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Abstract: Background: Endodontic shaping causes stress and strain in the root canal dentin. Dentin
microcracks have the potential to be later followed by root fractures occurring under the occlusal
load. The aim of our research was to theoretically determine the values of such dentinal states of
stress and strain during the endodontic shaping of curved root canals using finite element analysis
(FEA). Methods: To highlight the stress concentrations in dentin, two geometric models were created
considering the volume of the curved dental root and the contact between the endodontic file and the
root canal walls. The application of forces with different values was simulated both on a uniform
curved root canal and on a root canal with an apical third curvature of 25◦ as they would be applied
during the preparation of a root canal. Results: In the case of the first model, which was acted upon
with a force of 5 N, the deformations of the root canal appeared along the entire working length,
reaching the highest values in the apical third of the root, although there were no geometric changes
in the shape of the root canal. Regarding the second root model, with an apical third curvature of 25◦,
although the applied force was 2 N, the deformations were accompanied by geometric changes in the
shape of the root, especially in the upper part of the apical third. At a higher force of 7 N exerted
on the endodontic file, the geometric shape changed, and the deformation reached extreme critical
values. The resulting tensile stresses appearing in the experimental structure varied similarly to the
deformations. Conclusions: Significant stress and strain can develop, especially in the apical third of
curved root canals during their shaping, and the risk of cracks is higher for endodontically treated
teeth presenting severe curvatures in the apical third of the root.

Keywords: endodontics; finite element analysis; endodontically treated teeth; dentin; stress; strain;
microcrack; dental root canal

1. Introduction

Endodontic treatment may fail due to various extrinsic and intrinsic microbial and
nonmicrobial factors. In the hierarchy of etiologies of endodontic failure, the literature
places the persistence of microbial infection in the intra- or periradicular areas first [1];
however, procedural mechanical errors, often affecting inflamed and modified fields,
such as the structure of root canal wall dentin due to pulp pathology [2], are also highly
responsible for short- or long-term complications in the complex root canal space. The
latest generation of scanning microscopy shows irregular and wide structural variation
in the dentin structure, especially in the middle and apical regions [3], and these data are
carefully considered in the minimally invasive and risk-free shaping concepts of current
endodontics [4]. The continuous development of endodontic instruments aims to achieve
increased efficiency while minimizing the risks that may occur during root canal shaping
in the chemo-mechanical step of the treatment. The introduction, development, and
diversification of various rotary nickel–titanium file systems have made it feasible to achieve
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this goal. These instruments are superelastic and employ certain torque and speed values
and different types of rotational motion (constant, reciprocating motion), thus allowing the
endodontist to successfully cope with the frequent critical clinical situations involving the
unfavorable anatomical configurations of root canals, as in the case of narrower or multiple
curved root canals, etc.

Despite the continuous development of new generations of endodontic instruments,
with constant improvements concerning the type of rotation, the metallurgical properties
of the nickel–titanium alloy used, and the design of the file, stress and strain will inevitably
appear in the root dentin, thus leading to the appearance of microcracks. Not infrequently,
under the action of excessive occlusal forces, these can evolve into root fractures [5]. Es-
pecially when the tensile stress exerted by endodontic instruments on the dentin exceeds
the value of the tensile strength of the dentin, the probability of the appearance of dentinal
cracks becomes a certainty [6].

These dentin microcracks cause stress concentration areas, which are due to elements
that are particularly relevant to the endodontic file used, including an active or inactive tip
and the taper, cross-section, pitch, flute, helical angle, cutting angle, and rake angle. The
stress concentration on the dentin walls, associated with the risk of cracks at this level, is
exacerbated by endodontic instruments with active tips and aggressive cutting contours
(which tend to have a screwing effect in the root dentin), those with increased tapering, and
those that can cause the accumulation of debris [7]. The removal of root-filling materials
can cause additional stress during endodontic retreatment [8], and the type of occlusion
and the occlusal load are other variables that can influence the level of dentinal stress [9]. A
rotary system consisting of a single engine-driven endodontic file has a higher taper, and
although the instrument has periodic clearance at the root canal walls, it can also cause
dentin microcracks.

