Differences in Motor Imagery Ability between People with Parkinson’s Disease and Healthy Controls, and Its Relationship with Functionality, Independence and Quality of Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assessments
2.3.1. Measures of Vividness: Ability to Generate MI
2.3.2. Measures of Temporal Accuracy: Ability to Maintain MI
2.4. Procedure
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Differences in the Ability to Generate MI: Vividness
3.3. Differences in the Ability to Maintain MI: Temporal Accuracy
3.4. Relationship between MI Ability and Functionality, Independence and Quality of Life
4. Discussion
4.1. Functional Implications and Relationship with ADL and QoL
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mulder, T. Motor imagery and action observation: Cognitive tools for rehabilitation. J. Neural Transm. 2007, 114, 1265–1278. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Martínez, F.; Suso-Martí, L.; Grande-Alonso, M.; Paris-Alemany, A.; La Touche, R. Combining motor imagery with action observation training does not lead to a greater autonomic nervous system response than motor imagery alone during simple and functional movements: A randomized controlled trial. PeerJ 2018, 6, e5142. [Google Scholar] [CrossRef] [PubMed]
- Loison, B.; Moussaddaq, A.-S.; Cormier, J.; Richard, I.; Ferrapie, A.-L.; Ramond, A.; Dinomais, M. Translation and validation of the French Movement Imagery Questionnaire—Revised Second version (MIQ-RS). Ann. Phys. Rehabil. Med. 2013, 56, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Kobelt, M.; Wirth, B.; Schuster-Amft, C. Muscle Activation During Grasping With and Without Motor Imagery in Healthy Volunteers and Patients after Stroke or With Parkinson’s Disease. Front. Psychol. 2018, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Klinkas, M.M.; Nagy, S.N.; Landa, S.U. Systematic review of Spanish outcome measures on motor imagery ability: Use in physical rehabilitation. Rev. Neurol. 2017, 65, 385. [Google Scholar] [CrossRef]
- Caligiore, D.; Mustile, M.; Spalletta, G.; Baldassarre, G. Action observation and motor imagery for rehabilitation in Parkinson’s disease: A systematic review and an integrative hypothesis. Neurosci. Biobehav. Rev. 2017, 72, 210–222. [Google Scholar] [CrossRef]
- Frenkel, M.; Herzig, D.; Gebhard, F.; Mayer, J.; Becker, C.; Einsiedel, T. Mental practice maintains range of motion despite forearm immobilization: A pilot study in healthy persons. J. Rehabil. Med. 2014, 46, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Monaco, M.R.L.; Laudisio, A.; Fusco, D.; Vetrano, D.L.; Ricciardi, D.; Donne, V.D.; Proietti, F.; Zuccalà, G.; Silveri, M.C. Laterality in Parkinson’s disease may predict motor and visual imagery abilities. Funct. Neurol. 2018, 33, 106–111. [Google Scholar] [CrossRef]
- Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol. 2016, 15, 1257–1272. [Google Scholar] [CrossRef]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Griffin, H.J.; Quinn, N.P.; Jahanshahi, M. Quality of life in Parkinson’s disease: The relative importance of the symptoms. Mov. Disord. 2008, 23, 1428–1434. [Google Scholar] [CrossRef]
- Abraham, A.; Hart, A.; Andrade, I.; Hackney, M.E. Dynamic neuro-cognitive imagery improves mental imagery ability, disease severity, and motor and cognitive functions in people with Parkinson’s disease. Neural Plast. 2018, 2018, 6168507. [Google Scholar] [CrossRef]
