Effects of Using Guided Deep Breathing Exercises in a Virtual Natural Environment to Reduce Stress during Pediatric Treatment
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Virtual Natural Environments (VirNE) Application
3.2. Heart Rate Monitor Application
3.3. Research Methods in Brief
3.4. Participant Enrollment and Research Preparations
3.5. Pre-Procedure Phase of the Research
3.6. VR Intervention and Cannulation Phase of the Research
3.7. Post-Procedure Phase of the Research
3.8. Measures
3.8.1. SCARED Questionnaire (Screen for Child Anxiety Related Emotional Disorders)
3.8.2. Adapted VAS-A Questionnaires (Visual Analogue Scale for Anxiety)
3.8.3. Heart Rate Variability (HRV) Data
3.8.4. Measures from Interviews
3.9. Research Ethics Approval
4. Results
4.1. Questionnaires
4.1.1. SCARED Questionnaire (Screen for Child Anxiety Related Emotional Disorders)
4.1.2. Adapted VAS-A Questionnaires (Visual Analogue Scale for Anxiety)
4.2. Heart Rate Variability (HRV) Measurements
4.3. Interviews
“I felt that the exercise helped with the nervousness during the procedure. The exercise was easy to do, and I understood everything.”(Participant, 10 years old)
“I did not feel the puncture at all. It was fun.”(Participant, 10 years old)
4.4. Data Grouping Analysis
4.5. Correlations
5. Discussion
5.1. Main Results
5.2. Previous Studies
5.3. Implications and Recommendations
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pate, J.T.; Blount, R.L.; Cohen, L.L.; Smith, A.J. Childhood Medical Experience and Temperament as Predictors of Adult Functioning in Medical Situations. Child. Health Care 1996, 25, 281–298. [Google Scholar] [CrossRef]
- Çelikol, Ş.; Tural Büyük, E.; Yıldızlar, O. Children’s Pain, Fear, and Anxiety During Invasive Procedures. Nurs. Sci. Q. 2019, 32, 226–232. [Google Scholar] [CrossRef]
- Xiang, H.; Shen, J.; Wheeler, K.K.; Patterson, J.; Lever, K.; Armstrong, M.; Shi, J.; Thakkar, R.K.; Groner, J.I.; Noffsinger, D.; et al. Efficacy of Smartphone Active and Passive Virtual Reality Distraction vs. Standard Care on Burn Pain Among Pediatric Patients: A Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e2112082. [Google Scholar] [CrossRef] [PubMed]
- Ferraz-Torres, M.; San Martín-Rodríguez, L.; García-Vivar, C.; Soto-Ruiz, N.; Escalada-Hernández, P. Passive or Interactive Virtual Reality? The Effectiveness for Pain and Anxiety Reduction in Pediatric Patients. Virtual Real. 2022, 26, 1307–1316. [Google Scholar] [CrossRef]
- Simonetti, V.; Tomietto, M.; Comparcini, D.; Vankova, N.; Marcelli, S.; Cicolini, G. Effectiveness of Virtual Reality in the Management of Paediatric Anxiety during the Peri-operative Period: A Systematic Review and Meta-Analysis. Int. J. Nurs. Stud. 2022, 125, 104115. [Google Scholar] [CrossRef] [PubMed]
- Özalp Gerçeker, G.; Ayar, D.; Özdemir, E.Z.; Bektaş, M. Effects of Virtual Reality on Pain, Fear and Anxiety during Blood Draw in Children Aged 5–12 Years Old: A Randomised Controlled Study. J. Clin. Nurs. 2020, 29, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Perciavalle, V.; Blandini, M.; Fecarotta, P.; Buscemi, A.; Di Corrado, D.; Bertolo, L.; Fichera, F.; Coco, M. The Role of Deep Breathing on Stress. Neurol. Sci. 2017, 38, 451–458. [Google Scholar] [CrossRef]
- Bratman, G.N.; Hamilton, J.P.; Daily, G.C. The Impacts of Nature Experience on Human Cognitive Function and Mental Health. Ann. N. Y. Acad. Sci. 2012, 1249, 118–136. [Google Scholar] [CrossRef]
- Jyskä, I.; Turunen, M.; Chaychi Maleki, A.; Karppa, E.; Palmu, S.; Mäkelä, J.; Puura, K. Design and User Experience of VirNE Application: Deep Breathing Exercise in a Virtual Natural Environment to Reduce Treatment Anxiety in Pediatrics. Healthcare 2023, 11, 3129. [Google Scholar] [CrossRef]