The parameters that define the rotational movement of the instrument, such as speed
and torque, are also related to microcracks, and their increase is directly proportional to the
number of dentinal microcracks [10].

The internal characteristics of dentin, which presents a hierarchical composite struc-
ture, dictate the effects of the stress exerted on the root canal. Other variables must be
considered, such as the vitality of the teeth, the time of the endodontic treatment, pre-
existing root canal treatments, and the age of the patient. All of this implies different
levels of dentine dehydration, which starts with the onset of pulp pathology and increases
with the removal of the pulp [11,12]; changes in the mechanical properties of dentin due
to the effect of root canal irrigants [13], root canal chemical treatment, and endodontic
fillings [14]; and the obstruction of the dentin tubules with age, resulting in a decrease in
the effectiveness of mechanisms involved in preserving dentin resistance [15–18] compared
to the capacity of young, opened dentinal tubules to deflect, disperse, and induce the
branching of microcracks [19].

So-called dentine defects [20] have a crucial role in the appearance of root microcracks
because they facilitate the accumulation of stress during root canal instrumentation [21–23].
In addition, the relatively recently determined value of the tensile strength of dentin, about
106 MPa, is three times lower than the stress generated by rotary files on the root dentin [24],
which facilitates the development of microcracks. The occlusal forces transmitted through
crowns or prosthetic root restorations in the case of teeth with root canal treatments facilitate
the development of dentine microcracks even further [25]. The greatest risk of vertical
root fracture occurs as the sum of the effects of ductile fractures in the inter-tubular dentin
and brittle cracks in the peritubular dentin increases [26], which, in most cases, requires
tooth extraction.

The increased interest of endodontists in the in vitro visualization of dentin defects
after root canal treatment has thus led, in the last two decades, to the use of numerous
complementary methods, such as LED transillumination [20], thermography [27], scanning
electron microscopy [28], and many other imaging scans [29–32], although none of them
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are reliable in presenting the stress and dentinal deformation developed during root
canal instrumentation.

A different approach was therefore required to identify and pinpoint the stresses
exerted on the root canal dentin during endodontic instrumentation.

Starting from this objective, the finite element analysis (FEA) technique was initially
developed in the 1950s for its application in the aeronautical industry [33] and was used
afterward by civil engineers for the numerical analysis of stress distribution and concen-
tration depending on the material properties and loading conditions, thus becoming an
extremely feasible technique in determining the behavior of devices or structures under
different circumstances [34]. The step from engineering purposes to simulation-based
medicine and the development of complex computer models of biological structures was
made two decades later, i.e., in the early 1970s [35]. Since then, FEA has been used to
evaluate stresses in a variety of fields of clinical medicine, such as cardiology [36] and ortho-
pedic surgery [37,38], as well as numerous specialties of dental medicine, such as oral and
maxillofacial radiology [39], oral implantology [40], and restorative dentistry. Restorative
dentistry refers to the diagnosis and treatment of diseases of the teeth and their supporting
structures for the functional and esthetic purposes of an individual. Restorative dentistry
therefore includes various other dental fields, such as prosthodontics, periodontics, and
endodontics [41]; in each of these fields, FEA has been and continues to be extensively used.

Especially in the last two decades, FEA has become an important research tool in the
field of rotary endodontics [42]. It has made an important contribution to the investigation
and evaluation of the clinical performance of various nickel–titanium rotary instruments,
such as their superelasticity, toughness, cyclic fatigue resistance, shape memory, torsional
strength, etc. The benefits of using FEA for endodontics include the use of discretization for
the precise modeling of the complicated geometry of the instruments and of the root canals.
The term refers to the subdivision of a continuous structure, such as an endodontic file or a
dental root, into simple geometric shapes called elements [43], which are interconnected in
their outer nodes and therefore prepared for introduction into the analysis.

FEA has also been successfully used in endodontics to quantify and analyze the stress
distribution introduced into the root canal [44] during its shaping by endodontic files.
Using this method, our research aimed to determine and analyze the stress and strain
states generated by endodontic instruments on the dentin walls of curved root canals to
predict the treatment outcomes in clinical cases showing a high degree of difficulty. More
specifically, we evaluated the tensile stress, which is defined as the stress that tends to stretch
or lengthen the material (in our case, the root dentin), and the strain, which is measured as
the deformation of a solid (also root dentin), during endodontic instrumentation.