- Heremans, E.; Nieuwboer, A.; Feys, P.; Vercruysse, S.; Vandenberghe, W.; Sharma, N.; Helsen, W.F. external cueing improves motor imagery quality in patients with parkinson disease. Neurorehabilit. Neural Repair 2012, 26, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Osuagwu, B.A.; Vuckovic, A. Similarities between explicit and implicit motor imagery in mental rotation of hands: An EEG study. Neuropsychologia 2014, 65, 197–210. [Google Scholar] [CrossRef]
- Amick, M.M.; Schendan, H.E.; Ganis, G.; Cronin-Golomb, A. Frontostriatal circuits are necessary for visuomotor transformation: Mental rotation in Parkinson’s disease. Neuropsychologia 2006, 44, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Readman, M.R.; Crawford, T.J.; Linkenauger, S.A.; Bek, J.; Poliakoff, E. Motor imagery vividness and symptom severity in Parkinson’s disease. J. Neuropsychol. 2022, 17, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. S1), 31–34. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. MovementDisorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Gregg, M.; Hall, C.; Butler, A. The MIQ-RS: A Suitable Option for Examining Movement Imagery Ability. Evid.-Based Complement. Altern. Med. 2010, 7, 249–257. [Google Scholar] [CrossRef]
- Malouin, F.; Richards, C.L.; Jackson, P.L.; Lafleur, M.F.; Durand, A.; Doyon, J. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for Assessing Motor Imagery in Persons with Physical Disabilities: A Reliability and Construct Validity Study. J. Neurol. Phys. Ther. 2007, 31, 20–29. [Google Scholar] [CrossRef]
- Moreno-Verdú, M.; Ferreira-Sánchez, M.D.R.; Martín-Casas, P.; Atín-Arratibel, M.D.L. Test-Retest Reliability and Criterion Validity of the Spanish Version of Two Motor Imagery Questionnaires in People With Parkinson Disease. J. Neurol. Phys. Ther. 2023, 47, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Annweiler, C.; Assal, F.; Bridenbaugh, S.; Herrmann, F.R.; Kressig, R.W.; Allali, G. Imagined Timed Up & Go test: A new tool to assess higher-level gait and balance disorders in older adults? J. Neurol. Sci. 2010, 294, 102–106. [Google Scholar] [CrossRef]
- Beauchet, O.; Launay, C.P.; Sejdić, E.; Allali, G.; Annweiler, C. Motor imagery of gait: A new way to detect mild cognitive impairment? J. Neuroeng. Rehabil. 2014, 11, 66. [Google Scholar] [CrossRef]
- Greiner, J.; Schoenfeld, M.A.; Liepert, J. Assessment of mental chronometry (MC) in healthy subjects. Arch. Gerontol. Geriatr. 2014, 58, 226–230. [Google Scholar] [CrossRef]
- Desrosiers, J.; Bravo, G.; Hébert, R.; Dutil, É.; Mercier, L. Validation of the Box and Block Test as a measure of dexterity of elderly people: Reliability, validity, and norms studies. Arch. Phys. Med. Rehabil. 1994, 75, 751–755. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & go test, and gait speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar] [CrossRef]
- Hoops, S.; Nazem, S.; Siderowf, A.D.; Duda, J.E.; Xie, S.X.; Stern, M.B.; Weintraub, D. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology 2009, 73, 1738–1745. [Google Scholar] [CrossRef]
