Relationship between Composite Dietary Antioxidant Index and Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Exposures and Covariates
2.3. Outcome
- (1)
- xb = −19.907 − 0.0336 × albumin − 0.0095 × creatinine − 0.0195 × glucose + 0.0954 × ln (CRP) − 0.0120 × lymphocyte percent + 0.0268 × mean cell volume + 0.3356 × red blood cell distribution width + 0.00188 × alkaline phosphatase + 0.0554 × white blood cell count + 0.0804 × chronological age.
- (2)
- Phenotypic Age = 141.50 +ln [−0.0053 × ln (1 − xb)]/0.09165.
2.4. Statistic Analysis
3. Results
3.1. Baseline Characteristics
3.2. Association of Composite Dietary Antioxidant Index and Aging
3.3. Subgroup Analysis and Joint Analysis
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.who.int/zh/news-room/fact-sheets/detail/ageing-and-health (accessed on 20 July 2023).
- Prince, M.J.; Wu, F.; Guo, Y.; Robledo, L.M.G.; O’Donnell, M.; Sullivan, R.; Yusuf, S. The burden of disease in older people and implications for health policy and practice. Lancet 2015, 385, 549–562. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, P.; Thyagarajan, B.; Sun, F.; Schupf, N.; Newman, A.B.; Montano, M.; Perls, T.T. Biomarker signatures of aging. Aging Cell 2017, 16, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kuo, P.-L.; Horvath, S.; Crimmins, E.; Ferrucci, L.; Levine, M. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. PLoS Med. 2018, 15, e1002718. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Y.; Liu, F.; Chen, H.; Tan, T.; Yao, P.; Tang, Y. Biological aging mediates the associations between urinary metals and osteoarthritis among U.S. adults. BMC Med. 2022, 20, 207. [Google Scholar] [CrossRef]
- Partridge, L.; Deelen, J.; Slagboom, P.E. Facing up to the global challenges of ageing. Nature 2018, 561, 45–56. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Costarelli, L.; Giacconi, R.; Malavolta, M.; Basso, A.; Piacenza, F.; Ostan, R.; Cevenini, E.; Gonos, E.S.; Franceschi, C.; et al. Vitamin E-gene interactions in aging and inflammatory age-related diseases: Implications for treatment. A systematic review. Ageing Res. Rev. 2014, 14, 81–101. [Google Scholar] [CrossRef]
- Wright, M.E.; Mayne, S.T.; Stolzenberg-Solomon, R.Z.; Li, Z.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am. J. Epidemiol. 2004, 160, 68–76. [Google Scholar] [CrossRef]
- Liu, C.-A.; Liu, T.; Ge, Y.-Z.; Song, M.-M.; Ruan, G.-T.; Lin, S.-Q.; Xie, H.-L.; Shi, J.-Y.; Zheng, X.; Chen, Y.; et al. Muscle distribution in relation to all-cause and cause-specific mortality in young and middle-aged adults. J. Transl. Med. 2023, 21, 154. [Google Scholar] [CrossRef]
- Wang, L.; Yi, Z. Association of the Composite dietary antioxidant index with all-cause and cardiovascular mortality: A prospective cohort study. Front. Cardiovasc. Med. 2022, 9, 993930. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-A.; Zhang, Q.; Ruan, G.-T.; Shen, L.-Y.; Xie, H.-L.; Liu, T.; Tang, M.; Zhang, X.; Yang, M.; Hu, C.-L.; et al. Novel Diagnostic and Prognostic Tools for Lung Cancer Cachexia: Based on Nutritional and Inflammatory Status. Front. Oncol. 2022, 12, 890745. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; La Mastra, C.; La Rosa, M.C.; Favara, G.; Lio, R.M.S.; Agodi, A. Dietary Antioxidant Intake and Human Papillomavirus Infection: Evidence from a Cross-Sectional Study in Italy. Nutrients 2020, 12, 1384. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Paragomi, P.; Wang, R.; Jin, A.; Schoen, R.E.; Sheng, L.; Pan, A.; Koh, W.; Yuan, J.; Luu, H.N. Composite dietary antioxidant index and the risk of colorectal cancer: Findings from the Singapore Chinese Health Study. Int. J. Cancer 2022, 150, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef]
