Intensity of a Physical Exercise Programme Executed through Immersive Virtual Reality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Instruments
2.4. Procedure
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Practical Applications
4.2. Limitations and Strengths
4.3. Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.; Vezina, J.; Whitt-Glover, M.; Leon, A. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Kalman, M.; Inchley, J.; Sigmundova, D.; Iannotti, R.J.; Tynjälä, J.A.; Hamrik, Z.; Haug, E.; Bucksch, J. Secular trends in moderate-to-vigorous physical activity in 32 countries from 2002 to 2010: A cross-national perspective. Eur. J. Public Health 2015, 25 (Suppl. 2), 37–40. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L.; et al. Physical Activity, All-Cause and Cardiovascular Mortality, and cardiovascular disease. Med. Sci. Sports Exerc. 2019, 51, 1270–1281. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010; Available online: https://www.who.int/publications/i/item/9789241599979 (accessed on 2 July 2023).
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour: At a Glance; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 2 July 2023).
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- World Health Organization Physical Activity. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 6 July 2023).
- Bustamante-Ara, N.; Russell, J.; Godoy-Cumillaf, A.; Merellano-Navarro, E.; Uribe, N. Academic performance, physical activity, sleep and gender in university students during the pandemic-2020. Cult. Cienc. Deporte 2022, 17, 109–131. [Google Scholar]
- Ding, D.; Lawson, K.D.; Kolbe-Alexander, T.L.; Finkelstein, E.A.; Katzmarzyk, P.T.; van Mechelen, W.; Pratt, M. Lancet Physical Activity Series 2 Executive Committee. The economic burden of physical inactivity: A global analysis of major non-communicable diseases. Lancet 2016, 388, 1311–1324. [Google Scholar] [CrossRef] [PubMed]
- Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World. World Health Organization: Geneva, Switzerland. 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/272722/9789241514187-eng.pdf (accessed on 6 July 2023).
- Galvim, A.L.; Oliveira, I.M.; Martins, T.V.; Vieira, L.M.; Cerri, N.C.; Cezar, N.O.C.; Pedroso, R.V.; Gomes, G.A.O. Adherence, Adhesion, and Dropout Reasons of a Physical Activity Program in a High Social Vulnerability Context. J. Phys. Act. Health 2019, 16, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Sáez, I.; Solabarrieta, J.; Rubio, I. Reasons for Sports-Based Physical Activity Dropouts in University Students. Int. J. Environ. Res. Public. Health 2021, 18, 5721. [Google Scholar] [CrossRef]
- Baillot, A.; Chenail, S.; Barros, N.; Simoneau, M.; Libourel, M.; Nazon, E.; Riesco, E.; Bond, D.S.; Romain, A.J. Physical activity motives, barriers, and preferences in people with obesity: A systematic review. PLoS ONE 2021, 16, e0253114. [Google Scholar] [CrossRef]
- Stonerock, G.L.; Blumenthal, J.A. Role of Counseling to Promote Adherence in Healthy Lifestyle Medicine: Strategies to Improve Exercise Adherence and Enhance Physical Activity. Prog. Cardiovasc. Dis. 2017, 59, 455–462. [Google Scholar] [CrossRef]
- Puolitaival, T.; Sieppi, M.; Pyky, R.; Enwald, H.; Korpelainen, R.; Nurkkala, M. Health behaviours associated with video gaming in adolescent men: A cross-sectional population-based MOPO study. BMC Public Health 2020, 20, 415. [Google Scholar] [CrossRef] [PubMed]
- Granic, I.; Lobel, A.; Engels, R.C. The benefits of playing video games. Am. Psychol. 2014, 69, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Klasnja, A.; Milenovic, N.; Lukac, S.; Knezevic, A.; Klasnja, J.; Karan, V. The Effects of Regular Physical Activity and Playing Video Games on Reaction Time in Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 9278. [Google Scholar] [CrossRef] [PubMed]
- A Literature Review on Immersive Virtual Reality in Education: State of the Art and Perspectives—ProQuest. Available online: https://www.proquest.com/docview/1681252932 (accessed on 6 July 2023).
