Design and User Experience of VirNE Application: Deep Breathing Exercise in a Virtual Natural Environment to Reduce Treatment Anxiety in Pediatrics
Abstract
:1. Introduction
2. Background
3. Virtual Natural Environments (VirNE) Application
3.1. VirNE Development in Brief
3.2. Exercise Design
3.3. Exercise Structure
3.4. 360-Degree Video Material
3.5. Sound Design of the Virtual Natural Environments
3.6. Operating the VirNE Application
4. Materials and Methods of the User Study
4.1. Research Methods
4.2. The Pediatric Team Used in the Research
4.3. Measures
4.3.1. SCARED Questionnaire (Screen for Child Anxiety-Related Emotional Disorders)
4.3.2. Customized User Experience Questionnaire
4.3.3. Measures from Interviews
4.4. Research Ethics Approval
5. Results
5.1. VirNE Avatar Character and Virtual Natural Environment Selection
5.2. SCARED Questionnaire (Screen for Child Anxiety-Related Emotional Disorders)
5.3. Customized User Experience Questionnaire
5.4. Interviews
“I felt that the exercise helped with the nervousness during the procedure. The exercise was easy to do, and I understood everything.”(Participant, 10 years)
“I liked the character and the scenery, I could do it again.”(Participant, 8 years)
“It was pretty nice. Proper sounds and good landscape. Would recommend to a friend and could use it again too.”(Participant, 10 years)
5.5. Data Grouping Analysis
5.6. Correlations
6. Discussion
6.1. Main Findings
6.2. Avatar Character and Virtual Natural Environment Selections
6.3. Previous Studies
6.4. Implications and Recommendations
6.5. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pate, J.T.; Blount, R.L.; Cohen, L.L.; Smith, A.J. Childhood Medical Experience and Temperament as Predictors of Adult Functioning in Medical Situations. Child. Health Care 1996, 25, 281–298. [Google Scholar] [CrossRef]
- Çelikol, Ş.; Tural Büyük, E.; Yıldızlar, O. Children’s Pain, Fear, and Anxiety During Invasive Procedures. Nurs. Sci. Q 2019, 32, 226–232. [Google Scholar] [CrossRef]
- Xiang, H.; Shen, J.; Wheeler, K.K.; Patterson, J.; Lever, K.; Armstrong, M.; Shi, J.; Thakkar, R.K.; Groner, J.I.; Noffsinger, D.; et al. Efficacy of Smartphone Active and Passive Virtual Reality Distraction vs. Standard Care on Burn Pain Among Pediatric Patients: A Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e2112082. [Google Scholar] [CrossRef]
- Ferraz-Torres, M.; San Martín-Rodríguez, L.; García-Vivar, C.; Soto-Ruiz, N.; Escalada-Hernández, P. Passive or Interactive Virtual Reality? The Effectiveness for Pain and Anxiety Reduction in Pediatric Patients. Virtual Real. 2022, 26, 1307–1316. [Google Scholar] [CrossRef]
- Simonetti, V.; Tomietto, M.; Comparcini, D.; Vankova, N.; Marcelli, S.; Cicolini, G. Effectiveness of Virtual Reality in the Management of Paediatric Anxiety during the Peri-operative Period: A Systematic Review and Meta-Analysis. Int. J. Nurs. Stud. 2022, 125, 104115. [Google Scholar] [CrossRef]