2. Materials and Methods

Since the experimental determination of the dentinal stress and strain occurring during
endodontic shaping is difficult to achieve, FEA was preferred by the authors to obtain
reliable results. Thus, two mathematical models, one of a unique, uniform curved root canal
and one of a root canal with an apical third curvature of 25◦, were created, and a series of
working conditions were simulated. The stress and dentinal deformation that occur during
the application of different forces in the long axis of the root were monitored, analyzed, and
compared. We considered the following data concerning the rotational movement of the
endodontic file: a 360-degree continuous rotational movement at 300 RPM, with a mean
torque value of 3 N/cm. Three states of stress were further established, considering the
possible forces applied by the clinician on the canal walls when using rotary endodontic
files, with values of 5 N, 2 N, and 7 N, respectively. We started from the premise of applying
a force at a constant value over the entire working length of the root canal in its coronal,
middle, and apical thirds. For the first model, we tested an average force value applied to
the endodontic instrument, and for the model with accentuated apical curvature, we used
the minimum and maximum possible values, according to the literature for these rotary
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systems [45,46], generated during the continuous 360-degree rotation at 300 RPM of the
endodontic instrument in the root canal.

The theoretical determination of the states of stress and strain (S) was based upon
modeling the process using FEA Tool Multiphysics version 1.10 and ANSYS 19.1 (Inc.,
Canonsburg, PA, USA), the corresponding software. In terms of contemporary endodontic
instrumentation, although they are based on a multitude of rotary systems [47], FEA
experimental studies are carried out in a similar way [48].

Knowing the magnitude of the dentinal stress developed during root canal shaping
is necessary because when its value exceeds the tensile strength, i.e., the elastic modulus
(Table 1), dentinal microcracks and eventually even cracks will develop, as previously
demonstrated [49].

Table 1. Mechanical properties of dentin.

Properties Value

Elastic modulus—Young’s modulus 19.794 ± 0.93 GPa [50]

Hardness 0.65 ± 0.52 GPa [50]

Density 2.12 ± 0.1874 g/cm3 [51]

Poisson’s ratio 0.29–0.31 [52,53]

In our study, we first used FEA to simulate the volumetric (Figure 1) and geometric
characteristics (Figure 2) of the whole tooth and of the root canal, respectively.

Healthcare 2023, 11, x FOR PEER REVIEW 4 of 16 
 

 

apical curvature, we used the minimum and maximum possible values, according to the 
literature for these rotary systems [45,46], generated during the continuous 360-degree 
rotation at 300 RPM of the endodontic instrument in the root canal.  

The theoretical determination of the states of stress and strain (S) was based upon 
modeling the process using FEA Tool Multiphysics version 1.10 and ANSYS 19.1 (Inc., 
Canonsburg, PA, USA), the corresponding software. In terms of contemporary endodontic 
instrumentation, although they are based on a multitude of rotary systems [47], FEA ex-
perimental studies are carried out in a similar way [48]. 

Knowing the magnitude of the dentinal stress developed during root canal shaping 
is necessary because when its value exceeds the tensile strength, i.e., the elastic modulus 
(Table 1), dentinal microcracks and eventually even cracks will develop, as previously 
demonstrated [49]. 

Table 1. Mechanical properties of dentin. 

Properties Value 
Elastic modulus—Young�s modulus  19.794 ± 0.93 GPa [50] 

Hardness  0.65 ± 0.52 GPa [50] 
Density 2.12 ± 0.1874 g/cm3 [51] 

Poisson�s ratio 0.29–0.31 [52,53] 

In our study, we first used FEA to simulate the volumetric (Figure 1) and geometric 
characteristics (Figure 2) of the whole tooth and of the root canal, respectively. 

 
Figure 1. Dental volume geometry. 

 
Figure 2. Root canal geometry. 

The desired geometric models were then created and discretized, and the working 
conditions were introduced and exported for FEA. Thus, the following work sequences 
were completed. 