- Duncanson, E.; Le Leu, R.K.; Shanahan, L.; Macauley, L.; Bennett, P.N.; Weichula, R.; McDonald, S.; Burke, A.L.J.; Collins, K.L.; Chur-Hansen, A.; et al. The Prevalence and Evidence-Based Management of Needle Fear in Adults with Chronic Disease: A Scoping Review. PLoS ONE 2021, 16, e0253048. [Google Scholar] [CrossRef]
- Röher, K.; Becke-Jakob, K.; Eich, C. Safety and Quality in Paediatric Procedural Sedation: What Really Matters? Curr. Opin. Anesthesiol. 2023, 36, 340. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual Reality in the Assessment, Understanding, and Treatment of Mental Health Disorders. Psychol. Med. 2017, 47, 2393–2400. [Google Scholar] [CrossRef]
- Cieślik, B.; Mazurek, J.; Rutkowski, S.; Kiper, P.; Turolla, A.; Szczepańska-Gieracha, J. Virtual Reality in Psychiatric Disorders: A Systematic Review of Reviews. Complement. Ther. Med. 2020, 52, 102480. [Google Scholar] [CrossRef] [PubMed]
- Valmaggia, L.R.; Latif, L.; Kempton, M.J.; Rus-Calafell, M. Virtual Reality in the Psychological Treatment for Mental Health Problems: An Systematic Review of Recent Evidence. Psychiatry Res. 2016, 236, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Indovina, P.; Barone, D.; Gallo, L.; Chirico, A.; De Pietro, G.; Giordano, A. Virtual Reality as a Distraction Intervention to Relieve Pain and Distress During Medical Procedures. Clin. J. Pain 2018, 34, 858–877. [Google Scholar] [CrossRef]
- Mallari, B.; Spaeth, E.K.; Goh, H.; Boyd, B.S. Virtual Reality as an Analgesic for Acute and Chronic Pain in Adults: A Systematic Review and Meta-Analysis. J. Pain Res. 2019, 12, 2053–2085. [Google Scholar] [CrossRef]
- Flujas-Contreras, J.M.; Ruiz-Castañeda, D.; Gómez, I. Promoting Emotional Well-Being in Hospitalized Children and Adolescents With Virtual Reality: Usability and Acceptability of a Randomized Controlled Trial. CIN Comput. Inform. Nurs. 2020, 38, 99. [Google Scholar] [CrossRef]
- Halbig, A.; Babu, S.K.; Gatter, S.; Latoschik, M.E.; Brukamp, K.; von Mammen, S. Opportunities and Challenges of Virtual Reality in Healthcare—A Domain Experts Inquiry. Front. Virtual Real. 2022, 3, 14. [Google Scholar] [CrossRef]
- Geraets, C.N.W.; van der Stouwe, E.C.D.; Pot-Kolder, R.; Veling, W. Advances in Immersive Virtual Reality Interventions for Mental Disorders: A New Reality? Curr. Opin. Psychol. 2021, 41, 40–45. [Google Scholar] [CrossRef]
- Fatoye, F.; Gebrye, T.; Mbada, C.E.; Fatoye, C.T.; Makinde, M.O.; Ayomide, S.; Ige, B. Cost Effectiveness of Virtual Reality Game Compared to Clinic Based McKenzie Extension Therapy for Chronic Non-Specific Low Back Pain. Br. J. Pain 2022, 16, 601–609. [Google Scholar] [CrossRef]
- Caruso, T.J.; O’Connell, C.; Qian, J.J.; Kung, T.; Wang, E.; Kinnebrew, S.; Pearson, M.; Kist, M.; Menendez, M.; Rodriguez, S.T. Retrospective Review of the Safety and Efficacy of Virtual Reality in a Pediatric Hospital. Pediatr. Qual. Saf. 2020, 5, e293. [Google Scholar] [CrossRef] [PubMed]
- Tabbaa, L.; Ang, C.S.; Siriaraya, P.; She, W.J.; Prigerson, H.G. A Reflection on Virtual Reality Design for Psychological, Cognitive and Behavioral Interventions: Design Needs, Opportunities and Challenges. Int. J. Hum.–Comput. Interact. 2021, 37, 851–866. [Google Scholar] [CrossRef]
- Mantovani, E.; Zucchella, C.; Bottiroli, S.; Federico, A.; Giugno, R.; Sandrini, G.; Chiamulera, C.; Tamburin, S. Telemedicine and Virtual Reality for Cognitive Rehabilitation: A Roadmap for the COVID-19 Pandemic. Front. Neurol. 2020, 11, 926. [Google Scholar] [CrossRef] [PubMed]
- Kolasinski, E.M. Simulator Sickness in Virtual Environments; U.S. Army Research Institute for the Behavioral and Social Sciences: Alexandria, VI, USA, 1995. [Google Scholar]
- Simón-Vicente, L.; Rodríguez-Cano, S.; Delgado-Benito, V.; Ausín-Villaverde, V.; Cubo Delgado, E. Cybersickness. A Systematic Literature Review of Adverse Effects Related to Virtual Reality. Neurología 2022. [Google Scholar] [CrossRef]
