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Abstract: Data-driven machine learning in medical research and diagnostics needs large-scale datasets
curated by clinical experts. The generation of large datasets can be challenging in terms of resource
consumption and time effort, while generalizability and validation of the developed models signifi-
cantly benefit from variety in data sources. Training algorithms on smaller decentralized datasets
through federated learning can reduce effort, but require the implementation of a specific and am-
bitious infrastructure to share data, algorithms and computing time. Additionally, it offers the
opportunity of maintaining and keeping the data locally. Thus, data safety issues can be avoided
because patient data must not be shared. Machine learning models are trained on local data by
sharing the model and through an established network. In addition to commercial applications, there
are also numerous academic and customized implementations of network infrastructures available.
The configuration of these networks primarily differs, yet adheres to a standard framework composed
of fundamental components. In this technical note, we propose basic infrastructure requirements
for data governance, data science workflows, and local node set-up, and report on the advantages
and experienced pitfalls in implementing the local infrastructure with the German Radiological
Cooperative Network initiative as the use case example. We show how the infrastructure can be
built upon some base components to reflect the needs of a federated learning network and how they
can be implemented considering both local and global network requirements. After analyzing the
deployment process in different settings and scenarios, we recommend integrating the local node
into an existing clinical IT infrastructure. This approach offers benefits in terms of maintenance and
deployment effort compared to external integration in a separate environment (e.g., the radiology
department). This proposed groundwork can be taken as an exemplary development guideline for
future applications of federated learning networks in clinical and scientific environments.
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1. Introduction

In recent years, the application of machine learning and artificial intelligence made its
way into various topics of medical research and diagnostics [1,2]. Automated analysis of
radiological images should especially be highlighted in this context [3-6]. Such data-driven
approaches usually benefit from large-scale high-quality curated datasets [7,8], which
are time- and resource-consuming to generate. Federated learning is a technique where
algorithms can be trained decentralized on smaller datasets distributed across multiple
sites, thus lowering the effort of data curation by each contributing party and helping
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solve data privacy problems [8,9]. One of the most significant advantages of federated
learning in medical and radiology research is its ability to address data privacy concerns.
In traditional machine learning methods, centralized data repositories pose a substantial
risk to patient privacy, as sensitive medical information could be compromised in the
event of a security breach [10]. Federated learning, on the other hand, allows data to
remain localized on individual devices, ensuring that patient data stay within the secure
confines of healthcare institutions [8,11-13]. It enables researchers to access a more diverse
and extensive dataset without physically aggregating the data. In medical and radiology
research, access to a diverse range of patient demographics, medical conditions and imaging
modalities is crucial for building robust and generalizable models [14-16]. In this research
field, ethical considerations are paramount when using patient data for research purposes.
Federated learning adheres to ethical principles by minimizing data exposure, as the model
parameters are the only pieces of information exchanged between the central server and
the local devices. This approach ensures that individual patient data remain confidential
while still contributing to the collective knowledge base for the benefit of all patients.

However, an infrastructure for sharing data and algorithms in a well-orchestrated
and secure manner, in line with the country-specific data security policies is required.
The establishment of such a configuration necessitates the coordination between locally
implemented data science and processing workflow, as well as the interaction among the
nodes involved through the network infrastructure. This can be accomplished through a
standardized set of fundamental building blocks that have been previously implemented
in both commercial and academic environments [17,18].

An example is the German Radiological Cooperative Network (RACOON) initia-
tive [19-22], aimed to connect the radiology departments of all university hospitals in
Germany to provide easy access to a large amount of curated data for multicentric studies.
This kind of infrastructure can be used for federated data analysis and training of machine
learning algorithms in medical diagnostics and research [6,18,20].

For this purpose, a dedicated setup of hardware and user services needs to be estab-
lished at each participating site, comprising data curation and reporting workflows, as well
as an interface for data transfer to external nodes.

In this technical note, we compare different site-specific setup realizations and discuss
the advantages and pitfalls experienced during participation in the RACOON project. We
present an analysis of generalized infrastructure requirements and compare differences in
possible set-ups.