- Sit, C.H.; Lam, J.W.; McKenzie, T.L. Direct observation of children’s preferences and activity levels during interactive and online electronic games. J. Phys. Act. Health 2010, 7, 484–489. [Google Scholar] [CrossRef]
- Dębska, M.; Polechoński, J.; Mynarski, A.; Polechoński, P. Enjoyment and Intensity of Physical Activity in Immersive Virtual Reality Performed on Innovative Training Devices in Compliance with Recommendations for Health. Int. J. Environ. Res. Public Health 2019, 16, 3673. [Google Scholar] [CrossRef]
- Pasco, D. The Potential of Using Virtual Reality Technology in Physical Activity Settings. Quest 2013, 65, 429–441. [Google Scholar] [CrossRef]
- Gao, Z.; Zeng, N.; Pope, Z.C.; Wang, R.; Yu, F. Effects of Exergaming on Motor Skill Competence, Perceived Competence, and Physical Activity in Preschool Children. J. Sport. Health Sci. 2019, 8, 106–113. [Google Scholar] [CrossRef]
- Van Dam, A.; Laidlaw, D.H.; Simpson, R.M. Experiments in Immersive Virtual Reality for Scientific Visualization. Comput. Graph. 2002, 26, 535–555. [Google Scholar] [CrossRef]
- Ahn, S.J.; Fox, J. Immersive Virtual Environments, Avatars, and Agents for Health. Available online: https://oxfordre.com/communication/display/10.1093/acrefore/9780190228613.001.0001/acrefore-9780190228613-e-325 (accessed on 10 July 2023).
- Maselli, A.; Slater, M. The building blocks of the full body ownership illusion. Front. Hum. Neurosci. 2013, 7, 83. [Google Scholar] [CrossRef]
- Slater, M.; Spanlang, B.; Sanchez-Vives, M.V.; Blanke, O. First person experience of body transfer in virtual reality. PLoS ONE 2010, 5, e10564. [Google Scholar] [CrossRef]
- Vogeley, K.; May, M.; Ritzl, A.; Falkai, P.; Zilles, K.; Fink, G.R. Neural correlates of first-person perspective as one constituent of human self-consciousness. J. Cogn. Neurosci. 2004, 16, 817–827. [Google Scholar] [CrossRef]
- Burin, D.; Kilteni, K.; Rabuffetti, M.; Slater, M.; Pia, L. Body ownership increases the interference between observed and executed movements. PLoS ONE 2019, 14, e0209899. [Google Scholar] [CrossRef] [PubMed]
- Giakoni-Ramírez, F.; Godoy-Cumillaf, A.; Espoz-Lazo, S.; Duclos-Bastias, D.; Del Val Martín, P. Physical Activity in Immersive Virtual Reality: A Scoping Review. Healthcare 2023, 11, 1553. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.; Bray, S. Physical activity patterns defined by continuous heart rate monitoring. Arch. Dis. Child. 1991, 66, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Orman, E.K. Effect of Virtual Reality Graded Exposure on Heart Rate and Self-Reported Anxiety Levels of Performing Saxophonists. J. Res. Music Educ. 2003, 51, 302–315. [Google Scholar] [CrossRef]
- Varela-Aldás, J.; Palacios-Navarro, G.; García-Magariño, I.; Fuentes, E.M. Effects of Immersive Virtual Reality on the Heart Rate of Athlete’s Warm-Up. In Augmented Reality, Virtual Reality, and Computer Graphics; De Paolis, L., Bourdot, P., Eds.; AVR 2019; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11613. [Google Scholar]
- Tsai, C.F.; Yeh, S.C.; Huang, Y.; Wu, Z.; Cui, J.; Zheng, L. The Effect of Augmented Reality and Virtual Reality on Inducing Anxiety for Exposure Therapy: A Comparison Using Heart Rate Variability. J. Healthc. Eng. 2018, 2018, 6357351. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.M.; Ekelund, U.; Besson, H.; Mezzani, A.; Geladas, N.; Vanhees, L. Assessment of physical activity—A review of methodologies with reference to epidemiological research: A report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 127–139. [Google Scholar] [CrossRef]