- Wen, Y.; Yan, Q.; Pan, Y.; Gu, X.; Liu, Y. Medical Empirical Research on Forest Bathing (Shinrin-Yoku): A Systematic Review. Environ. Health Prev. Med. 2019, 24, 70. [Google Scholar] [CrossRef] [PubMed]
- Jyskä, I. Effects of Virtual Natural Environment and Meditative Guidance to Stress Reduction in Therapeutic Applications. Master’s Thesis, Tampere University, Tampere, Finland, 2020. [Google Scholar]
- Lee, M.; Kim, E.; Choe, J.; Choi, S.; Ha, S.; Kim, G. Psychological Effects of Green Experiences in a Virtual Environment: A Systematic Review. Forests 2022, 13, 1625. [Google Scholar] [CrossRef]
- Mattila, O.; Korhonen, A.; Pöyry, E.; Hauru, K.; Holopainen, J.; Parvinen, P. Restoration in a Virtual Reality Forest Environment. Comput. Hum. Behav. 2020, 107, 106295. [Google Scholar] [CrossRef]
- Ojala, A.; Neuvonen, M.; Leinikka, M.; Huotilainen, M.; Yli-Viikari, A.; Tyrväinen, L. Virtuaaliluontoympäristöt Työhyvinvoinnin Voimavarana: Virtunature-Tutkimushankkeen Loppuraportti; Natural Resources Institute Finland: Helsinki, Finland, 2019; ISBN 978-952-326-799-2. [Google Scholar]
- Chirico, A.; Gaggioli, A. When Virtual Feels Real: Comparing Emotional Responses and Presence in Virtual and Natural Environments. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 220–226. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Zhang, B.; Chiang, Y. The Influence of Forest Resting Environments on Stress Using Virtual Reality. Int. J. Environ. Res. Public Health 2019, 16, 3263. [Google Scholar] [CrossRef]
- Yin, J.; Bratman, G.N.; Browning, M.H.E.M.; Spengler, J.D.; Olvera-Alvarez, H.A. Stress Recovery from Virtual Exposure to a Brown (Desert) Environment versus a Green Environment. J. Environ. Psychol. 2022, 81, 101775. [Google Scholar] [CrossRef]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front. Hum. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef]
- Jerath, R.; Crawford, M.W.; Barnes, V.A.; Harden, K. Self-Regulation of Breathing as a Primary Treatment for Anxiety. Appl. Psychophysiol. Biofeedback 2015, 40, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Riches, S.; Azevedo, L.; Bird, L.; Pisani, S.; Valmaggia, L. Virtual Reality Relaxation for the General Population: A Systematic Review. Soc. Psychiatry Psychiatr. Epidemiol. 2021, 56, 1707–1727. [Google Scholar] [CrossRef] [PubMed]
- Blum, J.; Rockstroh, C.; Göritz, A.S. Heart Rate Variability Biofeedback Based on Slow-Paced Breathing With Immersive Virtual Reality Nature Scenery. Front. Psychol. 2019, 10, 2172. [Google Scholar] [CrossRef]
- Prpa, M.; Tatar, K.; Françoise, J.; Riecke, B.; Schiphorst, T.; Pasquier, P. Attending to Breath: Exploring How the Cues in a Virtual Environment Guide the Attention to Breath and Shape the Quality of Experience to Support Mindfulness. In Proceedings of the 2018 Designing Interactive Systems Conference, Hong Kong, China, 9–13 June 2018; pp. 71–84. [Google Scholar]
- Kemp, A.; Quintana, D. The Relationship Between Mental and Physical Health: Insights from the Study of Heart Rate Variability. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2013, 89, 288–296. [Google Scholar] [CrossRef]
- Beauchaine, T.P.; Thayer, J.F. Heart Rate Variability as a Transdiagnostic Biomarker of Psychopathology. Int. J. Psychophysiol. 2015, 98, 338–350. [Google Scholar] [CrossRef]
- Jyskä, I.; Puura, K.; Turunen, M. Therapeutic Potential of Interactive Audiovisual 360-Degree Virtual Reality Environments for Anxiety Reduction—A Case Study with an Abstract Art Application. Appl. Sci. 2022, 12, 9316. [Google Scholar] [CrossRef]
- Meta Quest 2: Immersive All-In-One VR Headset Meta Store. Available online: https://www.meta.com/fi/en/quest/products/quest-2/ (accessed on 23 November 2023).
