Leveraging Motor Imagery Rehabilitation for Individuals with Disabilities: A Review
Abstract
:1. Introduction
2. Mechanism of Motor Imagery
2.1. Mental Simulation
2.2. Kinesthetic Imagery
2.3. Visual Imagery
2.4. Temporal Imagery
3. Neurophysiological Mechanisms
4. Motor Learning
4.1. Cognitive Rehearsal
4.2. Neural Activation
4.3. Skill Transfer
5. Rehabilitation Using Motor Imagery
5.1. Stroke
5.2. Spinal Cord Injury
5.3. Traumatic Brain Injury
5.4. Parkinson’s Disease
5.5. Cerebral Palsy
5.6. Musculoskeletal Disorders
5.7. Amputations
References | Disability | Key Findings in Research |
---|---|---|
[11,12,13,38,39] | Stroke |
|
[14,40,41] | Spinal Cord Injury |
|
[15,16] | Traumatic Brain Injury |
|
[17,42,43] | Parkinson’s Disease |
|
[18,44,45] | Cerebral Palsy |
|
[19] | Musculoskeletal Disorders |
|
6. Effectiveness of Motor Imagery for Rehabilitation
6.1. Motor Function Improvement
6.1.1. Acquisition of Motor Skills
6.1.2. Motor Control and Coordination Enhancement
6.1.3. Rehabilitation Targeting Specific Motor Impairments
6.2. Amplification of Cognitive Function
6.2.1. Augmented Attention and Concentration
6.2.2. Enhanced Working Memory and Cognitive Flexibility
6.2.3. Optimization of Executive Function
6.3. Fortification of Psychological Well-Being
6.3.1. Motivation and Self-Efficacy Boost
6.3.2. Anxiety and Stress Reduction
6.3.3. Promotion of Body Awareness and Ownership Sense
6.4. Advancements in Neuroplasticity and Motor Recovery
6.4.1. Cortical Reorganization Stimulation
6.4.2. Motor Memory Consolidation Enhancement
6.4.3. Facilitation of Relearning and Compensation
7. Motor Imagery Techniques and Training Protocols
7.1. Mental Practice
7.2. Virtual Reality
7.3. Biofeedback and Neurofeedback
7.4. Electromyography
7.5. Brain–Computer Interfaces
8. Challenges of MI Based Rehabilitation
8.1. Variability in Imagery Proficiency
8.2. Individual Disparities and Training Response
8.3. Motor Imagery Implementation in Clinical Practice
8.4. Technological Constraints
9. Future Directions
9.1. Development of Personalized Training Programs
9.2. Optimization of Neurofeedback Techniques
9.3. Advancements in Virtual Reality and BCI Technologies
9.4. Prolonged Monitoring and Sustained Progress
9.5. Synergy and Comprehensive Methodologies
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leeuwis, N.; Paas, A.; Alimardani, M. Vividness of visual imagery and personality impact motor-imagery brain computer interfaces. Front. Hum. Neurosci. 2021, 15, 634748. [Google Scholar]
- Rodríguez-Hernández, M.; Polonio-López, B.; Corregidor-Sánchez, A.I.; Martín-Conty, J.L.; Mohedano-Moriano, A.; Criado-Álvarez, J.J. Can specific virtual reality combined with conventional rehabilitation improve poststroke hand motor function? A randomized clinical trial. J. NeuroEng. Rehabil. 2023, 20, 38. [Google Scholar] [CrossRef]
- Jackson, P.L.; Decety, J. Motor imagery: A window into the mechanisms and alterations of the motor system. Cortex 2004, 40, 315–336. [Google Scholar]
- Jeannerod, M. Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage 2001, 14 Pt 2, S103–S109. [Google Scholar] [PubMed]
- Guillot, A.; Collet, C. Construction of the motor imagery integrative model in sport: A review and theoretical investigation of motor imagery use. Int. Rev. Sport Exerc. Psychol. 2005, 2, 31–44. [Google Scholar]
- Stinear, C.M.; Byblow, W.D. Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability. Clin. Neurophysiol. 2004, 115, 596–601. [Google Scholar]
- Ragunath, R. Efficacy of Motor Imagery on Lower Extremity Functioning and Gait in Chronic Stroke Patients: Systematic review. Indian J. Physiother. Occup. Ther. 2022, 16, 83–87. [Google Scholar]
- Sharma, N.; Pomeroy, V.M.; Baron, J.C. Motor imagery: A backdoor to the motor system after stroke? Stroke 2006, 37, 1941–1952. [Google Scholar]
- Mulder, T. Motor imagery and action observation: Cognitive tools for rehabilitation. J. Neural Transm. 2007, 114, 1265–1278. [Google Scholar]
- Braun, S.M.; Beurskens, A.J.; Borm, P.J.; Schack, T.; Wade, D.T. The effects of mental practice in stroke rehabilitation: A systematic review. Arch. Phys. Med. Rehabil. 2006, 87, 842–852. [Google Scholar]