- Dal Bello-Haas, V.; Klassen, L.; Sheppard, M.S.; Metcalfe, A. Psychometric properties of activity, self-efficacy, and quality-of-life measures in individuals with parkinson disease. Physiother. Can. 2011, 63, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Vilagut, G.; Ferrer, M.; Rajmil, L.; Rebollo, P.; Permanyer-Miralda, G.; Quintana, J.M.; Santed, R.; Valderas, J.M.; Ribera, A.; Domingo-Salvany, A.; et al. El Cuestionario de Salud SF-36 español: Una década de experiencia y nuevos desarrollos. Gac. Sanit. 2005, 19, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Mena, M.A.; Casarejos, M.J.; Solano, R.M.; De Yébenes, J.G. Half a century of L-DOPA. Curr. Top. Med. Chem. 2009, 9, 880–893. [Google Scholar] [CrossRef] [PubMed]
- Jackson, P.L.; Lafleur, M.F.; Malouin, F.; Richards, C.; Doyon, J. Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch. Phys. Med. Rehabil. 2001, 82, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzese, G.; Avanzino, L.; Marchese, R.; Pelosin, E. Action Observation and Motor Imagery: Innovative Cognitive Tools in the Rehabilitation of Parkinson’s Disease. Park. Dis. 2015, 2015, 124214. [Google Scholar] [CrossRef]
- Guillot, A.; Collet, C.; Nguyen, V.A.; Malouin, F.; Richards, C.; Doyon, J. Functional neuroanatomical networks associated with expertise in motor imagery. NeuroImage 2008, 41, 1471–1483. [Google Scholar] [CrossRef]
- Takakusaki, K. Neurophysiology of gait: From the spinal cord to the frontal lobe. Mov. Disord. 2013, 28, 1483–1491. [Google Scholar] [CrossRef]
- Takakusaki, K. Functional Neuroanatomy for Posture and Gait Control. J. Mov. Disord. 2017, 10, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Rozand, V.; Lebon, F.; Stapley, P.J.; Papaxanthis, C.; Lepers, R. A prolonged motor imagery session alter imagined and actual movement durations: Potential implications for neurorehabilitation. Behav. Brain Res. 2016, 297, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, U.; Hazarika, S.M.; Gan, J.Q. Motor imagery and mental fatigue: Inter-relationship and EEG based estimation. J. Comput. Neurosci. 2019, 46, 55–76. [Google Scholar] [CrossRef] [PubMed]
- Solodkin, A.; Hlustik, P.; Chen, E.E.; Small, S.L. Fine Modulation in Network Activation during Motor Execution and Motor Imagery. Cereb. Cortex 2004, 14, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Paris-Alemany, A.; La Touche, R.; Agudo-Carmona, D.; Fernández-Carnero, J.; Gadea-Mateos, L.; Suso-Martí, L.; Cuenca-Martínez, F. Visual motor imagery predominance in professional Spanish dancers. Somatosens. Mot. Res. 2019, 36, 179–188. [Google Scholar] [CrossRef]
- Gabbard, C.; Lee, J.; Caçola, P. Role of working memory in transformation of visual and motor representations for use in mental simulation. Cogn. Neurosci. 2013, 4, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Malouin, F.; Belleville, S.; Richards, C.L.; Desrosiers, J.; Doyon, J. Working Memory and Mental Practice Outcomes after Stroke. Arch. Phys. Med. Rehabil. 2004, 85, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Schott, N. Age-related differences in motor imagery: Working memory as a mediator. Exp. Aging Res. 2012, 38, 559–583. [Google Scholar] [CrossRef]
- Dominey, P.; Decety, J.; Broussolle, E.; Chazot, G.; Jeannerod, M. Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson’s patients. Neuropsychologia 1995, 33, 727–741. [Google Scholar] [CrossRef]
- Verreyt, N.; Nys, G.M.S.; Santens, P.; Vingerhoets, G. Cognitive differences between patients with left-sided and right-sided Parkinson’s disease. A review. Neuropsychol. Rev. 2011, 21, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, F.; Schuster-Amft, C. Using an interactive virtual environment to integrate a digital Action Research Arm Test, motor imagery and action observation to assess and improve upper limb motor function in patients with neuromuscular impairments: A usability and feasibility study protocol. BMJ Open 2018, 8, e019646. [Google Scholar] [CrossRef]