- Özalp Gerçeker, G.; Ayar, D.; Özdemir, E.Z.; Bektaş, M. Effects of Virtual Reality on Pain, Fear and Anxiety during Blood Draw in Children Aged 5–12 Years Old: A Randomised Controlled Study. J. Clin. Nurs. 2020, 29, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Perciavalle, V.; Blandini, M.; Fecarotta, P.; Buscemi, A.; Di Corrado, D.; Bertolo, L.; Fichera, F.; Coco, M. The Role of Deep Breathing on Stress. Neurol. Sci. 2017, 38, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Bratman, G.N.; Hamilton, J.P.; Daily, G.C. The Impacts of Nature Experience on Human Cognitive Function and Mental Health. Ann. N. Y. Acad. Sci. 2012, 1249, 118–136. [Google Scholar] [CrossRef] [PubMed]
- Jyskä, I.; Turunen, M.; Chaychi Maleki, A.; Karppa, E.; Palmu, S.; Viik, J.; Mäkelä, J.; Puura, K. Effects of Using Guided Deep Breathing Exercise in a Virtual Natural Environment to Reduce Stress during Pediatric Treatment. Healthcare 2023. [Google Scholar]
- Beauchaine, T.P.; Thayer, J.F. Heart Rate Variability as a Transdiagnostic Biomarker of Psychopathology. Int. J. Psychophysiol. 2015, 98, 338–350. [Google Scholar] [CrossRef]
- Kemp, A.; Quintana, D. The Relationship Between Mental and Physical Health: Insights from the Study of Heart Rate Variability. Int. J. Psychophysiol. 2013, 89, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Labaste, F.; Ferré, F.; Combelles, H.; Rey, V.; Foissac, J.; Senechal, A.; Conil, J.; Minville, V. Validation of a Visual Analogue Scale for the Evaluation of the Postoperative Anxiety: A Prospective Observational Study. Nurs. Open 2019, 6, 1323–1330. [Google Scholar] [CrossRef]
- Facco, E.; Stellini, E.; Bacci, C.; Manani, G.; Pavan, C.; Cavallin, F.; Zanette, G. Validation of Visual Analogue Scale for Anxiety (VAS-A) in Preanesthesia Evaluation. Minerva Anestesiol. 2013, 79, 1389–1395. [Google Scholar] [PubMed]
- Duncanson, E.; Le Leu, R.K.; Shanahan, L.; Macauley, L.; Bennett, P.N.; Weichula, R.; McDonald, S.; Burke, A.L.J.; Collins, K.L.; Chur-Hansen, A.; et al. The Prevalence and Evidence-Based Management of Needle Fear in Adults with Chronic Disease: A Scoping Review. PLoS ONE 2021, 16, e0253048. [Google Scholar] [CrossRef] [PubMed]
- Röher, K.; Becke-Jakob, K.; Eich, C. Safety and Quality in Paediatric Procedural Sedation: What Really Matters? Curr. Opin. Anesthesiol. 2023, 36, 340. [Google Scholar] [CrossRef]
- Cieślik, B.; Mazurek, J.; Rutkowski, S.; Kiper, P.; Turolla, A.; Szczepańska-Gieracha, J. Virtual Reality in Psychiatric Disorders: A Systematic Review of Reviews. Complement Ther. Med. 2020, 52, 102480. [Google Scholar] [CrossRef]
- Valmaggia, L.R.; Latif, L.; Kempton, M.J.; Rus-Calafell, M. Virtual Reality in the Psychological Treatment for Mental Health Problems: An Systematic Review of Recent Evidence. Psychiatry Res. 2016, 236, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual Reality in the Assessment, Understanding, and Treatment of Mental Health Disorders. Psychol. Med. 2017, 47, 2393–2400. [Google Scholar] [CrossRef]