2.1. Discretization of the Tooth Structure and Root Canal 
According to various Cone-Beam Computed and Micro-Computed Tomography 

studies [54,55], we considered the root canal cross-section to be a spline curve (Figure 3) 
with the ideal diameter of the apical constriction Φc = 0.15 mm [56]. The forces exerted by 

Figure 1. Dental volume geometry.

Healthcare 2023, 11, x FOR PEER REVIEW 4 of 16 
 

 

apical curvature, we used the minimum and maximum possible values, according to the 
literature for these rotary systems [45,46], generated during the continuous 360-degree 
rotation at 300 RPM of the endodontic instrument in the root canal.  

The theoretical determination of the states of stress and strain (S) was based upon 
modeling the process using FEA Tool Multiphysics version 1.10 and ANSYS 19.1 (Inc., 
Canonsburg, PA, USA), the corresponding software. In terms of contemporary endodontic 
instrumentation, although they are based on a multitude of rotary systems [47], FEA ex-
perimental studies are carried out in a similar way [48]. 

Knowing the magnitude of the dentinal stress developed during root canal shaping 
is necessary because when its value exceeds the tensile strength, i.e., the elastic modulus 
(Table 1), dentinal microcracks and eventually even cracks will develop, as previously 
demonstrated [49]. 

Table 1. Mechanical properties of dentin. 

Properties Value 
Elastic modulus—Young�s modulus  19.794 ± 0.93 GPa [50] 

Hardness  0.65 ± 0.52 GPa [50] 
Density 2.12 ± 0.1874 g/cm3 [51] 

Poisson�s ratio 0.29–0.31 [52,53] 

In our study, we first used FEA to simulate the volumetric (Figure 1) and geometric 
characteristics (Figure 2) of the whole tooth and of the root canal, respectively. 

 
Figure 1. Dental volume geometry. 

 
Figure 2. Root canal geometry. 

The desired geometric models were then created and discretized, and the working 
conditions were introduced and exported for FEA. Thus, the following work sequences 
were completed. 

2.1. Discretization of the Tooth Structure and Root Canal 
According to various Cone-Beam Computed and Micro-Computed Tomography 

studies [54,55], we considered the root canal cross-section to be a spline curve (Figure 3) 
with the ideal diameter of the apical constriction Φc = 0.15 mm [56]. The forces exerted by 
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The desired geometric models were then created and discretized, and the working
conditions were introduced and exported for FEA. Thus, the following work sequences
were completed.

2.1. Discretization of the Tooth Structure and Root Canal

According to various Cone-Beam Computed and Micro-Computed Tomography stud-
ies [54,55], we considered the root canal cross-section to be a spline curve (Figure 3) with
the ideal diameter of the apical constriction Φc = 0.15 mm [56]. The forces exerted by the
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multiple endodontic rotary files used during root canal shaping act evenly upon the root
canal dentin.

Healthcare 2023, 11, x FOR PEER REVIEW 5 of 16 
 

 

the multiple endodontic rotary files used during root canal shaping act evenly upon the 
root canal dentin. 

 
Figure 3. Discretization of the tooth structure and root canal. 

The second simulation used a model considering an apical root canal curvature of 25° 
with respect to the long axis with the volumetric geometry shown in Figure 4. 

  

(a)  (b) 

Figure 4. The root canal with an apical third curvature of 25°. (a) Volumetric image; (b) image of the 
root canal.  

2.2. Establishing the Working Premises 
In this study, the contact between the endodontic instrument and the root canal den-

tin was ideally considered to be continuous on the whole circumference of its cross-section, 
thus allowing the existence of forces that act uniformly on the dentinal walls along the 
entire length of the root canal (Figure 5). 

  
Figure 5. Application of forces during the root canal preparation. 

2.3. The Embedding of the Dental Root into the Bone Structure 
The graphic image of this implantation in the alveolar bone structure was made as 

previously mentioned, namely, for a single-rooted tooth with a curved canal, as shown in 
Figure 6.  

Figure 3. Discretization of the tooth structure and root canal.

