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Abstract: Recently, artificial intelligence (AI) with deep learning (DL) and machine learning (ML) has
been extensively used to automate labor-intensive and time-consuming work and to help in prognosis
and diagnosis. AI’s role in biomedical and biological imaging is an emerging field of research and
reveals future trends. Cervical cell (CCL) classification is crucial in screening cervical cancer (CC) at
an earlier stage. Unlike the traditional classification method, which depends on hand-engineered
or crafted features, convolution neural network (CNN) usually categorizes CCLs through learned
features. Moreover, the latent correlation of images might be disregarded in CNN feature learning
and thereby influence the representative capability of the CNN feature. This study develops an
equilibrium optimizer with ensemble learning-based cervical precancerous lesion classification on
colposcopy images (EOEL-PCLCCI) technique. The presented EOEL-PCLCCI technique mainly
focuses on identifying and classifying cervical cancer on colposcopy images. In the presented EOEL-
PCLCCI technique, the DenseNet-264 architecture is used for the feature extractor, and the EO
algorithm is applied as a hyperparameter optimizer. An ensemble of weighted voting classifications,
namely long short-term memory (LSTM) and gated recurrent unit (GRU), is used for the classification
process. A widespread simulation analysis is performed on a benchmark dataset to depict the
superior performance of the EOEL-PCLCCI approach, and the results demonstrated the betterment
of the EOEL-PCLCCI algorithm over other DL models.

Keywords: medical imaging; healthcare; decision making; cervical cancer; ensemble learning

1. Introduction

Cervical cancer (CC) ranks as the fourth most common cancer in females. As per the
statistical report by WHO, approximately 604,000 new cases occurred worldwide in 2020,
particularly 6.5% of cancer cases in females [1]. Although the initial treatment rate of CC
is high, lack of symptoms and signs hinders the initial diagnoses. An effective screening
program may prevent CC deaths and decrease the persistence and incidence of the disease.
The statistical reports stated that over 311,000 CC deaths occurred annually [2]. Because of
amateur healthcare staff and inadequate screening funds, CC screening facilities seem to be
very scarce in developing nations [3]. Thus, employing effective and automated screening
techniques is essential to reduce the cost of initial detection of CC. CC screening follows
the following workflow: colposcopy, HPV test, biopsy, and PAP smear test or cytology.

Numerous tools reinforce the task, which make it inexpensive, practical, and very
effective [4]. The PAP smear image screening can be used for the treatment of CC; however,
it needs several microscopic analyses to find non-cancer and cancer patients, and even if
it takes more time and necessitates skilled professionals, there comes a chance of missing
the positive case with the use of the traditional screening technique [5]. The HPV testing
and PAP smear are expensive medications and offer less sensitivity. In contrast, colposcopy
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treatment can be broadly employed in developing nations. Colposcopy screening is em-
ployed to address the limitations of HPV testing and PAP smear images [6]. The cervical
and other cancers are probably treated at the initial level. However, the lack of symptoms
at this phase will hinder the initial diagnosis. CC deaths are evaded by effective screening
methods and result in impermanence and lowered sickness [7]. CC screening facilities are
very sparse in middle-and-low-income countries due to a lack of educated and experienced
healthcare professionals and inadequate funding to fund screening mechanisms.

Some of the important advancements of deep learning (DL) in various applications are
battery health monitoring, natural language processing (NLP), forecasting, and computer
vision (CV) [8]. Medical image processing, which includes registration, classification,
segmentation, and identification, had a significant role in diagnosing disease. Medical
images of blood smears, MRI, ultrasound, and CT constitute the major part of the image
data processed [9]. The multilayer neural network perception system of DL has more
extracted features in images and was anticipated to overcome the challenges plaguing
standard CAD systems. Still, the DL methods have to be reinforced with a wide range
of datasets, particularly for positive cases [10]. Several ensemble learning and transfer
learning (TL) methods were used to solve this problem [11–13].