- Abdelmegeed, M.A.; Choi, Y.; Ha, S.K.; Song, B.J. Cytochrome P450-2E1 promotes aging-related hepatic steatosis, apoptosis and fibrosis through increased nitroxidative stress. Free Radic. Biol. Med. 2016, 91, 188–202. [Google Scholar] [CrossRef]
- Tabibzadeh, S. Signaling pathways and effectors of aging. Front. Biosci. 2021, 26, 50–96. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Jauhari, A.; Baranov, S.V.; Suofu, Y.; Kim, J.; Singh, T.; Yablonska, S.; Li, F.; Wang, X.; Oberly, P.; Minnigh, M.B.; et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J. Clin. Investig. 2020, 130, 3124–3136. [Google Scholar] [CrossRef]
- Cai, H.; Liu, Y.; Men, H.; Zheng, Y. Protective Mechanism of Humanin against Oxidative Stress in Aging-Related Cardiovascular Diseases. Front. Endocrinol. 2021, 12, 683151. [Google Scholar] [CrossRef]
- Cai, Y.; Li, J.; Jia, C.; He, Y.; Deng, C. Therapeutic applications of adipose cell-free derivatives: A review. Stem Cell Res. Ther. 2020, 11, 312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Davies, K.J.A.; Forman, H.J. Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med. 2015, 88, 314–336. [Google Scholar] [CrossRef] [PubMed]
- van der Reest, J.; Nardini Cecchino, G.; Haigis, M.C.; Kordowitzki, P. Mitochondria: Their relevance during oocyte ageing. Ageing Res. Rev. 2021, 70, 101378. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, K.; Koelman, L.; Rodrigues, C.E. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biol. 2021, 42, 101869. [Google Scholar] [CrossRef]
- Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef]
- Lim, J.C.; Caballero Arredondo, M.; Braakhuis, A.J.; Donaldson, P.J. Vitamin C and the Lens: New Insights into Delaying the Onset of Cataract. Nutrients 2020, 12, 3142. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, J.; Li, H. Selenium, aging and aging-related diseases. Aging Clin. Exp. Res. 2019, 31, 1035–1047. [Google Scholar] [CrossRef]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022, 27, 6613. [Google Scholar] [CrossRef]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T.; Samini, F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed. Pharmacother. 2017, 87, 223–229. [Google Scholar] [CrossRef]
- Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front. Endocrinol. 2021, 12, 718942. [Google Scholar] [CrossRef]
- Bernhard, D.; Moser, C.; Backovic, A.; Wick, G. Cigarette smoke--an aging accelerator? Exp. Gerontol. 2007, 42, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Nunes, P.T.; Kipp, B.T.; Reitz, N.L.; Savage, L.M. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. Int. Rev. Neurobiol. 2019, 148, 101–168. [Google Scholar] [CrossRef] [PubMed]
- Pothisiri, W.; Prasitsiriphon, O.; Aekplakorn, W. Extent of aging across education and income subgroups in Thailand: Application of a characteristic-based age approach. PLoS ONE 2020, 15, e0243081. [Google Scholar] [CrossRef]