- Bassett, D.R.; Rowlands, A.; Trost, S.G. Calibration and validation of wearable monitors. Med. Sci. Sports Exerc. 2012, 44, 32–38. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Evans, E.; Naugle, K.E.; Kaleth, A.S.; Arnold, B.; Naugle, K.M. Physical Activity Intensity, Perceived Exertion, and Enjoyment During Head-Mounted Display Virtual Reality Games. Games Health J. 2021, 10, 314–320. [Google Scholar] [CrossRef]
- Sousa, C.V.; Hwang, J.; Cabrera-Perez, R.; Fernandez, A.; Misawa, A.; Newhook, K.; Lu, A.S. Active video games in fully immersive virtual reality elicit moderate-to-vigorous physical activity and improve cognitive performance in sedentary college students. J. Sport. Health Sci. 2022, 11, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Ochi, G.; Kuwamizu, R.; Fujimoto, T.; Ikarashi, K.; Yamashiro, K.; Sato, D. The Effects of Acute Virtual Reality Exergaming on Mood and Executive Function: Exploratory Crossover Trial. JMIR Serious Games 2022, 10, e38200. [Google Scholar] [CrossRef]
- Xu, W.; Liang, H.N.; Baghaei, N.; Ma, X.; Yu, K.; Meng, X.; Wen, S. Effects of an Immersive Virtual Reality Exergame on University Students’ Anxiety, Depression, and Perceived Stress: Pilot Feasibility and Usability Study. JMIR Serious Games 2021, 9, e29330. [Google Scholar] [CrossRef] [PubMed]
- Arias-Palencia, N.M.; Solera-Martínez, M.; Gracia-Marco, L.; Silva, P.; Martínez-Vizcaíno, V.; Cañete-García-Prieto, J.; Sánchez-López, M. Levels and Patterns of Objectively Assessed Physical Activity and Compliance with Different Public Health Guidelines in University Students. PLoS ONE 2015, 10, e0141977. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Nikolaidis, P.T.; Martins, F.M.; Mendes, R.S. Physical Activity Patterns in University Students: Do They Follow the Public Health Guidelines? PLoS ONE 2016, 11, e0152516. [Google Scholar] [CrossRef]
- Tao, G.; Garrett, B.; Taverner, T.; Cordingley, E.; Sun, C. Immersive virtual reality health games: A narrative review of game design. J. NeuroEngineering Rehabil. 2021, 18, 31. [Google Scholar] [CrossRef]
- Tao, G.; Miller, W.C.; Eng, J.J.; Lindstrom, H.; Imam, B.; Payne, M. Self-directed usage of an in-home exergame after a supervised telerehabilitation training program for older adults with lower-limb amputation. Prosthet. Orthot. Int. 2020, 44, 52–59. [Google Scholar] [CrossRef]
- Bond, S.; Laddu, D.R.; Ozemek, C.; Lavie, C.J.; Arena, R. Exergaming and virtual reality for health: Implications for cardiac rehabilitation. Curr. Probl. Cardiol. 2019, 46, 100472. [Google Scholar] [CrossRef] [PubMed]
- Bonnechère, B.; Jansen, B.; Omelina, L.; Van Sint, J.S. The use of commercial video games in rehabilitation: A systematic review. Int. J. Rehabil. Res. 2016, 39, 277–290. [Google Scholar] [CrossRef]
- McClure, C.; Schofield, D. Running virtual: The effect of virtual reality on exercise. J. Human. Sport. Exerc. 2010, 15, 861–870. [Google Scholar] [CrossRef]
- Merellano-Navarro, E.; Bustamante-Ara, N.; Russell-Guzmán, J.; Lagos-Hernández, R.; Uribe, N.; Godoy-Cumillaf, A. Association between Sleep Quality and Physical Activity in Physical Education Students in Chile in the Pandemic Context: A Cross-Sectional Study. Healthcare 2022, 10, 1930. [Google Scholar] [CrossRef]
- Wenge, X.; Hai-Ning, L.; Yuzheng, L.; Kangyou, Y. Exploring visual techniques for boundary awareness during interaction in augmented reality head-mounted displays. In Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2020; pp. 204–211. [Google Scholar]
- Cmentowski, S.; Karaosmanoglu, S.; Nacke, L.; Steinicke, F.; Krüger, J. Never Skip Leg Day Again: Training the Lower Body with Vertical Jumps in a Virtual Reality Exergame. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23), Hamburg, Germany, 23–28 April 2023. [Google Scholar]
- Kruse, L.; Karaosmanoglu, S.; Rings, S.; Ellinger, B.; Steinicke, F. Enabling Immersive Exercise Activities for Older Adults: A Comparison of Virtual Reality Exergames and Traditional Video Exercises. Societies 2021, 11, 134. [Google Scholar] [CrossRef]