This study develops an equilibrium optimizer with ensemble learning-based cervical
precancerous lesion classification on colposcopy images (EOEL-PCLCCI) technique. The
presented EOEL-PCLCCI technique mainly focuses on identifying and classifying cervical
cancer on colposcopy images. In the presented EOEL-PCLCCI technique, the DenseNet-
264 architecture is used for the feature extractor. Since the trial and error method for
hyperparameter tuning is tedious and erroneous, metaheuristic algorithms can be applied.
Therefore, in this work, we employ the EO algorithm for the parameter selection of the
DenseNet model. An ensemble of weighted voting classifiers, namely long short-term
memory (LSTM) and gated recurrent unit (GRU), is used for the classification process.
A widespread simulation analysis is performed on a benchmark dataset to depict the
enhanced performance of the EOEL-PCLCCI algorithm.

2. Related Works

Khamparia et al. [14] developed a new Internet of Health Things (IoHT)-based DL
algorithm for classifying and recognizing CC in pap smear images with a TL model.
Then, CNN was fused with outdated ML approaches. In this work, feature extraction
from cervical images can be carried out by pre-trained CNN modules such as ResNet50,
InceptionV3, VGG19, and SqueezeNet and are fed into flattened and dense layers for the
classification of normal and abnormal CCLs. Shi et al. [15] recommend a classification of
CCLs based GCN model. The study aims at exploring the possible relations of CCL images
for enhancing the accuracy of classification. The CNN feature of each CCL image was
clustered initially, and the inherent relationship of images can be exposed earlier through
the clustering. A graph model has been constructed to capture the fundamental correlation
among the clusters further.

Allehaibi et al. [16] propose a CCL segmentation with mask regional CNN (Mask
R-CNN) and categorizes by a small VGG-like Net. ResNet10 uses prior knowledge and
spatial information as the backbone of Mask R-CNN. Chen et al. [17] developed a TL-based
snapshot ensemble (TLSE) technique by incorporating them in a unified and coordinated
manner. SE technique offers ensemble advantages within a single model training method,
whereas TL emphasizes the smaller sampling problems in CCL classification. Archana and
Panicker [18] advise a new methodology for the multiclass classification of CCLs with less
computing power, optimum feature extraction, and minimal parameters. The application
of ConvNet with the TL method validates substantial diagnoses of cancer cells.

Dong et al. [19] proposed a cell classification technique which combines artificial
and Inceptionv3 features that considerably enhance the performance of CCL detection.
Furthermore, the study inherits the stronger learning capability from TL to address the
under-fitting problems and perform effectual DL training with a less quantity of medicinal
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datasets and accomplishes precise and effective CCL image classification based on Herlev
data. Li et al. [20] introduced an L-PCNN which incorporates a global context dataset and
attention module for categorizing CCLs. The cell image was transferred to the improved
ResNet50 model for extracting DL features. For extracting deep features, every convolu-
tional block presents an attention module for guiding the network to emphasize the cell
region. Next, the network includes a pyramid pooling layer and an LSTM for aggregating
image features in distinct areas.

3. The Proposed Model

In this study, we introduced an automated cervical cancer classification model, the
EOEL-PCLCCI technique, on colposcopy images. The EOEL-PCLCCI technique uses
a DenseNet-264 feature extractor, EO hyperparameter optimizer, and weighted voting
classifier. Figure 1 illustrates the working process of the EOEL-PCLCCI system.
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3.1. Feature Extraction