- Parker, S.W.; Saenz, J.; Wong, R. Health Insurance and the Aging: Evidence from the Seguro Popular Program in Mexico. Demography 2018, 55, 361–386. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Level | CDAI | |||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | p | ||
N | 3842 (28,879,833) | 3843 (31,351,729) | 3841 (33,353,289) | 3843 (35,393,618) | 3843 (36,306,973) | ||
Age (Year) | 47.25 (17.03) | 47.21 (16.81) | 47.06 (16.01) | 46.34 (15.91) | 44.89 (15.32) | <0.001 | |
Phenoage (Year) | 42.19 (19.92) | 41.66 (19.37) | 40.87 (18.30) | 39.93 (18.04) | 37.92 (17.35) | <0.001 | |
Sex | Men | 1759 (41.8) | 1952 (47.9) | 2046 (51.9) | 1989 (50.6) | 2066 (54.5) | <0.001 |
Race | Non-Hispanic Black | 928 (14.2) | 710 (10.1) | 670 (9.3) | 658 (8.7) | 654 (8.5) | <0.001 |
Non-Hispanic White | 1752 (67.5) | 1970 (72.3) | 2059 (74.8) | 2104 (74.8) | 2140 (76.2) | ||
Other | 1162 (18.3) | 1163 (17.5) | 1112 (16.0) | 1081 (16.5) | 1049 (15.3) | ||
BMI (kg/m2) | 28.56 (6.55) | 28.62 (6.59) | 28.62 (6.48) | 28.48 (6.28) | 28.22 (6.73) | 0.083 | |
Waist circumference (cm) | 97.37 (15.65) | 98.02 (15.98) | 98.11 (15.59) | 97.68 (15.82) | 96.88 (16.36) | 0.015 | |
Education level | High school and above | 1400 (45.2) | 1721 (53.4) | 1947 (59.8) | 2046 (61.3) | 2194 (65.7) | <0.001 |
PIR | <1 | 1433 (27.3) | 1142 (20.2) | 998 (17.1) | 943 (16.4) | 878 (15.1) | <0.001 |
1-2.99 | 1536 (39.2) | 1539 (38.4) | 1502 (35.3) | 1429 (34.7) | 1412 (33.1) | ||
≥3 | 873 (33.5) | 1162 (41.4) | 1341 (47.5) | 1471 (48.9) | 1553 (51.8) | ||
Health insurance | Yes | 2876 (78.1) | 2994 (81.5) | 3055 (83.4) | 3051 (83.2) | 3017 (82.7) | <0.001 |
Smoke | Yes | 1124 (32.5) | 899 (24.7) | 851 (23.4) | 754 (19.8) | 765 (19.1) | <0.001 |
Alcohol use | Yes | 2276 (65.5) | 2478 (69.6) | 2626 (73.8) | 2684 (73.8) | 2806 (77.2) | <0.001 |
DM | Yes | 1035 (20.0) | 967 (19.7) | 900 (17.9) | 826 (16.9) | 742 (15.8) | <0.001 |
CVD | Yes | 572 (11.5) | 496 (10.2) | 417 (8.0) | 353 (7.2) | 285 (5.4) | <0.001 |
Hypertension | Yes | 1800 (40.6) | 1643 (36.5) | 1637 (37.0) | 1531 (34.5) | 1398 (32.6) | <0.001 |
Cancer history | Yes | 355 (9.8) | 376 (9.5) | 396 (9.4) | 339 (8.3) | 318 (7.4) | 0.012 |
C reactive protein(mg/L) | 0.48 (0.88) | 0.44 (0.85) | 0.39 (0.77) | 0.37 (0.68) | 0.35 (0.74) | <0.001 | |
Albumin(g/dL) | 42.45 (3.25) | 42.47 (3.19) | 42.76 (3.10) | 42.85 (3.12) | 43.11 (3.13) | <0.001 |
CDAI | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Per SD | 0.81 (0.77, 0.87) | <0.001 | 0.89 (0.84, 0.95) | 0.001 | 0.90 (0.84, 0.96) | 0.001 |
Cutoff | ||||||
Low | Ref. | Ref. | Ref. | |||
High | 0.69 (0.62, 0.78) | <0.001 | 0.81 (0.71, 0.91) | 0.001 | 0.82 (0.72, 0.93) | 0.003 |
Quantiles | ||||||
Q1 | Ref. | Ref. | Ref. | |||
Q2 | 0.83 (0.72, 0.94) | 0.005 | 0.90 (0.77, 1.04) | 0.146 | 0.89 (0.76, 1.04) | 0.141 |
Q3 | 0.73 (0.61, 0.86) | <0.001 | 0.84 (0.70, 1.01) | 0.061 | 0.87 (0.70, 1.06) | 0.163 |
Q4 | 0.66 (0.56, 0.79) | <0.001 | 0.80 (0.67, 0.96) | 0.016 | 0.82 (0.69, 0.98) | 0.032 |
Q5 | 0.52 (0.44, 0.60) | <0.001 | 0.66 (0.56, 0.78) | <0.001 | 0.68 (0.57, 0.81) | <0.001 |
P for trend | <0.001 | <0.001 | 0.014 |
CDAI | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
<45 years | ||||||