- Meta Store Help Centre Oculus Link. Available online: https://www.meta.com/en-gb/help/quest/articles/headsets-and-accessories/oculus-link/ (accessed on 23 November 2023).
- Welcome to Hubs Hubs by Mozilla. Available online: https://hubs.mozilla.com/docs/index.html (accessed on 29 March 2023).
- SDK for Polar Sensors. 2023. Available online: https://github.com/polarofficial/polar-ble-sdk (accessed on 10 January 2022).
- Birmaher, B.; Brent, D.A.; Chiappetta, L.; Bridge, J.; Monga, S.; Baugher, M. Psychometric Properties of the Screen for Child Anxiety Related Emotional Disorders (SCARED): A Replication Study. J. Am. Acad. Child. Adolesc. Psychiatry 1999, 38, 1230–1236. [Google Scholar] [CrossRef]
- Facco, E.; Stellini, E.; Bacci, C.; Manani, G.; Pavan, C.; Cavallin, F.; Zanette, G. Validation of Visual Analogue Scale for Anxiety (VAS-A) in Preanesthesia Evaluation. Minerva Anestesiol. 2013, 79, 1389–1395. [Google Scholar]
- Labaste, F.; Ferré, F.; Combelles, H.; Rey, V.; Foissac, J.; Senechal, A.; Conil, J.; Minville, V. Validation of a Visual Analogue Scale for the Evaluation of the Postoperative Anxiety: A Prospective Observational Study. Nurs. Open 2019, 6, 1323–1330. [Google Scholar] [CrossRef]
- Le May, S.; Ballard, A.; Khadra, C.; Gouin, S.; Plint, A.C.; Villeneuve, E.; Mâsse, B.; Tsze, D.S.; Neto, G.; Drendel, A.L.; et al. Comparison of the Psychometric Properties of 3 Pain Scales Used in the Pediatric Emergency Department: Visual Analogue Scale, Faces Pain Scale-Revised, and Colour Analogue Scale. Pain 2018, 159, 1508–1517. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public. Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Baevsky, R.; Chernikova, A. Heart Rate Variability Analysis: Physiological Foundations and Main Methods. Cardiometry 2017, 10, 66–76. [Google Scholar] [CrossRef]
- von Rosenberg, W.; Chanwimalueang, T.; Adjei, T.; Jaffer, U.; Goverdovsky, V.; Mandic, D.P. Resolving Ambiguities in the LF/HF Ratio: LF-HF Scatter Plots for the Categorization of Mental and Physical Stress from HRV. Front. Physiol. 2017, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Billman, G. The LF/HF Ratio Does Not Accurately Measure Cardiac Sympatho-Vagal Balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Orenius, T.; LicPsych; Säilä, H.; Mikola, K.; Ristolainen, L. Fear of Injections and Needle Phobia Among Children and Adolescents: An Overview of Psychological, Behavioral, and Contextual Factors. SAGE Open Nurs. 2018, 4, 237796081875944. [Google Scholar] [CrossRef] [PubMed]
- Piskorz, J.E.; Czub, M.; Šulžickaja, B.; Kiliś-Pstrusińska, K. Mobile Virtual Reality Distraction Reduces Needle Pain and Stress in Children? Cyberpsychol. J. Psychosoc. Res. Cyberspace 2020, 14, 3. [Google Scholar] [CrossRef]
- Custódio, N.B.; Cademartori, M.G.; Azevedo, M.S.; Mendes, M.D.A.; Schardozim, L.R.; Costa, L.R.D.R.S.; Goettems, M.L. Efficacy of Audiovisual Distraction Using Eyeglasses during Dental Care: A Randomized Clinical Trial. Braz. Oral Res. 2021, 35, e26. [Google Scholar] [CrossRef]