The second simulation used a model considering an apical root canal curvature of 25◦

with respect to the long axis with the volumetric geometry shown in Figure 4.
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2.2. Establishing the Working Premises

In this study, the contact between the endodontic instrument and the root canal dentin
was ideally considered to be continuous on the whole circumference of its cross-section,
thus allowing the existence of forces that act uniformly on the dentinal walls along the
entire length of the root canal (Figure 5).
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2.3. The Embedding of the Dental Root into the Bone Structure

The graphic image of this implantation in the alveolar bone structure was made as
previously mentioned, namely, for a single-rooted tooth with a curved canal, as shown in
Figure 6.
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Figure 6. Embedding the dental root into the bone structure.

3. Results
3.1. Dentinal Stress and Strain Occurring during Endodontic Instrumentation of a Curved
Root Canal

The analysis performed mainly consisted of determining the strain and the state of
stress that appeared in the studied structure by simulating the application of forces with
different values during the shaping of a curved root canal. In the case of applying a force
of 5 N, structural deformations were evident, with higher values in the apical third of the
root (Figure 7).
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Figure 8. The sum of the deformations in the case of application of a force F tot = 5 N.

The consequence of the action of this system of forces was the appearance of an S1-type
tension state in the apical third of the root canal (Figure 9), with a lower value than that
corresponding to the elastic modulus of dentin. The maximum value of the tensile stress
in the curved area was σimax = 0.09 × 108 N/m2. This state of tension, which mainly
assesses the tensile stresses, even if it does not produce geometric changes in the root canal,
generates stresses in the dentin, which must be considered.
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The state of stress along the OY axis is shown in Figure 10; their values are close, with
the maximum also being in the apical third, where the volume of the root canal is smaller
and the risk of cracking is higher. As a result of the action of the system of forces, a state of
deformation (strain) appears in the structure, with higher values in the apical third area
that can reach up to UYmax = 0.05 × 10−4. For better visualization of the state of stress and
strain that occurs, further sections were made in the areas depicted in Figures 10 and 11.
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3.2. Dentinal Stress and Strain Occurring during Endodontic Instrumentation of a Root Canal
with an Apical Third Curvature of 25◦

After the discretization was complete, it was assumed that the acting forces were
axially distributed in each node of the network, with the nodes being unevenly distributed
by the software itself (Figure 12). A force of 14 N acts on each node if a force of 2 N is
applied to the endodontic instrument.
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Figure 12. Force distribution inside the root canal with a 25◦ curvature. (a) Discretization and force
distribution in nodes; (b) section in the apical third.

As a result of the action of the force system, a state of deformation (strain) appears in
the structure (Figure 13a), with much higher values in the apical third (Figure 13b) that can
reach up to UYmax = 0.08 × 10−4.
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A long-axis section through the dental root showing the deformations is depicted in
Figure 14. Due to the action of the endodontic instrument, changes in the shape in the
upper part of the apical third of the root canal can be noticed.
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Figure 14. Long axis showing the structural deformation.

Following the action of the force system on the structure, a state of tension also appears,
with the maximum value of the tensile stresses in the curved area beingσimax = 0.14× 108 N/m2

(Figure 15), a value that cannot be neglected, though not exceeding the breaking strength
corresponding to the elastic modulus of dentin.
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The state of tension of type S2 at the end of the apical third shows the same tendency
toward the narrowing of the root canal (Figure 17).
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Figure 17. State of tension of type S2 at the tip of the apical third of the root canal.

Tensions on the OY axis at the apical constriction clearly show the end of the root canal
(Figure 18). The need to relieve the stress to avoid the development of microcracks over
time and, eventually, cracks in the dentine becomes obvious in this situation.
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Figure 18. Stress map in the OY direction in the apical zone.

If a force with a value of 7 N is exerted on the endodontic file, each node of the network
will show a total resulting force F tot = 54 N (Figure 19). This value is an unusual one and
leads to the deformation of the structure up to a maximum value of UYmax = 0.3 × 10−4.
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Figure 19. Deformations along the root canal in the case of total loading F tot = 54 N; UYmax = 0.3 × 10−4.

The state of stress that appears under the action of the system of forces on the
dentin–endodontic instrument interface is shown in Figure 20. The magnitudes of the
main S1 stresses in the apical third area, with a maximum value of tensile stress of
σimax = 0.49 × 108 N/m2, are similar to those of SY stresses at the curvature level, almost
completely covering the end of the root canal.
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Figure 20. Stress map in the root canal: (a) SY stress along the curvature; (b) SY stress in the apical
third; (c) SY stress at the apex.