In the presented EOEL-PCLCCI technique, the DenseNet-264 architecture is used for
the feature extraction. In the typical CNN, every layer is gradually interconnected, making
the network difficult to go deeper and wider. Meanwhile, it has a gradient exploding or
vanishing problem [21]. Consequently, DenseNet analyzes the module by successively
concatenating all the feature maps instead of outputting feature maps from every prior
layer in the following:

xl = Hl(xl−1) (1)

xl = Hl(xl−1) + xl−1 (2)

xl = Hl([x0, x1, x2, . . . , xl−1]) (3)
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H indicates the nonlinear function from the expression, and l characterizes the layer
index. xl symbolizes the feature of l-th layers. DenseNet concurs all the feature maps
from previous layers, indicating that all the feature maps are propagated toward the last
layer and interconnected toward the new feature maps. The recently designed DenseNet
has certain benefits, namely feature reutilization and reduction in gradient exploding or
vanishing problems. Once the size of feature maps continuously changes, the concatenation
function becomes impossible to be implemented. Among the dense blocks, transition layers
exist: convolution, pooling, and BN operations. Meanwhile, each layer receives feature
maps from all the previous layers. Note that k feature maps are constructed for each Hl
operation. Meanwhile, there exist five layers, and we obtain k0 + 4k feature maps. k0
symbolizes the number of feature maps from prior layers.

However, there exists a huge quantity of inputs, and bottleneck layers are intro-
duced for the DenseNet, viz., implemented using the 1× 1 convolution layer beforehand
3× 3 convolution layers that are beneficial to save the computational cost and decrease
the feature map. Subsequently, considering the model compactness, a transition layer
is applied to reduce the feature maps: consider m feature maps are constructed using
DenseBlock and assume the compression factors θε(0, 1). If θ = 1, the quantity of feature
maps remains unchanged. The DenseNet module encompasses transition layers, input
layers, Dense Blocks, and global average pooling (GAP). The transition layer comprises the
BN layer, 1× 12× 2 convolution, and average pooling layers with a stride of 2.

To adjust the hyperparameters associated with the DenseNet-264 model, the EO
algorithm is exploited in this work. The fundamental idea of single objective EO has been
established based on the dynamic mass balance [22]. This characteristic can maintain
the balance between exploitation and detection and the ability to retain flexibility among
individual solutions. In the initialization, EO uses a certain group, while each particle
explains the vector of focus that has solutions to the problem.

Yinitial
j = lb + randj(ub− lb), j = 0, 1, 2, 3, . . . , n (4)

Yinitial
j denotes the vector focus on jth particles, ub and lb represent the upper and

lower boundaries of each parameter, randj indicates the arbitrary integer within [0, 1], and n
shows the number of particles. Hence, it assigns an equilibrium candidate to the optimal
four particles from the population. In the exploitation and exploration methods, these
five equilibrium candidate assists EO. The initial four candidates seek optimal exploration.
However, the 5th candidate with average values seeks alteration from exploitation.

→
Ceq,pool =

{→
Ceq(1) ,

→
Ceq(2),

→
Ceq(3),

→
Ceq(4),

→
Ceq(ave)

}
(5)

The upgrade of concentration enables EO to balance exploitation and exploration equally:

→
F = e−

→
λ (t−t0) (6)

Equation (6)
→
λ indicates the arbitrary integer within [0, 1], and t reduces as the

iteration amount enhances.

t = (1− It
Max_it

)
(a2

It
Max_it )

(7)
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It and Max_it denote existing and maximal iteration counts, and a2 shows the constant
control of the ability for exploiting. Another parameter, a1, has been employed to enhance
exploration and exploitation:

t =
1
→
λ

ln

−a1 sign
(→

r − 0.5
)1− e

−→
−
→
λ t

+ t (8)

The generation rate is denoted as G rises exploitation:

→
G =

→
G0e−

→
l (t−t0) (9)

Equation (9)
→
l denotes the arbitrary number within [0, 1], and the initial generation

rate represented by
→
G0:

→
G0 = G

→
CP
(→

Ceq −
→
λ
→
C
)

(10)

G
→
CP =

{
0.5r1, r2 ≥ GP
0, r2 < GP

(11)

From the expression, the arbitrary integers are denoted by r1 and r2 and vary between

zero and one. The vector
→

GCP represents the variable which controls the generation rate
executed for the upgrading phase.