- Mallari, B.; Spaeth, E.K.; Goh, H.; Boyd, B.S. Virtual Reality as an Analgesic for Acute and Chronic Pain in Adults: A Systematic Review and Meta-Analysis. J. Pain Res. 2019, 12, 2053–2085. [Google Scholar] [CrossRef]
- Indovina, P.; Barone, D.; Gallo, L.; Chirico, A.; De Pietro, G.; Giordano, A. Virtual Reality as a Distraction Intervention to Relieve Pain and Distress During Medical Procedures. Clin. J. Pain 2018, 34, 858–877. [Google Scholar] [CrossRef]
- Flujas-Contreras, J.M.; Ruiz-Castañeda, D.; Gómez, I. Promoting Emotional Well-Being in Hospitalized Children and Adolescents with Virtual Reality: Usability and Acceptability of a Randomized Controlled Trial. CIN: Comput. Inform. Nurs. 2020, 38, 99. [Google Scholar] [CrossRef] [PubMed]
- Halbig, A.; Babu, S.K.; Gatter, S.; Latoschik, M.E.; Brukamp, K.; von Mammen, S. Opportunities and Challenges of Virtual Reality in Healthcare–A Domain Experts Inquiry. Front. Virtual Real. 2022, 3, 14. [Google Scholar] [CrossRef]
- Fatoye, F.; Gebrye, T.; Mbada, C.E.; Fatoye, C.T.; Makinde, M.O.; Ayomide, S.; Ige, B. Cost Effectiveness of Virtual Reality Game Compared to Clinic Based McKenzie Extension Therapy for Chronic Non-Specific Low Back Pain. Br. J. Pain 2022, 16, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Geraets, C.N.W.; van der Stouwe, E.C.D.; Pot-Kolder, R.; Veling, W. Advances in Immersive Virtual Reality Interventions for Mental Disorders: A New Reality? Curr. Opin. Psychol. 2021, 41, 40–45. [Google Scholar] [CrossRef]
- Caruso, T.J.; O’Connell, C.; Qian, J.J.; Kung, T.; Wang, E.; Kinnebrew, S.; Pearson, M.; Kist, M.; Menendez, M.; Rodriguez, S.T. Retrospective Review of the Safety and Efficacy of Virtual Reality in a Pediatric Hospital. Pediatr. Qual. Saf. 2020, 5, e293. [Google Scholar] [CrossRef] [PubMed]
- Tabbaa, L.; Ang, C.S.; Siriaraya, P.; She, W.J.; Prigerson, H.G. A Reflection on Virtual Reality Design for Psychological, Cognitive and Behavioral Interventions: Design Needs, Opportunities and Challenges. Int. J. Hum. Comput. Interact. 2021, 37, 851–866. [Google Scholar] [CrossRef]
- Mantovani, E.; Zucchella, C.; Bottiroli, S.; Federico, A.; Giugno, R.; Sandrini, G.; Chiamulera, C.; Tamburin, S. Telemedicine and Virtual Reality for Cognitive Rehabilitation: A Roadmap for the COVID-19 Pandemic. Front. Neurol. 2020, 11, 926. [Google Scholar] [CrossRef]
- Simón-Vicente, L.; Rodríguez-Cano, S.; Delgado-Benito, V.; Ausín-Villaverde, V.; Cubo Delgado, E. Cybersickness. A Systematic Literature Review of Adverse Effects Related to Virtual Reality. Neurología 2022. [Google Scholar] [CrossRef]
- Kolasinski, E.M. Simulator Sickness in Virtual Environments; U.S. Army Research Institute for the Behavioral and Social Sciences: Alexandria, VI, USA, 1995. [Google Scholar]
- Wen, Y.; Yan, Q.; Pan, Y.; Gu, X.; Liu, Y. Medical Empirical Research on Forest Bathing (Shinrin-Yoku): A Systematic Review. Environ. Health Prev. Med. 2019, 24, 70. [Google Scholar] [CrossRef]
- Jyskä, I. Effects of Virtual Natural Environment and Meditative Guidance to Stress Reduction in Therapeutic Applications. Master’s Thesis, Tampere University, Tampere, Finland, 2020. [Google Scholar]