- Santiago, L.M.; de Oliveira, D.A.; de Macêdo Ferreira, L.G.; de Brito Pinto, H.Y.; Spaniol, A.P.; de Lucena Trigueiro, L.C.; Ribeiro, T.S.; de Sousa, A.V.; Piemonte, M.E.; Lindquist, A.R. Immediate effects of adding mental practice to physical practice on the gait of individuals with Parkinson’s disease: Randomized clinical trial. NeuroRehabilitation 2015, 37, 263–271. [Google Scholar] [CrossRef]
- Nicholson, V.P.; Keogh, J.W.; Choy, N.L.L. Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial. Clin. Interv. Aging 2018, 13, 713–722. [Google Scholar] [CrossRef]
- Nicholson, V.; Watts, N.; Chani, Y.; Keogh, J.W. Motor imagery training improves balance and mobility outcomes in older adults: A systematic review. J. Physiother. 2019, 65, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Guerra, Z.F.; Lucchetti, A.L.G.; Lucchetti, G. Motor Imagery Training After Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Neurol. Phys. Ther. 2017, 41, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Pickett, K.A.; Peterson, D.S.; Earhart, G.M. Motor Imagery of gait tasks in individuals with Parkinson disease. J. Park. Dis. 2012, 2, 19–22. [Google Scholar] [CrossRef]
- Tamir, R.; Dickstein, R.; Huberman, M. Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson’s disease. Neurorehabilit. Neural Repair 2007, 21, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Alves Da Rocha, P.; McClelland, J.; Morris, M.E. Complementary physical therapies for movement disorders in Parkinson’s disease: A systematic review. Eur. J. Phys. Rehabil. Med. 2015, 51, 693–704. [Google Scholar] [CrossRef]
- Delabary, M.d.S.; Komeroski, I.G.; Monteiro, E.P.; Costa, R.R.; Haas, A.N. Effects of dance practice on functional mobility, motor symptoms and quality of life in people with Parkinson’s disease: A systematic review with meta-analysis. Aging Clin. Exp. Res. 2018, 30, 727–735. [Google Scholar] [CrossRef]
- Šumec, R.; Filip, P.; Sheardová, K.; Bareš, M. Psychological Benefits of Nonpharmacological Methods Aimed for Improving Balance in Parkinson’s Disease: A Systematic Review. Behav. Neurol. 2015, 2015, 620674. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.; Nelissen, P.; Siemonsma, P.; Lucas, C. The effect of functional-task training on activities of daily living for people with Parkinson’s disease, a systematic review with meta-analysis. Complement. Ther. Med. 2019, 42, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Flynn, A.; E Allen, N.; Dennis, S.; Canning, C.G.; Preston, E. Home-based prescribed exercise improves balance-related activities in people with Parkinson’s disease and has benefits similar to centre-based exercise: A systematic review. J. Physiother. 2019, 65, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Bek, J.; Arakaki, A.I.; Lawrence, A.; Sullivan, M.; Ganapathy, G.; Poliakoff, E. Dance and Parkinson’s: A review and exploration of the role of cognitive representations of action. Neurosci. Biobehav. Rev. 2020, 109, 16–28. [Google Scholar] [CrossRef]
- Abraham, A.; Duncan, R.P.; Earhart, G.M. The Role of Mental Imagery in Parkinson’s Disease Rehabilitation. Brain Sci. 2021, 11, 185. [Google Scholar] [CrossRef]