For a better visualization, all of these results are included in Table 2.

Table 2. Stress and strain developed in the investigated root canal models.

Root Model Force Applied Stress
(Tensile Stress)

Strain
(Deformation)

1. Root canal with
uniform curvature 5 N 0.09 × 108 N/m2 0.05 × 10−4

2. Root canal with 25◦ curvature in
the apical third

2 N 0.14 × 108 N/m2 0.08 × 10−4

7 N 0.49 × 108 N/m2 0.3 × 10−4
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4. Discussion

Root canal curvatures are present in most teeth [57], including anterior but mainly
posterior ones, always posing a major challenge to clinicians during endodontic treatment,
regardless of the shaping technique being used. The most common iatrogenic endodontic
complications, such as blockages, lacerations, and root canal perforations [58], are usually
observed with the use of improper instrumentation techniques, especially through the
inaccurate handling of endodontic instruments [57] and the application of excessive forces.

In this regard, the axial and rotational movements of the endodontic instrument in the
root canal have the most important impact on the apical third because the largest values of
friction with the dentin walls occur at this level. Maximum stress and strain will develop
due to cyclic bending and thus implicit alternating elongations and compressions of the
endodontic instrument, depending on its direction of rotation and position with respect to
the root canal curvature, and also due to the forces exerted on the endodontic instrument.
The tensions occurring in the dentinal structure during root canal shaping are therefore
necessary to consider because their overlapping with those due to the occlusal load can
possibly overcome the breaking strength of the tooth structure and thus lead to cracks or
even root fractures.

The root canal geometry is particularly complex, displaying curvatures along all three
axes [59]. The root canal curvatures can be further differentiated based on the angle of
curvature, such as straight (5◦ or less), moderate (10–20◦), and severe (25–70◦) [60]. Each
root canal therefore has unique particularities concerning the shape and dimensions; from
this point of view, designing a valid universal model appears to be virtually impossible.
During root canal instrumentation, the action of the endodontic instrument is especially
exercised in the curvature area in an uneven way, with a tendency to block its tip in the
apical third and leave the canal unshaped in this area. The action of shaping is amplified
on the inner curvature of the root canal.

In our FEA study, the working conditions consisted of the application of different
forces on the endodontic instruments developed at the interface between the endodontic
file and the root canal walls, preceded by the mathematical determination of the tooth’s
embedment area in the bone structure. We considered stress and strain distributions during
the use of endodontic instrumentation in two selected root canal models: one simulating
a single uniformly curved root canal and another single curved root canal with an apical
third curvature of 25◦. In the case of the first experimental model, when applying a force of
5 N, the root canal deformations appeared along the entire working length, reaching the
highest values in the apical third of the root. These values did not, however, exceed the
elastic modulus of dentin and thus were not accompanied by any geometric changes in the
shape of the root canal. Regarding the second root model, with an apical third curvature
of 25◦, although the applied force was less than half of the first one, i.e., only 2 N, the
deformations were accompanied by geometric changes in the dental root, especially in
the upper part of its apical third. With a higher force of 7 N exerted on the endodontic
instrument, the geometric shape changes, and the deformation reaches critical values, larger
than the cross-section of the root canal in the apical third, thus leading to the impossibility
of shaping the root canal in this area. It must be underlined that, in all cases with curved
canals simulated by us in the present study, the highest stress and strain values were
distributed in the apical root third, which is also in accordance with studies conducted on
teeth with straight root canals [61]. Although extensive FEA experimental studies have been
performed in endodontics, with one of the main objectives being the identification of the
forces generated during root canal shaping, comparing our results to the values obtained
by other authors was somewhat difficult, because experimental root canal models remain
unstandardized [42]. The valuable findings of Lee et al. [62] and Basheer Ahamed et al. [63],
who also described different root canal geometries but did not disclose the origin of or
rationale for their chosen dimensions and parameters, converge with our observations and
showed that the increased curvature of the root canal generated higher stresses.
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Moreover, the state of stress and deformation is totally different depending on the
angulation of the root area where the analysis is performed and on the system of forces
acting on the endodontic instrument used to shape the root canal. According to our
study, even when low forces were applied on the endodontic instruments, the greater the
curvature of the root canal, the greater the risk of geometric changes in the shape of the
root canal in the apical third. However, our results do not overlap with the earlier findings
of Versluis A. et al., who compared the distribution of the stress developed during root
canal preparation depending on its round or oval cross-section. Round canals exhibited
lower uniform distributions, whilst oval canals showed uneven distributions with high
concentrations at the buccal and lingual canal extensions and greater stresses in the coronal
and middle thirds than in the apical one [64]. In contrast, all endodontic instruments
based on conventional or heat-treated alloys tested by Prati C. et al. [65], regardless of their
geometrical features (cross-section, taper) or the setting of the modulus of elasticity of the
dentin (18 and 42 GPa), generated a stress area concentration corresponding to the root
canal curvature at approx. 7 mm from the apex, which is in the coronal portion of the apical
third, similar to our findings.