- Lee, M.; Kim, E.; Choe, J.; Choi, S.; Ha, S.; Kim, G. Psychological Effects of Green Experiences in a Virtual Environment: A Systematic Review. Forests 2022, 13, 1625. [Google Scholar] [CrossRef]
- Mattila, O.; Korhonen, A.; Pöyry, E.; Hauru, K.; Holopainen, J.; Parvinen, P. Restoration in a Virtual Reality Forest Environment. Comput. Hum. Behav. 2020, 107, 106295. [Google Scholar] [CrossRef]
- Ojala, A.; Neuvonen, M.; Leinikka, M.; Huotilainen, M.; Yli-Viikari, A.; Tyrväinen, L. Virtuaaliluontoympäristöt Työhyvinvoinnin Voimavarana: Virtunature-Tutkimushankkeen Loppuraportti; Natural Resources Institute Finland: Helsinki, Finland, 2019; ISBN 978-952-326-799-2. [Google Scholar]
- Chirico, A.; Gaggioli, A. When Virtual Feels Real: Comparing Emotional Responses and Presence in Virtual and Natural Environments. Cyberpsychology Behav. Soc. Netw. 2019, 22, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, Y.; Zhang, B.; Chiang, Y. The Influence of Forest Resting Environments on Stress Using Virtual Reality. Int. J. Environ. Res. Public Health 2019, 16, 3263. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Bratman, G.N.; Browning, M.H.E.M.; Spengler, J.D.; Olvera-Alvarez, H.A. Stress Recovery from Virtual Exposure to a Brown (Desert) Environment versus a Green Environment. J. Environ. Psychol. 2022, 81, 101775. [Google Scholar] [CrossRef]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front. Hum. Neurosci. 2018, 12. [Google Scholar] [CrossRef]
- Jerath, R.; Crawford, M.W.; Barnes, V.A.; Harden, K. Self-Regulation of Breathing as a Primary Treatment for Anxiety. Appl Psychophysiol. Biofeedback 2015, 40, 107–115. [Google Scholar] [CrossRef]
- Riches, S.; Azevedo, L.; Bird, L.; Pisani, S.; Valmaggia, L. Virtual Reality Relaxation for the General Population: A Systematic Review. Soc. Psychiatry Psychiatr. Epidemiol. 2021, 56, 1707–1727. [Google Scholar] [CrossRef]
- Blum, J.; Rockstroh, C.; Göritz, A.S. Heart Rate Variability Biofeedback Based on Slow-Paced Breathing with Immersive Virtual Reality Nature Scenery. Front. Psychol. 2019, 10, 2172. [Google Scholar] [CrossRef]
- Prpa, M.; Tatar, K.; Françoise, J.; Riecke, B.; Schiphorst, T.; Pasquier, P. Attending to Breath: Exploring How the Cues in a Virtual Environment Guide the Attention to Breath and Shape the Quality of Experience to Support Mindfulness. In Proceedings of the 2018 Designing Interactive Systems Conference; Association for Computing Machinery: New York, NY, USA, 2018; pp. 71–84. [Google Scholar]
- Meta Quest 2: Immersive All-In-One VR Headset|Meta Store. Available online: https://www.meta.com/fi/en/quest/products/quest-2/ (accessed on 23 November 2023).
- Meta Store Help Centre | Oculus Link. Available online: https://www.meta.com/en-gb/help/quest/articles/headsets-and-accessories/oculus-link/ (accessed on 23 November 2023).
- Welcome to Hubs. Hubs by Mozilla. Available online: https://hubs.mozilla.com/docs/index.html (accessed on 29 March 2023).