Per SD | 0.83 (0.75, 0.91) | <0.001 | 0.90 (0.81, 1.00) | 0.045 | 0.89 (0.80, 0.99) | 0.040 |
Cutoff | ||||||
Low | Ref. | Ref. | Ref. | |||
High | 0.67 (0.56, 0.80) | <0.001 | 0.76 (0.62, 0.92) | 0.005 | 0.73 (0.60, 0.89) | 0.002 |
Quantiles | ||||||
Q1 | Ref. | Ref. | Ref. | |||
Q2 | 0.79 (0.61, 1.00) | 0.053 | 0.87 (0.66, 1.15) | 0.323 | 0.89 (0.67, 1.17) | 0.393 |
Q3 | 0.77 (0.60, 1.00) | 0.048 | 0.89 (0.67, 1.17) | 0.385 | 0.88 (0.66, 1.16) | 0.354 |
Q4 | 0.63 (0.47, 0.83) | 0.002 | 0.78 (0.57, 1.07) | 0.120 | 0.80 (0.58, 1.11) | 0.173 |
Q5 | 0.54 (0.42, 0.70) | <0.001 | 0.68 (0.51, 0.91) | 0.010 | 0.65 (0.48, 0.89) | 0.007 |
45–59 years | ||||||
Per SD | 0.84 (0.75, 0.94) | 0.004 | 0.89 (0.8, 1.00) | 0.046 | 0.90 (0.80, 1.00) | 0.052 |
Cutoff | Ref. | Ref. | Ref. | |||
Low | ||||||
High | 0.76 (0.61, 0.94) | 0.012 | 0.84 (0.66, 1.06) | 0.144 | 0.87 (0.67, 1.12) | 0.280 |
Quantiles | ||||||
Q1 | Ref. | Ref. | Ref. | |||
Q2 | 0.85 (0.61, 1.17) | 0.316 | 0.98 (0.68, 1.40) | 0.891 | 0.99 (0.68, 1.44) | 0.957 |
Q3 | 0.70 (0.51, 0.97) | 0.033 | 0.86 (0.61, 1.22) | 0.394 | 0.92 (0.63, 1.34) | 0.645 |
Q4 | 0.70 (0.51, 0.96) | 0.028 | 0.84 (0.60, 1.18) | 0.316 | 0.87 (0.62, 1.23) | 0.423 |
Q5 | 0.55 (0.42, 0.73) | <0.001 | 0.68 (0.50, 0.92) | 0.013 | 0.69 (0.48, 0.98) | 0.041 |
60–74 years | ||||||
Per SD | 0.79 (0.69, 0.91) | 0.001 | 0.89 (0.79, 1.01) | 0.069 | 0.91 (0.8, 1.05) | 0.192 |
Cutoff | ||||||
Low | Ref. | Ref. | Ref. | |||
High | 0.66 (0.54, 0.80) | <0.001 | 0.82 (0.67, 1.00) | 0.051 | 0.84 (0.68, 1.04) | 0.104 |
Quantiles | ||||||
Q1 | Ref. | Ref. | Ref. | |||
Q2 | 0.87 (0.67, 1.14) | 0.324 | 0.93 (0.69, 1.25) | 0.621 | 0.87 (0.64, 1.19) | 0.389 |
Q3 | 0.71 (0.56, 0.90) | 0.005 | 0.83 (0.64, 1.06) | 0.137 | 0.80 (0.60, 1.07) | 0.131 |
Q4 | 0.64 (0.48, 0.85) | 0.002 | 0.83 (0.62, 1.10) | 0.192 | 0.83 (0.62, 1.12) | 0.217 |
Q5 | 0.47 (0.33, 0.67) | <0.001 | 0.61 (0.42, 0.89) | 0.011 | 0.64 (0.43, 0.95) | 0.029 |
75–84 years | ||||||
Per SD | 0.92 (0.81, 1.05) | 0.234 | 0.94 (0.82, 1.08) | 0.367 | 0.95 (0.83, 1.10) | 0.480 |
Cutoff | ||||||
Low | Ref. | Ref. | Ref. | |||
High | 0.98 (0.77, 1.24) | 0.837 | 1.02 (0.79, 1.31) | 0.877 | 1 (0.78, 1.28) | 0.999 |
Quantiles | ||||||
Q1 | Ref. | Ref. | Ref. | |||
Q2 | 0.82 (0.57, 1.2) | 0.302 | 0.74 (0.51, 1.08) | 0.116 | 0.71 (0.48, 1.03) | 0.067 |
Q3 | 0.85 (0.60, 1.19) | 0.330 | 0.8 (0.56, 1.15) | 0.218 | 0.80 (0.54, 1.16) | 0.234 |
Q4 | 0.91 (0.65, 1.27) | 0.573 | 0.9 (0.64, 1.27) | 0.557 | 0.88 (0.63, 1.23) | 0.455 |
Q5 | 0.84 (0.53, 1.33) | 0.453 | 0.84 (0.54, 1.32) | 0.440 | 0.85 (0.52, 1.38) | 0.495 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Chen, Y. Relationship between Composite Dietary Antioxidant Index and Aging. Healthcare 2023, 11, 2722. https://doi.org/10.3390/healthcare11202722
Wang H, Chen Y. Relationship between Composite Dietary Antioxidant Index and Aging. Healthcare. 2023; 11(20):2722. https://doi.org/10.3390/healthcare11202722
Chicago/Turabian StyleWang, Haiting, and Yongbing Chen. 2023. "Relationship between Composite Dietary Antioxidant Index and Aging" Healthcare 11, no. 20: 2722. https://doi.org/10.3390/healthcare11202722
APA StyleWang, H., & Chen, Y. (2023). Relationship between Composite Dietary Antioxidant Index and Aging. Healthcare, 11(20), 2722. https://doi.org/10.3390/healthcare11202722