef] [PubMed]
- Ragab, M.; Alshehri, S.; Alhakamy, N.A.; Mansour, R.F.; Koundal, D. Multiclass Classification of Chest X-ray Images for the Prediction of COVID-19 Using Capsule Network. Comput. Intell. Neurosci. 2022, 2022, 6185013. [Google Scholar] [CrossRef] [PubMed]
- Khamparia, A.; Gupta, D.; de Albuquerque, V.H.C.; Sangaiah, A.K.; Jhaveri, R.H. Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. J. Supercomput. 2020, 76, 8590–8608. [Google Scholar] [CrossRef]
- Shi, J.; Wang, R.; Zheng, Y.; Jiang, Z.; Zhang, H.; Yu, L. Cervical cell classification with graph convolutional network. Comput. Methods Programs Biomed. 2021, 198, 105807. [Google Scholar] [CrossRef] [PubMed]
- Allehaibi, K.H.S.; Nugroho, L.E.; Lazuardi, L.; Prabuwono, A.S.; Mantoro, T. Segmentation and classification of cervical cells using deep learning. IEEE Access 2019, 7, 116925–116941. [Google Scholar]
- Chen, W.; Li, X.; Gao, L.; Shen, W. Improving computer-aided cervical cells classification using transfer learning based snapshot ensemble. Appl. Sci. 2020, 10, 7292. [Google Scholar] [CrossRef]
- Archana, M.C.P.; Panicker, J.V. Deep Convolutional Neural Networks for Multiclass Cervical Cell Classification. In Proceedings of the 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 24–26 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 376–380. [Google Scholar]
- Dong, N.; Zhao, L.; Wu, C.H.; Chang, J.F. Inception v3 based cervical cell classification combined with artificially extracted features. Appl. Soft Comput. 2020, 93, 106311. [Google Scholar] [CrossRef]
- Li, J.; Dou, Q.; Yang, H.; Liu, J.; Fu, L.; Zhang, Y.; Zheng, L.; Zhang, D. Cervical cell multi-classification algorithm using global context information and attention mechanism. Tissue Cell 2022, 74, 101677. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zha, Z.J.; Cao, Y.; Chen, X.; Wu, F. La-Net: Layout-Aware Dense Network for Monocular Depth Estimation. In Proceedings of the 26th ACM international conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 1381–1388. [Google Scholar]
- Gupta, S.; Deep, K.; Mirjalili, S. An efficient equilibrium optimizer with mutation strategy for numerical optimization. Appl. Soft Comput. 2020, 96, 106542. [Google Scholar] [CrossRef]
- Alzubi, O.A.; Qiqieh, I.; Alzubi, J.A. Fusion of deep learning based cyberattack detection and classification model for intelligent systems. Clust. Comput. 2022, 1–12. [Google Scholar] [CrossRef]
- Available online: http://mde-lab.aegean.gr/index.php/downloads (accessed on 10 November 2022).
- Fang, S.; Yang, J.; Wang, M.; Liu, C.; Liu, S. An Improved Image Classification Method for Cervical Precancerous Lesions Based on ShuffleNet. Comput. Intell. Neurosci. 2022, 2022, 9675628. [Google Scholar] [CrossRef] [PubMed]
Entire Dataset | |||||
---|---|---|---|---|---|
Labels | MCC | ||||
SSE | 99.35 | 97.22 | 94.59 | 95.89 | 95.55 |
ISE | 98.69 | 92.65 | 90.00 | 91.30 | 90.61 |
CE | 99.24 | 95.96 | 96.94 | 96.45 | 96.02 |
MS-NKD | 99.02 | 98.32 | 96.70 | 97.51 | 96.90 |
MOS-NKD | 98.80 | 96.55 | 95.89 | 96.22 | 95.51 |
SS-NKD | 98.91 | 96.52 | 98.48 | 97.49 | 96.80 |
SCCSI | 98.58 | 94.81 | 96.69 | 95.74 | 94.90 |
Average | 98.94 | 96.00 | 95.61 | 95.80 | 95.18 |
Training Phase (70%) | |||||
---|---|---|---|---|---|
Labels | MCC | ||||
SSE | 99.22 | 96.43 | 94.74 | 95.58 | 95.15 |
ISE | 98.44 | 93.75 | 86.54 | 90.00 | 89.24 |
CE | 99.07 | 94.12 | 96.97 | 95.52 | 95.01 |
MS-NKD | 98.91 | 98.41 | 96.12 | 97.25 | 96.59 |
MOS-NKD | 98.60 | 95.10 | 96.04 | 95.57 | 94.74 |
SS-NKD | 98.91 | 95.80 | 99.28 | 97.51 | 96.84 |
SCCSI | 98.75 | 95.96 | 95.96 | 95.96 | 95.22 |
Average | 98.84 | 95.65 | 95.09 | 95.34 | 94.68 |
Testing Phase (30%) | |||||
---|---|---|---|---|---|
Labels | MCC | ||||
SSE | 99.64 | 100.00 | 94.12 | 96.97 | 96.83 |
ISE | 99.28 | 90.00 | 100.00 | 94.74 | 94.50 |
CE | 99.64 | 100.00 | 96.88 | 98.41 | 98.22 |
MS-NKD | 99.28 | 98.11 | 98.11 | 98.11 | 97.66 |
MOS-NKD | 99.28 | 100.00 | 95.56 | 97.73 | 97.33 |
SS-NKD | 98.91 | 98.28 | 96.61 | 97.44 | 96.75 |
SCCSI | 98.19 | 92.73 | 98.08 | 95.33 | 94.26 |
Average | 99.17 | 97.02 | 97.05 | 96.96 | 96.51 |
Methods | ||||
---|---|---|---|---|
EOEL-PCLCCI | 99.17 | 97.02 | 97.05 | 96.96 |
GCN | 96.28 | 92.41 | 95.38 | 92.79 |
Mor-27 | 94.34 | 87.55 | 96.36 | 86.57 |
ResNet-101 | 91.58 | 88.70 | 96.75 | 90.73 |
ResNet34 | 83.47 | 85.59 | 80.94 | 83.08 |
DenseNet121 | 86.40 | 86.45 | 84.42 | 85.46 |
ShuffleNet | 79.78 | 79.97 | 78.66 | 79.78 |
ShuffleNet_SE | 80.90 | 81.79 | 81.04 | 81.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
A. Mansouri, R.; Ragab, M. Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model. Healthcare 2023, 11, 55. https://doi.org/10.3390/healthcare11010055
A. Mansouri R, Ragab M. Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model. Healthcare. 2023; 11(1):55. https://doi.org/10.3390/healthcare11010055
Chicago/Turabian StyleA. Mansouri, Rasha, and Mahmoud Ragab. 2023. "Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model" Healthcare 11, no. 1: 55. https://doi.org/10.3390/healthcare11010055
APA StyleA. Mansouri, R., & Ragab, M. (2023). Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model. Healthcare, 11(1), 55. https://doi.org/10.3390/healthcare11010055