- Xu, W.; Liang, H.; He, Q.; Li, X.; Yu, K.; Chen, Y. Results and Guidelines From a Repeated-Measures Design Experiment Comparing Standing and Seated Full-Body Gesture-Based Immersive Virtual Reality Exergames: Within-Subjects Evaluation. JMIR Serious Games 2020, 8, e17972. [Google Scholar] [CrossRef]
- Almagià, A.A.; Lizana, P.J.; Rodríguez, F.J.; Ivanovic, D.; Binvignat, O. Variables Antropométricas y Rendimiento Físico en Estudiantes Universitarios de Educación Física. Int. J. Morphol. 2009, 27, 971–975. [Google Scholar]
- Godoy-Cumillaf, A.; Fuentes-Merino, P.; Jiménez-Díaz, J.; Vásquez-Gómez, J. 24-hour movement behaviors in university students of pedagogy in physical education. Comparative study by gender. Retos 2021, 43, 177–184. [Google Scholar] [CrossRef]
- Bustamante-Ara, N.; Russell, J.; Godoy-Cumillaf, A.; Merellano-Navarro, E.; Uribe, N. Rendimiento académico, actividad física, sueño y género en universitarios durante la pandemia-2020. Cult. Cienc. Deporte 2022, 17, 109–131. [Google Scholar]
Total | Women (n = 18) | Men (n = 21) | p | ES | |
---|---|---|---|---|---|
Beginner (8 min) | |||||
Sedentary (min) | 01:14 | 01:24 | 01:05 | 0.164 | - |
Light (min) | 03:52 | 04:11 | 03:36 | 0.115 | - |
Moderate (min) | 02:34 | 02:06 | 02:58 | 0.045 | 0.148 |
Vigorous (min) | 00:19 | 00:18 | 00:20 | 0.388 | - |
MVPA (min) | 02:53 | 02:24 | 03:18 | 0.139 | - |
Intermediate (9 min) | |||||
Sedentary (min) | 01:01 | 00:58 | 01:04 | 0.385 | - |
Light (min) | 04:25 | 04:41 | 04:11 | 0.171 | - |
Moderate (min) | 03:07 | 02:57 | 03:16 | 0.286 | - |
Vigorous (min) | 00:27 | 00:24 | 00:29 | 0.331 | - |
MVPA (min) | 03:34 | 03:21 | 03:45 | 0.139 | - |
Advanced (8 min) | |||||
Sedentary (min) | 01:18 | 01:31 | 01:08 | 0.176 | - |
Light (min) | 04:16 | 04:16 | 04:16 | 0.495 | - |
Moderate (min) | 01:56 | 01:46 | 02:05 | 0.253 | - |
Vigorous (min) | 00:30 | 00:28 | 00:31 | 0.357 | - |
MVPA (min) | 02:26 | 02:14 | 02:36 | 0.139 | - |
TOTAL (25 min) | |||||
Sedentary (min) | 03:34 | 03:53 | 03:17 | 0.245 | - |
Light (min) | 12:33 | 13:08 | 12:03 | 0.192 | - |
Moderate (min) | 07:37 | 06:49 | 08:19 | 0.131 | - |
Vigorous (min) | 01:16 | 01:10 | 01:21 | 0.320 | - |
MVPA (min) | 08:53 | 07:59 | 09:40 | 0.139 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giakoni-Ramírez, F.; Godoy-Cumillaf, A.; Fuentes-Merino, P.; Farías-Valenzuela, C.; Duclos-Bastías, D.; Bruneau-Chávez, J.; Merellano-Navarro, E.; Velásquez-Olavarría, R. Intensity of a Physical Exercise Programme Executed through Immersive Virtual Reality. Healthcare 2023, 11, 2399. https://doi.org/10.3390/healthcare11172399
Giakoni-Ramírez F, Godoy-Cumillaf A, Fuentes-Merino P, Farías-Valenzuela C, Duclos-Bastías D, Bruneau-Chávez J, Merellano-Navarro E, Velásquez-Olavarría R. Intensity of a Physical Exercise Programme Executed through Immersive Virtual Reality. Healthcare. 2023; 11(17):2399. https://doi.org/10.3390/healthcare11172399
Chicago/Turabian StyleGiakoni-Ramírez, Frano, Andrés Godoy-Cumillaf, Paola Fuentes-Merino, Claudio Farías-Valenzuela, Daniel Duclos-Bastías, José Bruneau-Chávez, Eugenio Merellano-Navarro, and Ronald Velásquez-Olavarría. 2023. "Intensity of a Physical Exercise Programme Executed through Immersive Virtual Reality" Healthcare 11, no. 17: 2399. https://doi.org/10.3390/healthcare11172399
APA StyleGiakoni-Ramírez, F., Godoy-Cumillaf, A., Fuentes-Merino, P., Farías-Valenzuela, C., Duclos-Bastías, D., Bruneau-Chávez, J., Merellano-Navarro, E., & Velásquez-Olavarría, R. (2023). Intensity of a Physical Exercise Programme Executed through Immersive Virtual Reality. Healthcare, 11(17), 2399. https://doi.org/10.3390/healthcare11172399