→
C =

→
C +

(→
C −

→
Ceq

)
·
→
F +

→
C
→
λV

(
1−

→
F
)

(12)

The value of V corresponds to 1.

3.2. Weighted Voting-Based Ensemble Classification

An ensemble of weighted voting classifiers, GRU and LSTM, is used for the classi-
fication process. The DL algorithm is incorporated, and the maximal result is preferred
by the weighted voting method [23]. Considering the D base classification and amount of
classes as n for voting, the predictive class ck of weighted voting for every instance, k, can
be defined by:

ck = argmax
j

D

∑
i=1

(
∆ji × wi

)
(13)

The expression ∆ji indicates the binary variable. As soon as the i-th base classification
classifies the k instances into j-th classes, then ∆ji = 1, or else, ∆ji = 0. wi shows the weight
of i-th base classifications:

Acc = ∑k{1|ck is the true class of instance k}
Size of test instances

× 100%. (14)

3.2.1. GRU Model

GRU is an LSTM network which inherits the advantages of RNN: it learns features
automatically and effectively models long dependency datasets. It is utilized for short-term
traffic prediction. Intuitively, input and forget gates are integrated as a reset gate in GRU,
which determines how to incorporate the novel input dataset in the previous time. Another
gate in GRU is an update gate; it determines the information stored from the previous
time to the existing time. Therefore, GRU is one gate lower than LSTM. This makes the
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GRU network have faster training speed and lesser variables and needs lesser datasets for
efficiently generalizing the system:

zn = σƒ(Wz·[hn−1, xn]) (15)

rn = σƒ(Wr·[hn−1, xn]) (16)

hn = tanh (W·[r ∗ hn−1, xn]) (17)

hn = (1− zn) ∗ hn−1 + zn ∗ h (18)

Equations (15) and (16) illustrate how rn, zn reset, and update gates are evaluated.
Wz is the weight of zn, 0 denotes the sigmoid function, Wr characterizes the weight of
rn. A larger value of zn denotes that data were retained through the present cell rn and
proposes that when the value corresponds to 0, the dataset from the prior cell is eliminated.
Equations (17) and (18) demonstrate the estimation of hn and h final and pending output
of GRU-NN. W characterizes the weight of zn, hn−1 denotes the output from the preceding
cell, and tan h denotes the hyperbolic tangent function. hn can be obtained by multiplying
hn−1 of the prior cell using rn and xn, multiplying by W and tan h. hn denotes the amount
of two vectors.

3.2.2. LSTM Model

The RNN approach was widely employed for predicting and analyzing time sequence
datasets. RNN often undergoes the gradient vanishing problem. Hence, it is hard to
remember the previous dataset, namely the long dependence problem. To overcome these
problems, the LSTM is introduced and applies a gate-controlling method for altering data
flow and systematically determines the count of received datasets that are regathered from
each time step. Figure 2 represents the architecture of LSTM.
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Figure 2. The architecture of LSTM.

The architecture of the LSTM unit is encompassed by storing unit and three control
gates (forget, input, and output gates). xz and hz correspond to the input and hidden state

of time z. fz, iz, and oz determine the forgetting, input, and output gates.
→
Cz indicates the

candidate dataset to the input.

fz = σƒ
(

W f ·[hz−1, xz] + b f

)
(19)

iz = σ(Wi·[hz−1, xz] + bi) (20)

oz = σ(Wo·[hz−1, xz] + bo) (21)

C̃ = tanh (WC·[hz−1, xz] + bC) (22)

Cz = fz·Cz−1 + it·C̃ (23)

hz = oz·tanh (Cz) (24)
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W f , Wi, Wo, and Wc b f , bi, bo, and bc correspondingly denote the weight matrices and
bias vector of forget, input, output, and update state. xz represents the time sequence
dataset of the existing time interval z, and hz−1 denotes the resultant memory unit from the
previous time interval z− 1.