- Bek, J.; Humphries, S.; Poliakoff, E.; Brady, N. Mental rotation of hands and objects in ageing and Parkinson’s disease: Differentiating motor imagery and visuospatial ability. Exp. Brain Res. 2022, 240, 1991–2004. [Google Scholar] [CrossRef] [PubMed]
- Helmich, R.C.; de Lange, F.P.; Bloem, B.R.; Toni, I. Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia 2007, 45, 2201–2215. [Google Scholar] [CrossRef] [PubMed]
- Nishida, D.; Mizuno, K.; Yamada, E.; Tsuji, T.; Hanakawa, T.; Liu, M. Correlation between the brain activity with gait imagery and gait performance in adults with Parkinson’s disease: A data set. Data Brief 2021, 36, 106993. [Google Scholar] [CrossRef]
- Sarasso, E.; Agosta, F.; Piramide, N.; Gardoni, A.; Canu, E.; Leocadi, M.; Castelnovo, V.; Basaia, S.; Tettamanti, A.; Volontè, M.A.; et al. Action Observation and Motor Imagery Improve Dual Task in Parkinson’s Disease: A Clinical/fMRI Study. Mov. Disord. 2021, 36, 2569–2582. [Google Scholar] [CrossRef]
PD Group (n = 31) | HC Group (n = 31) | p-Value | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Age, years | 73.61 | 7.08 | 73.32 | 8.16 | 0.583 |
Disease duration, years | 9.13 | 6.12 | NA | NA | - |
MDS-UPDRS Total Score | 57.77 | 17.29 | NA | NA | - |
MDS-UPDRS Part I | 12.74 | 6.39 | NA | NA | - |
MDS-UPDRS Part II | 15.71 | 6.46 | NA | NA | - |
MDS-UPDRS Part III | 25.32 | 7.76 | NA | NA | - |
MDS-UPDRS Part IV | 4.01 | 3.35 | NA | NA | - |
Berg Balance Scale | 48.9 | 8.14 | 54.68 | 1.96 | <0.001 * |
Timed Up and Go Test | 10.13 | 4.59 | 8.47 | 2.86 | 0.093 |
Box and Blocks Test, dominant side | 37.32 | 8.31 | 47.9 | 11.03 | 0.011 * |
Box and Blocks Test, non-dominant side | 35.29 | 8.93 | 46.13 | 11.55 | 0.143 |
Box and Blocks Test, most affected side | 35.71 | 9.11 | NA | NA | - |
Box and Blocks Test, less affected side | 36.9 | 8.19 | NA | NA | - |
SF-36 Physical Scale, Total | 46.05 | 18.05 | 78.55 | 10.11 | <0.001 * |
SF-36 Mental Scale, Total | 56.97 | 19.14 | 75.96 | 17.67 | <0.001 * |
SF-36 Physical Functioning | 50.65 | 26.26 | 87.42 | 13.9 | <0.001 * |
SF-36 Role Physical | 47.58 | 39.45 | 92.74 | 17.31 | <0.001 * |
SF-36 Bodily Pain | 54.35 | 22.56 | 82.58 | 15.61 | <0.001 * |
SF-36 General Health | 43.06 | 14.47 | 66.61 | 16.3 | <0.001 * |
SF-36 Vitality | 48.87 | 14.82 | 67.74 | 16.27 | <0.001 * |
SF-36 Social Functioning | 63.31 | 23.48 | 85.48 | 19.66 | <0.001 * |
SF-36 Role Emotional | 53.77 | 46.09 | 86.02 | 30.76 | 0.005 * |
SF-36 Mental Health | 62.84 | 16.56 | 72.65 | 19.27 | 0.032 * |
MoCA | 24.35 | 2.69 | 27.1 | 2.05 | <0.001 * |
n | % | n | % | - | |
Gender, females (%) | 13 | 41.9 | 13 | 41.9 | 1.000 |
Dominant side, right (%) | 31 | 100 | 31 | 100 | 1.000 |
Hoehn and Yahr Stage 1, n (%) | 1 | 3.2 | NA | NA | - |
Hoehn and Yahr Stage 1.5, n (%) | 5 | 16.1 | NA | NA | - |
Hoehn and Yahr Stage 2, n (%) | 5 | 16.1 | NA | NA | - |
Hoehn and Yahr Stage 2.5, n (%) | 8 | 25.8 | NA | NA | - |
Hoehn and Yahr Stage 3, n (%) | 12 | 38.7 | NA | NA | - |
Schwab and England Scale 40%, n (%) | 1 | 3.2 | - | - | - |
Schwab and England Scale 60%, n (%) | 2 | 6.5 | - | - | - |
Schwab and England Scale 70%, n (%) | 3 | 9.7 | - | - | - |
Schwab and England Scale 80%, n (%) | 10 | 32.3 | 1 | 3.2 | - |
Schwab and England Scale 90%, n (%) | 14 | 45.2 | - | - | - |
Schwab and England Scale 100%, n (%) | 1 | 3.2 | 30 | 96.8 | - |