2. Materials and Methods
2.1. Data Governance and Data Sharing

Data governance is critical when dealing with medical data. Access to medical data
needs to be carefully controlled and data must be protected against unauthorized access
or misuse. Data governance policies and procedures must be established before building
an infrastructure for federated learning. This should include the identification of sensitive
data and the development of policies for data access, data storage and data sharing. The
roles and responsibilities for data management, data security and data privacy should also
be defined within governance policies.

Both anonymization and pseudonymization techniques play pivotal roles in ensuring
the privacy and security of medical radiological data during sharing. It is essential to strike
a balance between maintaining data utility for research and analysis while safeguarding pa-
tient privacy. The process of anonymization or pseudonymization should not compromise
the utility of the data for research and clinical purposes. Sufficient contextual information
should be preserved to maintain the data’s value without revealing identifiable details.

One way to handle the issues of data protection is to provide a Joint Controllership
Agreement (JCA). The JCA provides information and rules on data handling, including
de-identification and data sharing.
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De-identification is a crucial step in ensuring the privacy and security of sensitive
data when using federated learning. This includes the process of removing or obscuring
identifying information from datasets to protect the privacy of individuals whose data
are included. To ensure an effective process and adequate protection of sensitive data,
some requirements should be considered. Depending on the jurisdiction and type of data
involved, there may be legal and regulatory requirements governing the de-identification
of data. These requirements should be carefully considered and incorporated into the
de-identification process to ensure compliance with applicable laws and regulations. There
are several techniques that can be used to de-identify data, including pseudonymization
and anonymization. The appropriate technique depends on the specific use case and the
nature of the data involved. The technique chosen must effectively remove or obscure
identifying information. While anonymization is always the preferred method from a
data protection perspective, it often drastically lowers the utility of the data for analysis,
modeling and quality assurance. Strong or reliable pseudonymization, where the external
recipient of the data never has access to the required keys for the re-identification, is
therefore usually the most practical method. In the case of the RACOON project, we chose
strong pseudonomization where the patient data are obscured through a hashing algorithm
within the project’s own data management system. The keys for re-identification remain on
the local servers and are never shared with the project partners or any third party.

When sharing data, it is important to document the data model and associate metadata
to ensure that it can be effectively used and interpreted by other parties. This may include
providing documentation on the structure, data definitions and any relevant metadata
helping other parties understand the data. In the context of medical data, the DICOM
(Digital Imaging and Communications in Medicine) standard is a widely used and flexible
format to store and share data [23]. This data container format can store a wide range
of different information such as image and text data and even machine learning models.
The NIfTI (Neuroimaging Informatics Technology Initiative) format is another popular file
format for sharing medical imaging data [24]. It primarily deals with three-dimensional
imaging data, enabling the exchange of MRI, fMRI, CT data and data from various other
modalities. When sharing NifTI data, pseudonymization techniques are often applied,
which involves replacing direct identifiers with pseudonyms. This process allows for data
linkage across different studies and modalities without revealing the individual’s real
identity. Besides DICOM and NifTI, the modern and flexible HL7 FHIR (Fast Healthcare
Interoperability Resources) standard enables the interoperability and data exchange across
various healthcare domains, including radiology [25,26]. It supports the representation of
medical imaging studies and their associated metadata in a structured and standardized
manner. HL7 FHIR promotes the use of pseudonymization to maintain patient privacy. By
replacing identifying elements with pseudonyms, the data can still be effectively used for
research and analysis while preserving the anonymity of the individuals involved.

2.2. Data Science Workflow and Data Processing

The data science workflow involves the steps required to train and test machine
learning models on decentralized data, as well as pre-process and annotate the collected
data. This involves a series of well-defined steps to enable collaborative data analysis while
preserving data privacy and security.