- Zimmermann-Schlatter, A.; Schuster, C.; Puhan, M.A.; Siekierka, E.; Steurer, J. Efficacy of motor imagery in post-stroke rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2008, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Malouin, F.; Richards, C.L.; Durand, A.; Descent, M.; Poirier, M.; Doyon, J. Clinical assessment of motor imagery after stroke. Neurorehabil. Neural Repair 2008, 22, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Neuper, C.; Scherer, R.; Wriessnegger, S.C.; Pfurtscheller, G. Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin. Neurophysiol. 2009, 120, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shu, X.; Jia, J.; Wang, H.; Ding, L.; He, Z.; Brauer, S.; Zhu, X. Relation between sensorimotor rhythm during motor attempt/imagery and upper-limb motor impairment in stroke. Clin. EEG Neurosci. 2022, 53, 238–247. [Google Scholar] [CrossRef]
- Mattioli, F.; Porcaro, C.; Baldassarre, G. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. J. Neural Eng. 2022, 18, 066053. [Google Scholar] [CrossRef]
- Dhiman, R. Electroencephalogram channel selection based on Pearson correlation coefficient for motor imagery-brain-computer interface. Meas. Sens. 2023, 25, 100616. [Google Scholar]
- Lindsay, R.; Spittle, S.; Spittle, M. Considering the need for movement variability in motor imagery training: Implications for sport and rehabilitation. Front. Psychol. 2023, 14, 1178632. [Google Scholar] [CrossRef]
- Burianová, H.; Marstaller, L.; Rich, A.N.; Williams, M.A.; Savage, G.; Ryan, M.; Sowman, P.F. Motor neuroplasticity: A MEG-fMRI study of motor imagery and execution in healthy ageing. Neuropsychologia 2020, 146, 107539. [Google Scholar] [CrossRef]
- Li, R.; Du, J.; Yang, K.; Wang, X.; Wang, W. Effectiveness of motor imagery for improving functional performance after total knee arthroplasty: A systematic review with meta-analysis. J. Orthop. Surg. Res. 2022, 17, 65. [Google Scholar] [CrossRef]
- Birinci, T.; Mutlu, E.K.; Altun, S. The efficacy of graded motor imagery in post-traumatic stiffness of elbow: A randomized controlled trial. J. Shoulder Elbow Surg. 2022, 31, 2147–2156. [Google Scholar] [CrossRef]
- Page, S.J.; Levine, P. Mental practice in chronic stroke: Results of a randomized, placebo-controlled trial. Stroke 2018, 49, 823–829. [Google Scholar] [CrossRef]
- Westlake, K.P.; Nagarajan, S.S. Functional connectivity in relation to motor performance and recovery after stroke. Front. Syst. Neurosci. 2011, 5, 8. [Google Scholar] [CrossRef]
- Sharma, N.; Simmons, L.H.; Jones, P.S.; Day, D.J.; Carpenter, T.A.; Pomeroy, V.M.; Warburton, E.A.; Baron, J.C. Motor imagery after subcortical stroke: A functional magnetic resonance imaging study. Stroke 2009, 40, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Dong, G.; Li, J.; Yang, Q.; Wang, L.; Zhao, Y.; Yan, Y.; Zhao, J.; Pang, S.; Guo, D.; et al. Deep convolution generative adversarial network-based electroencephalogram data augmentation for post-stroke rehabilitation with motor imagery. Int. J. Neural Syst. 2022, 32, 2250039. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, T.C.; Boe, S.G. Investigating the dose-response relationship between motor imagery and motor recovery of upper-limb impairment and function in chronic stroke: A scoping review. J. Neuropsychol. 2022, 16, 54–74. [Google Scholar] [CrossRef] [PubMed]
- Opsommer, E.; Chevalley, O.; Korogod, N. Motor imagery for pain and motor function after spinal cord injury: A systematic review. Spinal Cord. 2020, 58, 262–274. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, W.M.; Liang, T.F.; Yang, Y.H.; Yang, B.N.; Chen, X.; Chen, Q.; Li, X.J.; Lu, J.; Li, B.W.; et al. Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury. Am. J. Neuroradiol. 2023, 44, 611–617. [Google Scholar] [CrossRef]
- Kumari, R.; Gibson, H.; Jarjees, M.; Turner, C.; Purcell, M.; Vučković, A. The predictive value of cortical activity during motor imagery for subacute spinal cord injury-induced neuropathic pain. Clin. Neurophysiol. 2022, 148, 32–43. [Google Scholar] [CrossRef]