Most affected side, right (%) | 11 | 35.4 | NA | NA | - |
Most affected side, left (%) | 15 | 48.4 | NA | NA | - |
Most affected side, bilateral (%) | 5 | 16.2 | NA | NA | - |
PD Group (n = 31) | HC Group (n = 31) | p-Value | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
MIQ-RS Total | 72.77 | 19.97 | 77.19 | 22.91 | 0.106 |
MIQ-RS Visual Subscale | 36.84 | 11.62 | 39.29 | 12.6 | 0.090 |
MIQ-RS Kinaesthetic Subscale | 35.94 | 10.65 | 37.90 | 11.64 | 0.203 |
KVIQ-34 Total | 123.03 | 34.95 | 126.65 | 34.22 | 0.682 |
KVIQ-34 Visual Subscale, Total | 61.35 | 21.46 | 65.65 | 21.74 | 0.283 |
KVIQ-34 Kinaesthetic Subscale, Total | 61.68 | 17.7 | 61.00 | 18.87 | 0.811 |
KVIQ-34 Visual Subscale, dominant side | 25.35 | 8.85 | 27.39 | 9.09 | 0.171 |
KVIQ-34 Visual Subscale, non-dominant side | 25.87 | 9.04 | 27.23 | 9.29 | 0.363 |
KVIQ-34 Visual Subscale, most affected side | 25.90 | 8.93 | NA | NA | - |
KVIQ-34 Visual Subscale, less affected side | 25.32 | 8.96 | NA | NA | - |
KVIQ-34 Kinaesthetic Subscale, dominant side | 25.84 | 7.59 | 25.13 | 8.08 | 0.777 |
KVIQ-34 Kinaesthetic Subscale, non-dominant side | 25.68 | 7.25 | 25.03 | 8.1 | 0.767 |
KVIQ-34 Kinaesthetic Subscale, most affected side | 25.94 | 7.5 | NA | NA | - |
KVIQ-34 Kinaesthetic Subscale, less affected side | 25.58 | 7.33 | NA | NA | - |
iTUG, seconds | 3.67 | 3.05 | 3.34 | 2.24 | 0.632 |
iBBT dominant side, seconds | 6.15 | 4.22 | 3.85 | 2.79 | 0.014 * |
iBBT non-dominant side, seconds | 6.93 | 5.59 | 4.15 | 3.18 | 0.017 * |
iBBT most affected side, seconds | 6.54 | 4.75 | NA | NA | - |
iBBT less affected side, seconds | 6.21 | 4.84 | NA | NA | - |
iTUG, percentage | 35.58 | 20.07 | 37.67 | 18.01 | 0.667 |
iBBT dominant side, percentage | 21.59 | 14.25 | 17.67 | 12.65 | 0.257 |
iBBT non-dominant side, percentage | 23.05 | 16.44 | 16.49 | 11.67 | 0.087 |
iBBT most affected side, percentage | 22.45 | 16.19 | NA | NA | - |
iBBT less affected side, percentage | 21.22 | 13.83 | NA | NA | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira-Sánchez, M.d.R.; Moreno-Verdú, M.; Atín-Arratibel, M.d.l.Á.; Martín-Casas, P. Differences in Motor Imagery Ability between People with Parkinson’s Disease and Healthy Controls, and Its Relationship with Functionality, Independence and Quality of Life. Healthcare 2023, 11, 2898. https://doi.org/10.3390/healthcare11212898
Ferreira-Sánchez MdR, Moreno-Verdú M, Atín-Arratibel MdlÁ, Martín-Casas P. Differences in Motor Imagery Ability between People with Parkinson’s Disease and Healthy Controls, and Its Relationship with Functionality, Independence and Quality of Life. Healthcare. 2023; 11(21):2898. https://doi.org/10.3390/healthcare11212898
Chicago/Turabian StyleFerreira-Sánchez, María del Rosario, Marcos Moreno-Verdú, María de los Ángeles Atín-Arratibel, and Patricia Martín-Casas. 2023. "Differences in Motor Imagery Ability between People with Parkinson’s Disease and Healthy Controls, and Its Relationship with Functionality, Independence and Quality of Life" Healthcare 11, no. 21: 2898. https://doi.org/10.3390/healthcare11212898
APA StyleFerreira-Sánchez, M. d. R., Moreno-Verdú, M., Atín-Arratibel, M. d. l. Á., & Martín-Casas, P. (2023). Differences in Motor Imagery Ability between People with Parkinson’s Disease and Healthy Controls, and Its Relationship with Functionality, Independence and Quality of Life. Healthcare, 11(21), 2898. https://doi.org/10.3390/healthcare11212898