Depending on the research question, the required data must be identified and retrieved
from the local PACS and HIS (Hospital Information System) first. The pre-processing step
may involve data normalization and curation, as well as annotation, segmentation of
medical imaging data and complementary medical records. This process should be under-
lined by a standardized workflow, including templates for structured reports. Researchers
collaboratively develop the machine learning model to be used in the federated learning
setup. They decide on the architecture, hyperparameters and optimization algorithms that
are suitable for the specific research task. The model should be designed to accommodate
the distributed nature of the data and take into account the potential heterogeneity of
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the datasets from different institutions. Models are then implemented and tested locally
and sent to the central server to be trained on the decentralized data. The central server
coordinates the model updates, while local nodes process data locally without sharing raw
data with the central node. The federated learning process begins with local model training
at each node using its respective data. The local models are then aggregated on the central
server to create a global model that benefits from insights learned from all participating
sites. This aggregation is performed in a privacy-preserving manner to ensure that the raw
data remain on-site and are not exposed. The global model is evaluated on each local node
to assess its performance on diverse datasets. Feedback from participating institutions
helps refine the model and improve its generalizability. This iterative process continues
until the desired level of model accuracy and performance is achieved. Once the federated
learning process is complete, the research findings are interpreted and knowledge gained
from the collaborative analysis is shared among all participants. The insights can be used
to improve patient care, inform clinical decision making and contribute to medical research
advancements.

Since each step requires a subset of tasks which can be rather complex, it is convenient
to split the workflow across several services consisting of three major building blocks
depicted in Figure 1.
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Figure 1. Basic building blocks of the data science workflow.

While the choice of the software for data management, finding and annotating mainly
relies on the current clinical setup and the tools practitioners and clinicians are used to, we
want to highlight a well-suited platform for model related tasks, namely Kaapana. Kaapana
is a radiology and radiotherapeutic-focused open-source toolkit for platform provisioning,
and comprises federated learning scenarios and Al-based workflows. The data always
remain under the authority of the participating site and are processed de-centrally [27].

2.3. Local Node Infrastructure Requirements

When working with different services and applications, the requirements on the local
node can vary depending on the specific use case and the nature of the services and
applications involved.

There must be sufficient hardware resources, including processing power, GPU integra-
tion, memory and storage capacity to support the services and applications the local node
is running. The specific requirements will depend on the services and applications, but it
is important to ensure that the expected workload can be handled without experiencing
performance issues.

The network connection should be reliable to support communication with other
nodes. This may require configuring firewalls, routers and other network components to
allow for the necessary traffic to pass through.
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To be secured against unauthorized access and other security threats, implementing
access controls, encryption and other security measures can protect sensitive data.

Clinics usually manage their imaging data in a PACS (Picture Archiving and Com-
munication System). PACS communication is necessary when training machine learning
models on medical images. Therefore, secure connections and authentication procedures
must be established between the PACS and the applied local services.

Compliance with data governance policies and procedures, including those related to
data access, data storage and data sharing, requires implementing access controls to ensure
that data are handled in accordance with applicable regulations and best practices.

All applications and services utilized in the local node run on virtual machines (VMs)
or in containers. Virtualization allows for the creation of virtual environments that simulate
hardware and software configurations, enabling different operating systems and applica-
tions to run on a single physical machine. This allows for the creation of isolated virtual
machines that can be used without interfering with other applications on the host machine.
Containerization, on the other hand, allows for the creation of contained environments for
applications and their dependencies. Containers provide a way to package an application
and its dependencies into a single portable unit, making it easy to move and deploy across
different environments. This can be useful in the context of federated learning, as it allows
for the creation of standardized environments for running machine learning models on
different devices or servers, regardless of their underlying hardware and software configu-
rations. A simplified schematic representation of a possible structure of the local node is
depicted in Figure 2.

Hospital IT +
Infrastructure
—i=1= Central Nod
u D D entra ode

Local Node ~
Node Server E . -

) ——
virtual Machines : | I l I | I Local Nodes °
| —— [

Containers and % =
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Figure 2. Simplified schematic representation of a possible structure of the local node. The dashed line
between the Hospital IT Infrastructure and the Node itself signifies that there might be a separation
between the two depending on implementation, as discussed in the subsequent section.