- Felemban, O.M.; Alshamrani, R.M.; Aljeddawi, D.H.; Bagher, S.M. Effect of Virtual Reality Distraction on Pain and Anxiety during Infiltration Anesthesia in Pediatric Patients: A Randomized Clinical Trial. BMC Oral Health 2021, 21, 321. [Google Scholar] [CrossRef]
- Eijlers, R.; Dierckx, B.; Staals, L.M.; Berghmans, J.M.; van der Schroeff, M.P.; Strabbing, E.M.; Wijnen, R.M.H.; Hillegers, M.H.J.; Legerstee, J.S.; Utens, E.M.W.J. Virtual Reality Exposure before Elective Day Care Surgery to Reduce Anxiety and Pain in Children: A Randomised Controlled Trial. Eur. J. Anaesthesiol. 2019, 36, 728–737. [Google Scholar] [CrossRef]
- Girishan Prabhu, V.; Stanley, L.; Morgan, R.; Shirley, B. Designing and Developing a Nature-Based Virtual Reality with Heart Rate Variability Biofeedback for Surgical Anxiety and Pain Management: Evidence from Total Knee Arthroplasty Patients. Aging Ment. Health 2023, 1–16. [Google Scholar] [CrossRef] [PubMed]
Timeframe | Exercise Phase Description | Dialog | Breathing Animation | Marked for Procedure |
---|---|---|---|---|
0:00–0:30 | The selected virtual natural environment starts to play, and the selected avatar character is present | - | - | - |
0:30–1:00 | The exercise starts. Introduction to the exercise and setting of body posture | X | - | - |
1:00–2:00 | Teaching conscious, slow breathing. Breathing animation appears | X | X | - |
2:00– | Guided, slow, deep breathing for 30 breathing cycles of 6 s starts. Short, encouraging dialog cues are played periodically, once per 30 s | X | X | - |
3:30–4:00 | The period marked for conducting the cannulation, visible only to the nurse controlling the application with the PC | - | X | X |
–5:00 | Guided, slow, deep breathing continues until 5:00 | X | X | - |
5:00–5:30 | Returning to normal breathing and ending the exercise. The breathing animation disappears | X | - | - |
5:30–6:00 | The virtual environment continues to play for 30 more seconds. This period aims for a smooth ending of the experience, and the removal of the head-mounted display is conducted during it | - | - | - |
Data Group | Study Sample |
---|---|
N | 19 participants |
Age (mean [SD]) | 10.1 (±1.29) years old |
Gender division | 12 females, 7 males |
Height (mean [SD])/weight (mean [SD]) | 144.0 (±11.8) cm/38.2 (±10.5) kg |
Prior intravenous cannulations | |
0–2 cannulations | 10 participants |
3+ cannulations | 9 participants |
Level of needle phobia | |
0—no needle phobia | 7 participants |
1—minor needle phobia | 6 participants |
Prior virtual reality experience | 11 had experience, 8 did not |
Prior deep breathing experience | 11 had experience, 8 did not |
Sensitivity to motion sickness | |
Low/medium/high | 9/6/4 (participants) |
HRV Variable (Unit) | Sample 1: Baseline Mdn (IQR) | Sample 2: VR Intervention Mdn (IQR) |
---|---|---|
HR (bpm) | 87.50 (16.50) | 85.00 (18.75) |
SDNN (ms) | 35.65 (19.77) | 62.70 (26.13) |
RMSSD (ms) | 32.15 (29.88) | 53.50 (40.18) |
Stress Index | 14.00 (6.18) | 8.40 (4.02) |
LF/HF ratio | 1.554 (2.080) | 0.456 (0.550) |
Data Group | 0–2 Prior Cannulations | 3+ Prior Cannulations |
---|---|---|
N | 10 | 9 |
Interview (UX): pos./neut./neg. | 9/0/1 | 7/2/0 |
Pain: expectation mean (SD) | 3.40 (±1.51) | 1.11 (±0.60) |
Pain: experience mean (SD) | 2.20 (±1.69) | 1.67 (±0.87) |