- Jyskä, I.; Puura, K.; Turunen, M. Therapeutic Potential of Interactive Audiovisual 360-Degree Virtual Reality Environments for Anxiety Reduction—A Case Study with an Abstract Art Application. Appl. Sci. 2022, 12, 9316. [Google Scholar] [CrossRef]
- Birmaher, B.; Brent, D.A.; Chiappetta, L.; Bridge, J.; Monga, S.; Baugher, M. Psychometric Properties of the Screen for Child Anxiety Related Emotional Disorders (SCARED): A Replication Study. J. Am. Acad. Child Adolesc. Psychiatry 1999, 38, 1230–1236. [Google Scholar] [CrossRef]
- Orenius, T.; LicPsych; Säilä, H.; Mikola, K.; Ristolainen, L. Fear of Injections and Needle Phobia Among Children and Adolescents: An Overview of Psychological, Behavioral, and Contextual Factors. SAGE Open Nurs. 2018, 4, 237796081875944. [Google Scholar] [CrossRef]
- Introducing Oculus Air Link, a Wireless Way to Play PC VR Games on Oculus Quest 2, Plus Infinite Office Updates, Support for 120 Hz on Quest 2, and More. Meta Questin Blogi. Available online: https://www.oculus.com/blog/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/ (accessed on 16 May 2023).
- Dużmańska, N.; Strojny, P.; Strojny, A. Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness. Front. Psychol. 2018, 9, 2132. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, C.; Sun, M.; Yuan, Y.; Li, P. Effects of Brightness Levels on Stress Recovery When Viewing a Virtual Reality Forest with Simulated Natural Light. Urban For. Urban Green. 2020, 56, 126865. [Google Scholar] [CrossRef]
- Piskorz, J.E.; Czub, M.; Šulžickaja, B.; Kiliś-Pstrusińska, K. Mobile Virtual Reality Distraction Reduces Needle Pain and Stress in Children? Cyberpsychology J. Psychosoc. Res. Cyberspace 2020, 14, 3. [Google Scholar] [CrossRef]
- Girishan Prabhu, V.; Stanley, L.; Morgan, R.; Shirley, B. Designing and Developing a Nature-Based Virtual Reality with Heart Rate Variability Biofeedback for Surgical Anxiety and Pain Management: Evidence from Total Knee Arthroplasty Patients. Aging Ment. Health 2023, 1–16. [Google Scholar] [CrossRef]
Timeframe | Exercise Phase Description | Dialog | Breathing Animation | Marked for Procedure |
---|---|---|---|---|
0:00–0:30 | The selected virtual natural environment starts to play, and the selected avatar character is present | - | - | - |
0:30–1:00 | The exercise starts. Introduction to the exercise and setting the body posture | X | - | - |
1:00–2:00 | Teaching conscious slow breathing. Breathing animation appears | X | X | - |
2:00– | Guided slow deep breathing for 30 breathing cycles of six seconds starts. Short encouraging dialog cues are played periodically, once per 30 s | X | X | - |
3:30–4:00 | The period marked for conducting the cannulation, visible only to the nurse controlling the application with the PC | - | X | X |
–5:00 | Guided slow deep breathing continues until 5:00 | X | X | - |
5:00–5:30 | Returning to normal breathing and ending the exercise. The breathing animation disappears | X | - | - |
5:30–6:00 | The virtual environment continues to play for 30 more seconds. This period aims for a smooth ending of the experience, and the removal of the head-mounted display is conducted during it | - | - | - |
Data Group | Study Sample |
---|---|
n | 19 participants |
Age (mean (SD)) | 10.1 (±1.29) years |