4. Results and Discussion

The proposed method is simulated using a Python tool. The experimental results
of the EOEL-PCLCCI model are tested using the Herlev database [21]. Figure 3 demon-
strates some sample images. The proposed model is simulated using Python 3.6.5 tool
on PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The
parameter settings are learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and
activation: ReLU.
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In Figure 4, the confusion matrices of the EOEL-PCLCCI model on cervical cancer
classification performance are provided. The figure implied that the EOEL-PCLCCI model
detected all cervical cancer classes.

Table 1 and Figure 5 demonstrate the overall cervical cancer classification results of
the EOEL-PCLCCI technique on entire datasets. The experimental value indicates that
the EOEL-PCLCCI method has recognized all different class labels. It is observed that the
EOEL-PCLCCI approach has reached an average accuy of 98.94%, precn of 96%, recal of
95.61%, Fscore of 95.80%, and MCC of 95.18%.
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Table 1. CC outcome of EOEL-PCLCCI system with various classes under entire database.

Entire Dataset

Labels Accuy Precn Recal Fscore MCC

SSE 99.35 97.22 94.59 95.89 95.55

ISE 98.69 92.65 90.00 91.30 90.61

CE 99.24 95.96 96.94 96.45 96.02

MS-NKD 99.02 98.32 96.70 97.51 96.90

MOS-NKD 98.80 96.55 95.89 96.22 95.51

SS-NKD 98.91 96.52 98.48 97.49 96.80

SCCSI 98.58 94.81 96.69 95.74 94.90

Average 98.94 96.00 95.61 95.80 95.18
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Figure 5. Result analysis of the EOEL-PCLCCI system on the entire database in terms of different
measures (a) Accuy, (b) Precn, (c) Recal , (d) Fscore, and (e) MCC.

Table 2 and Figure 6 illustrate the overall cervical cancer classification results of the
EOEL-PCLCCI technique on the TR database. The simulation values exhibited that the
EOEL-PCLCCI approach recognized all different class labels. The EOEL-PCLCCI algorithm
has attained an average accuy of 98.84%, precn of 95.65%, recal of 95.09%, Fscore of 95.34%,
and MCC of 94.68%.

Table 3 and Figure 7 show the overall cervical cancer classification results of the
EOEL-PCLCCI approach on the TS database. The simulation values designated that the
EOEL-PCLCCI approach has recognized all different class labels. The EOEL-PCLCCI
technique has gained an average accuy of 99.17%, precn of 97.02%, recal of 97.05%, Fscore of
96.96%, and MCC of 96.51%.
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Table 2. CC outcome of EOEL-PCLCCI system with various classes under TR database.

Training Phase (70%)

Labels Accuy Precn Recal Fscore MCC

SSE 99.22 96.43 94.74 95.58 95.15

ISE 98.44 93.75 86.54 90.00 89.24

CE 99.07 94.12 96.97 95.52 95.01

MS-NKD 98.91 98.41 96.12 97.25 96.59

MOS-NKD 98.60 95.10 96.04 95.57 94.74

SS-NKD 98.91 95.80 99.28 97.51 96.84

SCCSI 98.75 95.96 95.96 95.96 95.22

Average 98.84 95.65 95.09 95.34 94.68
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Table 3. CC outcome of EOEL-PCLCCI system with various classes under TS database.

Testing Phase (30%)

Labels Accuy Precn Recal Fscore MCC

SSE 99.64 100.00 94.12 96.97 96.83

ISE 99.28 90.00 100.00 94.74 94.50

CE 99.64 100.00 96.88 98.41 98.22

MS-NKD 99.28 98.11 98.11 98.11 97.66

MOS-NKD 99.28 100.00 95.56 97.73 97.33

SS-NKD 98.91 98.28 96.61 97.44 96.75

SCCSI 98.19 92.73 98.08 95.33 94.26

Average 99.17 97.02 97.05 96.96 96.51
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The TACC and VACC of the EOEL-PCLCCI method are investigated on CC perfor-
mance in Figure 8. The figure implied that the EOEL-PCLCCI methodology has exhibited
improved performance with increased values of TACC and VACC. It is noted that the
EOEL-PCLCCI approach has reached maximum TACC outcomes.