- Kashif, M.; Ahmad, A.; Bandpei, M.A.M.; Gilani, S.A.; Hanif, A.; Iram, H. Combined effects of virtual reality techniques and motor imagery on balance, motor function and activities of daily living in patients with Parkinson’s disease: A randomized controlled trial. BMC Geriatr. 2022, 22, 381. [Google Scholar] [CrossRef]
- Liu, K.P.; Chan, C.C.; Lee, T.M.; Hui-Chan, C.W. Mental imagery for relearning of people after brain injury. Brain Inj. 2004, 18, 1163–1172. [Google Scholar] [CrossRef]
- Kashif, M.; Ahmad, A.; Bandpei, M.A.M.; Syed, H.A.; Raza, A.; Sana, V. A Randomized Controlled Trial of Motor Imagery Combined with Virtual Reality Techniques in Patients with Parkinson’s Disease. J. Pers. Med. 2022, 12, 450. [Google Scholar] [CrossRef] [PubMed]
- Gözaçan Karabulut, D.; Tütün Yümin, E.; Öztürk, Y. The effect of motor imagery training on individuals with unilateral cerebral palsy on motor imagery ability, functional mobility and muscle activity. Somatosens. Motor Res. 2022, 39, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Galli, J.; Garofalo, G.; Brunetti, S.; Loi, E.; Portesi, M.; Pelizzari, G.; Rossi, A.; Fazzi, E.; Buccino, G. Children with Cerebral Palsy can imagine actions like their normally developed peers. Front. Neurolog. 2022, 13, 951152. [Google Scholar] [CrossRef] [PubMed]
- Lebon, F.; Guillot, A.; Collet, C. Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament. Appl. Psychophysiol. Biofeedback 2012, 37, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Villiger, M.; Estévez, N.; Hepp-Reymond, M.C.; Kiper, D.; Kollias, S.S.; Eng, K.; Hotz-Boendermaker, S. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements. PLoS ONE 2013, 8, e72403. [Google Scholar] [CrossRef] [PubMed]
- Jeannerod, M. Motor Cognition: What Actions Tell the Self; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Bai, Z.; Fong, K.N.; Zhang, J.J.; Chan, J.; Ting, K.H. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Dunsky, A.; Dickstein, R.; Ariav, C.; Deutsch, J.; Marcovitz, E. Motor imagery practice in gait rehabilitation of chronic post-stroke hemiparesis: Four case studies. Int. J. Rehabil. Res. 2006, 29, 351–356. [Google Scholar] [CrossRef]
- Lindsay, R.S.; Larkin, P.; Kittel, A.; Spittle, M. Mental imagery training programs for developing sport-specific motor skills: A systematic review and meta-analysis. Phys. Educ. Sport Pedagog. 2023, 28, 444–465. [Google Scholar] [CrossRef]
- Hétu, S.; Grégoire, M.; Saimpont, A.; Coll, M.P.; Eugène, F.; Michon, P.E.; Jackson, P.L. The neural network of motor imagery: An ALE meta-analysis. Neurosci. Biobehav. Rev. 2013, 37, 930–949. [Google Scholar] [CrossRef]
- Caligiore, D.; Mustile, M.; Spalletta, G.; Baldassarre, G. Action observation and motor imagery for rehabilitation in Parkinson’s disease: A systematic review and an integrative hypothesis. Neurosci. Biobehav. Rev. 2017, 72, 210–222. [Google Scholar] [CrossRef]
- Di Rienzo, F.; Collet, C.; Hoyek, N.; Guillot, A. Impact of neurologic deficits on motor imagery: A systematic review of clinical evaluations. Neuropsychol. Rev. 2020, 30, 553–576. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.E.; Marino, V.F.; Belovsky, S.A.; Chubb, C. Visually guided, aimed movements can be unaffected by stimulus–response uncertainty. Exp. Brain Res. 2007, 179, 475–496. [Google Scholar] [CrossRef] [PubMed]
- Holmes, P.; Calmels, C. A neuroscientific review of imagery and observation use in sport. J. Motor Behav. 2008, 40, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Malouin, F.; Jackson, P.L.; Richards, C.L. Towards the integration of mental practice in rehabilitation programs. A critical review. Front. Hum. Neurosci. 2013, 7, 576. [Google Scholar] [CrossRef] [PubMed]
- Guerra, Z.F.; Lucchetti, A.L.; Lucchetti, G. Motor imagery training after stroke: A systematic review and meta-analysis of randomized controlled trials. J. Neurol. Phys. Ther. 2017, 41, 205–214. [Google Scholar] [CrossRef]
- Guillot, A.; Collet, C. (Eds.) The Neurophysiological Foundations of Mental and Motor Imagery; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Kundi, M.K.; Spence, N.J. Efficacy of mirror therapy on lower limb motor recovery, balance and gait in subacute and chronic stroke: A systematic review. Physiother. Res. Int. 2023, 28, e1997. [Google Scholar] [CrossRef]