Pain: change mean (SD) | −1.20 (±1.69) | 0.56 (±0.78) |
Anxiety: expectation mean (SD) | 2.10 (±1.37) | 0.56 (±0.73) |
Anxiety: experience mean (SD) | 2.10 (±1.74) | 0.44 (±1.01) |
Anxiety: change mean (SD) | 0.00 (±1.63) | −0.11 (±0.78) |
Data Group | VR Experience: No | VR Experience: Yes |
---|---|---|
N | 8 | 11 |
Interview (UX): pos./neut./neg. | 7/0/1 | 9/2/0 |
Pain: expectation mean (SD) | 2.50 (±1.77) | 2.18 (±1.60) |
Pain: experience mean (SD) | 1.63 (±1.60) | 2.18 (±1.17) |
Pain: change mean (SD) | −0.88 (±1.81) | 0.00 (±1.48) |
Anxiety: expectation mean (SD) | 1.50 (±1.31) | 1.27 (±1.42) |
Anxiety: experience mean (SD) | 1.75 (±2.12) | 1.00 (±1.18) |
Anxiety: change mean (SD) | 0.25 (±1.67) | −0.27 (±0.90) |
Data Group | Deep Breathing Experience: No | Deep Breathing Experience: Yes |
---|---|---|
N | 8 | 11 |
Interview (UX): pos./neut./neg. | 5/2/1 | 11/0/0 |
Pain: expectation mean (SD) | 2.13 (±1.73) | 2.45 (±1.63) |
Pain: experience mean (SD) | 2.13 (±1.46) | 1.82 (±1.33) |
Pain: change mean (SD) | 0.00 (±1.31) | −0.64 (±1.86) |
Anxiety: expectation mean (SD) | 1.50 (±1.31) | 1.27 (±1.42) |
Anxiety: experience mean (SD) | 2.00 (±2.14) | 0.82 (±0.98) |
Anxiety: change mean (SD) | 0.50 (±1.60) | −0.45 (±0.82) |
Data Group | 0 = No Needle Phobia | 1 = Minor Needle Phobia | 2 = Clear Needle Phobia |
---|---|---|---|
N | 7 | 6 | 6 |
Interview (UX): pos./neut./neg. | 6/1/0 | 4/1/1 | 6/0/0 |
Pain: expectation mean (SD) | 1.29 (±0.95) | 2.33 (±1.86) | 3.50 (±1.38) |
Pain: experience mean (SD) | 2.14 (±1.21) | 1.50 (±1.64) | 2.17 (±1.33) |
Pain: change mean (SD) | 0.86 (±1.07) | −0.83 (±1.17) | −1.33 (±1.86) |
Anxiety: expectation mean (SD) | 0.71 (±0.76) | 1.00 (±0.89) | 2.50 (±1.64) |
Anxiety: experience mean (SD) | 0.71 (±1.11) | 1.83 (±2.32) | 1.50 (±1.38) |
Anxiety: change mean (SD) | 0.00 (±0.82) | 0.83 (±1.60) | −1.00 (±0.63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jyskä, I.; Turunen, M.; Chaychi Maleki, A.; Karppa, E.; Palmu, S.; Viik, J.; Mäkelä, J.; Puura, K. Effects of Using Guided Deep Breathing Exercises in a Virtual Natural Environment to Reduce Stress during Pediatric Treatment. Healthcare 2023, 11, 3140. https://doi.org/10.3390/healthcare11243140
Jyskä I, Turunen M, Chaychi Maleki A, Karppa E, Palmu S, Viik J, Mäkelä J, Puura K. Effects of Using Guided Deep Breathing Exercises in a Virtual Natural Environment to Reduce Stress during Pediatric Treatment. Healthcare. 2023; 11(24):3140. https://doi.org/10.3390/healthcare11243140
Chicago/Turabian StyleJyskä, Ilmari, Markku Turunen, Arash Chaychi Maleki, Elina Karppa, Sauli Palmu, Jari Viik, John Mäkelä, and Kaija Puura. 2023. "Effects of Using Guided Deep Breathing Exercises in a Virtual Natural Environment to Reduce Stress during Pediatric Treatment" Healthcare 11, no. 24: 3140. https://doi.org/10.3390/healthcare11243140
APA StyleJyskä, I., Turunen, M., Chaychi Maleki, A., Karppa, E., Palmu, S., Viik, J., Mäkelä, J., & Puura, K. (2023). Effects of Using Guided Deep Breathing Exercises in a Virtual Natural Environment to Reduce Stress during Pediatric Treatment. Healthcare, 11(24), 3140. https://doi.org/10.3390/healthcare11243140