Gender division | 12 females, 7 males |
Height (mean (SD))/weight (mean (SD)) | 144.0 (±11.8) cm/38.2 (±10.5) kg |
Prior intravenous cannulations 0–2 cannulations 3+ cannulations | 10 participants 9 participants |
Level of needle phobia 0—no needle phobia 1—minor needle phobia 2—clear needle phobia | 7 participants 6 participants 6 participants |
Prior virtual reality experience | 11 had experience, 8 did not |
Prior deep breathing experience | 11 had experience, 8 did not |
Sensitivity to motion sickness low/medium/high | 9/6/4 (participants) |
Data Group | 0–2 Prior Cannulations | 3+ Prior Cannulations |
---|---|---|
n | 10 | 9 |
Interview (UX): pos./neut./neg. | 9/0/1 | 7/2/0 |
UX Q1 mean (SD) | 4.67 (±2.00) | 5.33 (±1.12) |
UX Q2 mean (SD) | 4.56 (±1.13) | 4.22 (±2.11) |
UX Q3 mean (SD) | 4.78 (±1.48) | 2.89 (±2.02) |
UX Q4 mean (SD) | 0.11 (±0.34) | 1.56 (±1.51) |
Data Group | VR Experience: No | VR Experience |
---|---|---|
n | 8 | 11 |
Interview (UX): pos./neut./neg. | 7/0/1 | 9/2/0 |
UX Q1 mean (SD) | 5.13 (±2.10) | 4.90 (±1.20) |
UX Q2 mean (SD) | 4.63 (±1.30) | 4.20 (±1.93) |
UX Q3 mean (SD) | 4.00 (±2.00) | 3.70 (±2.06) |
UX Q4 mean (SD) | 0.00 (±0.00) | 1.50 (±1.43) |
Data Group | Deep Breathing Experience: No | Deep Breathing Experience: Yes |
---|---|---|
n | 8 | 11 |
Interview (UX): pos./neut./neg. | 5/2/1 | 11/0/0 |
UX Q1 mean (SD) | 4.71 (±2.21) | 5.18 (±1.17) |
UX Q2 mean (SD) | 3.86 (±2.04) | 4.73 (±1.35) |
UX Q3 mean (SD) | 3.00 (±1.83) | 4.36 (±1.96) |
UX Q4 mean (SD) | 0.86 (±1.46) | 0.82 (±1.25) |
Data Group | 0 = No Needle Phobia | 1 = Minor Needle Phobia | 2 = Clear Needle Phobia |
---|---|---|---|
n | 7 | 6 | 6 |
Interview (UX): pos./neut./neg. | 6/1/0 | 4/1/1 | 6/0/0 |
UX Q1 mean (SD) | 5.14 (±1.21) | 4.40 (±2.61) | 5.33 (±1.03) |
UX Q2 mean (SD) | 3.57 (±1.99) | 4.40 (±1.52) | 5.33 (±0.82) |
UX Q3 mean (SD) | 2.86 (±2.34) | 3.40 (±1.52) | 5.33 (±0.82) |
UX Q4 mean (SD) | 1.29 (±1.60) | 1.00 (±1.41) | 0.17 (±0.41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jyskä, I.; Turunen, M.; Chaychi Maleki, A.; Karppa, E.; Palmu, S.; Mäkelä, J.; Puura, K. Design and User Experience of VirNE Application: Deep Breathing Exercise in a Virtual Natural Environment to Reduce Treatment Anxiety in Pediatrics. Healthcare 2023, 11, 3129. https://doi.org/10.3390/healthcare11243129
Jyskä I, Turunen M, Chaychi Maleki A, Karppa E, Palmu S, Mäkelä J, Puura K. Design and User Experience of VirNE Application: Deep Breathing Exercise in a Virtual Natural Environment to Reduce Treatment Anxiety in Pediatrics. Healthcare. 2023; 11(24):3129. https://doi.org/10.3390/healthcare11243129
Chicago/Turabian StyleJyskä, Ilmari, Markku Turunen, Arash Chaychi Maleki, Elina Karppa, Sauli Palmu, John Mäkelä, and Kaija Puura. 2023. "Design and User Experience of VirNE Application: Deep Breathing Exercise in a Virtual Natural Environment to Reduce Treatment Anxiety in Pediatrics" Healthcare 11, no. 24: 3129. https://doi.org/10.3390/healthcare11243129
APA StyleJyskä, I., Turunen, M., Chaychi Maleki, A., Karppa, E., Palmu, S., Mäkelä, J., & Puura, K. (2023). Design and User Experience of VirNE Application: Deep Breathing Exercise in a Virtual Natural Environment to Reduce Treatment Anxiety in Pediatrics. Healthcare, 11(24), 3129. https://doi.org/10.3390/healthcare11243129