Figure 2 shows that direct communication only takes place between the local nodes
and the central node. In traditional centralized approaches, data from various sources
are collected and aggregated on a central server, where a global model is trained. This
method provides efficient and straightforward model training, but raises concerns about
data privacy, security as sensitive information is pooled together. While the decentralized
approach presents challenges such as handling device heterogeneity. However, the promise
of preserving privacy while enabling collaborative learning makes decentralized feder-
ated learning an increasingly appealing and viable alternative to traditional centralized
approaches.
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3. Results and Discussion

The following section shows experiences and possible issues during the installation of
local nodes and analyzes the process of the actual implementation of the local node in the
context of the RACOON project at our site.

In order to enable communication between the local node and the central node, it
must first be ensured that all data privacy and data security policies are adhered to in this
regard. The process of finding an agreement for data sharing was significantly hindered
by the differences in regulatory laws of data protection across various jurisdictions. Each
country or region has its own set of stringent data protection regulations and local data
privacy laws. Differences in data protection laws have led to varying interpretations and
definitions of sensitive data, data ownership and responsibilities regarding data breaches.
Negotiating data sharing agreements that comply with diverse regulatory laws introduce
significant delays in the initiation of research projects. The time and effort required to
establish agreements and gain necessary approvals additionally slowed down the whole
process.

Federated learning networks must accommodate various software and hardware
setups across participating institutions. Diverse IT infrastructures, data storage systems
and imaging modalities can lead to compatibility issues and interoperability challenges.
The development of a unified software and hardware framework that can seamlessly
integrate with different systems may require substantial effort and expertise.

One of the first steps in setting-up the local node is, to decide where to host the server.
This is highly dependent on the local IT infrastructure and varies among sites. The server
setup must be sufficiently flexible to accommodate project-related changes in the software
architecture, such as updates due to newly implemented functionalities. In addition, the
import of data from internal clinical systems such as the hospital information system (HIS),
the radiological information system (RIS) and PACS must be guaranteed. Due to the high
vulnerability of the data, compliance with local security standards has a very high priority.

Direct integration of the node into the existing hospital IT server landscape can offer
several advantages. The necessary interfaces for data transfer should already exist and
adherence to security measures requires only a few adjustments, such as the integration
of data transfer to the central node and vice versa. Also, backup strategies usually should
exist, at least on the server level, including the persistence of the VMs and the host system.

However, those benefits may come at the cost of flexibility. Due to the security policies
of the local IT department, direct administrative access to the node can be restricted or not
granted at all, thus hampering interaction with the system. Adapting custom project-driven
implementations and changes therefore may be accompanied with a high communication
effort, resulting in a considerable delay.

Another experienced drawback is the infeasibility of integrating the required hardware
specifications. In some cases, contractual obligations prohibit the acquisition of the recom-
mended hardware specifications leading to inconsistencies across sites. In our exemplary
case, the existing type of server rack was only capable of integrating a single dedicated
GPU. While the pure execution of the services should not be influenced by that, this setup
does not scale with applications requiring higher GPU processing power. Besides hardware
issues, virtualization can also be a concern when building the node upon an already existing
infrastructure. While most sites are in fact using the recommended Hyper-V (Microsoft
Corporation, Redmond, WA, USA) hypervisor, there are other solutions utilized at some
sites. This incongruence causes conflicts if applications or container images have to be
deployed on the virtual machines, exposing dependencies on the VM configuration (e.g.,
network interface configurations). Those configurations are often provided as Hyper-V-
specific configuration files, which are not applicable for other types of hypervisors out of
the box. Translating them to the custom configuration format or manually configuring the
hypervisor induces an additive time effort and is a source of errors.

The opposite approach of setting up the node directly in the subordinated environment
of the radiological clinic gives much more flexibility. At the same time, when hosting the
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server in a separate environment the responsibility for maintenance, security, communi-
cation with the HIS/RIS/PACS and central node, as well as backup strategies must be
handled via decentralizing. This is only a possible scenario if communication with the
HIS/RIS/PACS is possible at all and in compliance with the security policies of the clinical
IT, since opening ports for data transfer means opening access to an external party and
exposing vulnerabilities.