Healthcare 2023, 11, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 8. TACC and VACC analysis of EOEL-PCLCCI system. 

The TLS and VLS of the EOEL-PCLCCI method are tested on CC performance in 

Figure 9. The figure designated the EOEL-PCLCCI approach has revealed better perfor-

mance with minimal values of TLS and VLS. It is noted the EOEL-PCLCCI approach has 

resulted in reduced VLS outcomes. 

 

Figure 8. TACC and VACC analysis of EOEL-PCLCCI system.

The TLS and VLS of the EOEL-PCLCCI method are tested on CC performance in
Figure 9. The figure designated the EOEL-PCLCCI approach has revealed better perfor-
mance with minimal values of TLS and VLS. It is noted the EOEL-PCLCCI approach has
resulted in reduced VLS outcomes.
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A clear precision-recall inspection of the EOEL-PCLCCI system under test database
is shown in Figure 10. The precision-recall curve shows the tradeoff between precision
and recall for different threshold. A high area under the curve represents both high recall
and high precision, where high precision relates to a low false positive rate, and high
recall relates to a low false negative rate. The figure shows the EOEL-PCLCCI method has
resulted in superior values of precision-recall value in all the class labels.
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The detailed ROC analysis of the EOEL-PCLCCI system under the test database is
shown in Figure 11. ROC curves summarize the trade-off between the true positive rate
and false positive rate for a predictive model using different probability thresholds. The
outcomes exhibited by the EOEL-PCLCCI methodology has signified its ability to categorize
distinct classes in test database.
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The experimental results of the EOEL-PCLCCI model are compared with other DL
models in Table 4 and Figure 12 [24,25]. The result implies that the ShuffleNet and Shuf-
fleNet_SE models have shown lower performance, whereas the ResNet34 and DenseNet121
models have reported moderately improved performance.

Table 4. Comparative analysis of EOEL-PCLCCI algorithm with recent approaches.

Methods Accuy Precn Recal Fscore

EOEL-PCLCCI 99.17 97.02 97.05 96.96

GCN 96.28 92.41 95.38 92.79

Mor-27 94.34 87.55 96.36 86.57

ResNet-101 91.58 88.70 96.75 90.73

ResNet34 83.47 85.59 80.94 83.08

DenseNet121 86.40 86.45 84.42 85.46

ShuffleNet 79.78 79.97 78.66 79.78

ShuffleNet_SE 80.90 81.79 81.04 81.22
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In contrast, the Mor-27 and ResNet-101 models have tried to obtain reasonable out-
comes. Although the GCN model has shown near-optimal performance, the EOEL-PCLCCI
model has shown enhanced results with accuy of 99.17%, precn of 97.02%, recal of 97.05%,
and Fscore of 96.96%. Therefore, the EOEL-PCLCCI model has shown superior results over
other models.
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5. Conclusions

In this study, we have introduced an automated cervical cancer classification method,
named EOEL-PCLCCI algorithm on colposcopy images. In the presented EOEL-PCLCCI
technique, the DenseNet-264 architecture is used for feature extraction and EO algorithm is
applied as a hyperparameter optimizer. For classification process, an ensemble of weighted
voting classifiers namely GRU and LSTM is used. A widespread simulation analysis is
performed on benchmark dataset to depict the superior performance of the EOEL-PCLCCI
technique, and the results demonstrate the superiority of the EOEL-PCLCCI algorithm over
other DL models with maximum accuracy of 99.17%. Thus, the EOEL-PCLCCI approach
can be used for cervical cancer classification effectively. In the future, the performance of
EOEL-PCLCCI technique needs to be enhanced by deep instance segmentation.
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