At this point, some limitations regarding our experimental results need to be acknowl-
edged and highlighted. One aspect refers to the fact that the rotary system we investigated
only uses conventional continuous rotational movement. In recent years, rotary files with
reciprocating motion have also been used in endodontic treatment, and there are studies
showing their greater accuracy in achieving apical-third shaping, even in cases of more
substantial canal curvature [66]. Thus, a comparison between the two types of rotation
motions in terms of stress and strain development under the same simulated conditions
could have provided even more representative data for clinicians. Another shortcoming
of our study consisted of the representation of a root canal configuration model with a
uniform dentine density. The role of irregular surfaces in the canal configuration, the
presence of predentin or dehydrated dentine, and different levels of dentine hardness,
which may create differences in the stress distribution along the working length of the root
canal, were not considered.

Our simulation considered strictly 360-degree continuous rotation motion at 300 RPM,
with a mean torque value of 3 N/cm. In clinical reality, the motion of endodontic instru-
ments is a combined one, consisting of the simultaneous rotation and axial withdrawal of
the file from the root canal. This vertical component generates additional stress and strain
on the dentin walls. This is another limitation of our study and a starting point for further
research. The alveolar bone, with characteristics related to the type and density, and the
periodontal ligament were also not simulated in our experimental research. In this regard,
Rathi A. et al. [67] proved the hypothesis that the periodontal ligament may also intervene
in stress distribution during endodontic shaping.

Although the distribution of stresses will vary amongst teeth according to the indi-
vidual root shape and root curvatures, the specific duration of force application during
endodontic shaping, and possibly other parameters, such as tooth age and occlusal load,
the principles of changes in stress distribution reported here should be considered in actual
clinical situations. FEA enables an explicit picture of what happens inside the curved root
canal during its endodontic instrumentation and may provide a useful behavioral “pattern”.
There is currently only one other tool that provides in vivo insight during the shaping
of the root canal, namely, the apex finder, which reveals the axial level reached during
instrumentation in relation to the apical constriction [68]. There are no practical means
to provide information about the dentinal states of stress and strain developing during
endodontic treatment, thus making finite element analysis a valuable aid for researchers
and opening up new clinical perspectives concerning the conservative shaping of root
canals with critical curvatures.



Healthcare 2023, 11, 2918 13 of 16

5. Conclusions

Currently, computational methods come to the aid of most fields of medical research,
making it possible to provide information when conventional methods are hard to be
successfully applied. In the experimental conditions of our investigation in such a difficult
clinical working space, represented by the root canal, it was proven that FEA provides very
precise and predictable data regarding the consequences of endodontic instrumentation on
root canal dentin, thus contributing to a reduction in the immediate risks and long-term
complications of endodontic treatments.

Our FEA study showed that significant stress and strain can develop, especially in
the apical third of curved root canals during their shaping, regardless of the type of rotary
instrument used. These values, in turn, depend on the force applied to the endodontic
instrument. In this regard, cracks and, ultimately, fractures in the dental structure may
develop when exceeding a certain threshold. The risk is higher for teeth presenting severe
curvatures in the apical third of the root.
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