Table 1 summarizes the advantages and disadvantages concerning the decision of
hosting the server in the existing clinical IT environment vs. setting up the node in the
subordinated environment of the radiological department referred to as integrated and
separate installation.

Table 1. Advantages and disadvantages of installing the node in the existing clinical IT environment
vs. separate installation in local radiology department.

Integrated Installation Separate Installation
Flexibility % restrictions in virtualization and hardware v no restrictions
.. . x restricted access to VM host .
Administrative Access v/ no restrictions
v  access to VMs

Data Security
Building/Configuration Effort

Hardware Integration

Maintenance

v’ managed externally % has to be managed separately
x extra space needed

x server has to be configured separately

v’ free in choice of components

v’ congruence with initial
hardware specifications

% no existing backup strategies
x no external maintenance and support
v flexibility in setting up custom backups

v’ no effort in initial build

x restricted in choice of hardware components
x no integration of new components

v existing backup strategy
v part of the clinical IT maintenance

The implementation of the local node at our site could not follow the intended standard
setting of the project. The server hardware and host system are maintained by the local IT
department. Three VMs in total are hypervised via VMware (VMware, Inc., Palo Alto, CA,
USA). The corresponding images for deploying the VMs were rolled out in the Hyper-V
image format as part of the project. This required conversion to the VMware format at
our site. Unfortunately, this process led to unintended delay in several update procedures,
because the conversion did not work seamlessly. We did not observe any performance
issues concerning communication between workstations in the radiological department
and VMs, as well as the data transfer from the PACS to the data management VM. One
major benefit of integrating the node in our existing clinical IT infrastructure is the applied
backup strategy. Since the VM snapshots are saved in a daily cycle, even in the event of a
system failure, there is only minimal data loss.

Based on our experiences, during the process of building the local node, we tried to
identify a best-case scenario, comprising flexibility, low maintenance effort and compliance
with security obligations. From our perspective, integrating the node should be the pre-
ferred way, since building the infrastructure from scratch, including backup-strategies and
backup-infrastructure, security precautions and interfaces to the HIS, is associated with
high time effort and administrative expense. Nevertheless, if certain specifications cannot
be met, installing a separate server can become a more favorable approach. The decision
criteria leading to one or the other approach have to be discussed and weighted internally.

The proposed infrastructure in the context of the RACOON project enables viable
multicentric research and aggregation of large-scale datasets with a large variety of data
sources. In total, the network now consists of 38 local nodes which contributed to the
dataset with over 16,000 Thorax CTs and 14,000 curated datasets, including structured
reports and segmentations. This shows that this network works efficiently and enables
access to high-quality data, empowering future work in radiological and medical research.
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4. Conclusions

Federated learning presents a promising alternative to classical machine learning
methods in the context of medical and radiology research. Its ability to safeguard data
privacy, access diverse datasets and adhere to ethical standards makes it an attractive option
for leveraging the potential of machine learning in healthcare. However, challenges related
to communication overhead, data heterogeneity and model security must be carefully
addressed to fully harness the benefits of federated learning and unlock its transformative
potential in the medical field. As the research and development related to federated learning
continue to progress, there is promise of ushering collaborative and highly effective medical
and radiology applications in the new era of privacy preserving.

Establishing an infrastructure for federated learning and data transfer in the context
of a large-scale multi-centric network needs a comprehensive system of local nodes. We
have shown basic requirements and building blocks for a local node. Building the local
node must comprise flexibility, but also be in concordance with the technical standards
of the proposed network structure. We have shown important aspects of the process in
building a local node, based on our experience as a participant site of the RACOON project.
We pointed out the pitfalls and advantages of an integrated and separate approach to node
installation. From our perspective, the building process can benefit from an existing clinical
IT infrastructure. However, the exact administrative and technical structure of the sites may
vary and thus, the realization remains site-specific. Congruence with other local nodes and
the network should thereby be the overarching goal in order to guarantee a functioning
interface for data transfer, externally triggered updates and integration. To simplify the
implementation, the development of an easily deployable and generic framework should
be the focus of future research.
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