- Braun, S.M.; Beurskens, A.J.; Borm, P.J.; Schack, T. The effects of mental practice in neurological rehabilitation: A systematic review and meta-analysis. Front. Hum. Neurosci. 2018, 12, 74. [Google Scholar] [CrossRef]
- Cuomo, G.; Maglianella, V.; Ghanbari Ghooshchy, S.; Zoccolotti, P.; Martelli, M.; Paolucci, S.; Morone, G.; Iosa, M. Motor imagery and gait control in Parkinson’s disease: Techniques and new perspectives in neurorehabilitation. Expert. Rev. Neurother. 2022, 22, 43–51. [Google Scholar] [CrossRef]
- Kolářová, B.; Richards, J.; Haltmar, H.; Lippertová, K.; Connell, L.; Chohan, A. The effect of motor imagery on quality of movement when performing reaching tasks in healthy subjects: A proof of concept. J. Bodyw. Mov. Ther. 2022, 29, 161–166. [Google Scholar] [CrossRef]
- Abraham, A.; Duncan, R.P.; Earhart, G.M. The role of mental imagery in Parkinson’s disease rehabilitation. Brain Sci. 2021, 11, 185. [Google Scholar] [CrossRef]
- Shi, Z.; Ding, L.; Han, X.; Jiang, B.; Zhang, J.; Suo, D.; Wu, J.; Pei, G.; Fang, B.; Yan, T. Multimodal biofeedback for Parkinson’s disease motor and nonmotor symptoms. Brain Sci. Adv. 2023, 9, 136–154. [Google Scholar] [CrossRef]
- Huang, Z.H.; Ma, C.Z.H.; Wang, L.K.; Wang, X.Y.; Fu, S.N.; Zheng, Y.P. Real-time visual biofeedback via wearable ultrasound imaging can enhance the muscle contraction training outcome of young adults. J. Strength Cond. Res. 2022, 36, 941. [Google Scholar] [CrossRef]
- García-Cossio, E.; Severens, M.; Veraart, C.; Duque, J. Decoding the contents of visual short-term memory under distraction in occipital and parietal areas. Nat. Neurosci. 2016, 19, 150–157. [Google Scholar]
- Pawuś, D.; Paszkiel, S. Application of EEG signals integration to proprietary classification algorithms in the implementation of mobile robot control with the use of motor imagery supported by EMG measurements. Appl. Sci. 2022, 12, 5762. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Todo, M.; Bizen, H.; Kimura, D.; Suzuki, T. Causal relationships between brain and spinal motor neuron excitability during motor imagery: Using NIRS and evoked electromyogram study. Neuroimage Rep. 2022, 2, 100083. [Google Scholar] [CrossRef]
- Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S.C.; Neuper, C. Sensorimotor rhythm-based brain-computer interface training: The impact on motor cortical responsiveness. J. Neural Eng. 2011, 8, 025020. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Borges, L.R.D.M.; Santiago, L.; Lucena, L.; Lindquist, A.R.; Ribeiro, T. Motor imagery for gait rehabilitation after stroke. Cochrane Database Syst. Rev. 2020, 9, CD013019. [Google Scholar]
- Agostini, F.; Pezzi, L.; Paoloni, M.; Insabella, R.; Attanasi, C.; Bernetti, A.; Saggini, R.; Mangone, M.; Paolucci, T. Motor Imagery: A Resource in the Fatigue Rehabilitation for Return-to-Work in Multiple Sclerosis Patients-A Mini Systematic Review. Front. Neurol. 2021, 12, 696276. [Google Scholar] [CrossRef] [PubMed]
- Saleem, G.T. Defining and measuring motor imagery in children: Mini review. Front. Psychol. 2023, 14, 1227215. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almufareh, M.F.; Kausar, S.; Humayun, M.; Tehsin, S. Leveraging Motor Imagery Rehabilitation for Individuals with Disabilities: A Review. Healthcare 2023, 11, 2653. https://doi.org/10.3390/healthcare11192653
Almufareh MF, Kausar S, Humayun M, Tehsin S. Leveraging Motor Imagery Rehabilitation for Individuals with Disabilities: A Review. Healthcare. 2023; 11(19):2653. https://doi.org/10.3390/healthcare11192653
Chicago/Turabian StyleAlmufareh, Maram Fahaad, Sumaira Kausar, Mamoona Humayun, and Samabia Tehsin. 2023. "Leveraging Motor Imagery Rehabilitation for Individuals with Disabilities: A Review" Healthcare 11, no. 19: 2653. https://doi.org/10.3390/healthcare11192653
APA StyleAlmufareh, M. F., Kausar, S., Humayun, M., & Tehsin, S. (2023). Leveraging Motor Imagery Rehabilitation for Individuals with Disabilities: A Review. Healthcare, 11(19), 2653. https://doi.org/10.3390/healthcare11192653