Impact of an Acquisition Advanced Practice Provider on Home Hospital Patient Volumes and Length of Stay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population and Clinical Setting
2.2. The ACH Model of Care and the Acquisition APP Role
2.3. Data Collection and Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinh, K.P.; Walston, S.L.; Szychowski, J.; Hernandez, S.R. The Effect of Hospitalists on Average Length of Stay. J. Health Manag. 2019, 64, 169–184. [Google Scholar] [CrossRef]
- Chavez, M.A.; Bogert, J.N.; Soe-Lin, H.; Jacobs, J.V.; Chapple, K.M.; Weinberg, J.A. Length of stay and trauma center finances: A disparity of payer source at a Level I trauma center. J. Trauma Acute Care Surg. 2022, 92, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.; MacLeod, D.; Thetford, D.; Beattie, A.; Graham, C.; Lam, S.; Bell, D. Prediction of in-hospital mortality and length of stay using an early warning scoring system: Clinical audit. Clin. Med. 2006, 6, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-F.; Goodwin, J.S. Effect of Hospitalists on Length of Stay in the Medicare Population: Variation According to Hospital and Patient Characteristics. J. Am. Geriatr. Soc. 2010, 58, 1649–1657. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.Y.; Selvaraju, K.; Audimulam, H.; Yong, Z.C.; Adnan, T.H.; Balasundram, S. Length of hospital stay among oral and maxillofacial patients: A retrospective study. J. Korean Assoc. Oral Maxillofac. Surg. 2021, 47, 25–33. [Google Scholar] [CrossRef] [PubMed]
- George, A.J.; Boehme, A.K.; Siegler, J.E.; Monlezun, D.; Fowler, B.D.; Shaban, A.; Albright, K.C.; Beasley, T.M.; Martin-Schild, S. Hospital-Acquired Infection Underlies Poor Functional Outcome in Patients with Prolonged Length of Stay. ISRN Stroke 2013, 2013, 312348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomon, B.; Dasa, V.; Krause, P.C.; Hall, L.; Chapple, A.G. Hospital Length of Stay Is Associated With Increased Likelihood for Venous Thromboembolism After Total Joint Arthroplasty. Arthroplast. Today 2021, 8, 254–257. [Google Scholar] [CrossRef]
- Bo, M.; Fonte, G.; Pivaro, F.; Bonetto, M.; Comi, C.; Giorgis, V.; Marchese, L.; Isaia, G.; Maggiani, G.; Furno, E.; et al. Prevalence of and factors associated with prolonged length of stay in older hospitalized medical patients. Geriatr. Gerontol. Int. 2015, 16, 314–321. [Google Scholar] [CrossRef]
- Roliz, A.; Shah, Y.D.; Singh, K.; Talreja, S.; Kothare, S. Length of Stay in Pediatric Neurology Hospital Admissions. J. Child Neurol. 2021, 36, 1059–1065. [Google Scholar] [CrossRef]
- Tak, H.J.; Goldsweig, A.M.; Wilson, F.A.; Schram, A.W.; Saunders, M.R.; Hawking, M.; Gupta, T.; Yuan, C.; Chen, L.-W. Association of Post-discharge Service Types and Timing with 30-Day Readmissions, Length of Stay, and Costs. J. Gen. Intern. Med. 2021, 36, 2197–2204. [Google Scholar] [CrossRef]
- Louis, A.A.; Turner, T.; Gretton, M.; Baksh, A.; Cleland, J.G. A systematic review of telemonitoring for the management of heart failure. Eur. J. Heart Fail. 2003, 5, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjelm, N.M. Benefits and drawbacks of telemedicine. J. Telemed. Telecare 2005, 11, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Waller, M.; Pandya, A.; Portnoy, J. A Review of Patient and Provider Satisfaction with Telemedicine. Curr. Allergy Asthma Rep. 2020, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.N.; Niazi, F.; Thakur, R.; Saeed, S.; Rana, S.; Singh, H. Patient satisfaction for telemedicine health services in the era of COVID-19 pandemic: A systematic review. Front. Public Health 2022, 10, 1031867. [Google Scholar] [CrossRef]
- Hendra, K.; Neemuchwala, F.; Chan, M.; Ly, N.P.; Gibb, E.R. Patient and Provider Experience with Cystic Fibrosis Telemedicine. Clin. Front. Pediatr. 2021, 9, 784692. [Google Scholar] [CrossRef]
- Santen, R.J.; Nass, R.; Cunningham, C.; Horton, C.; Yue, W. Intensive, telemedicine-based, self-management program for rural, underserved patients with diabetes mellitus: Re-entry of retired endocrinologists into practice. J. Telemed. Telecare 2023, 29, 153–161. [Google Scholar] [CrossRef]
- Maniaci, M.J.; Torres-Guzman, R.A.; Garcia, J.P.; Avila, F.R.; Maita, K.C.; Forte, A.J.; Paulson, M.R. Overall patient experience with a virtual hybrid hospital at home program. SAGE Open Med. 2022, 10, 20503121221092589. [Google Scholar] [CrossRef]
- Soper, D.S. t-Test Post-hoc Statistical Power Calculator [Online Software]. 2023. Available online: https://www.analyticscalculators.com (accessed on 12 January 2023).
- Caplan, G.; Sulaiman, N.; Mangin, D.; Ricauda, N.A.; Wilson, A.; Barclay, L. A meta-analysis of “hospital in the home”. Innov. Aging 2017, 1, 1246. [Google Scholar] [CrossRef]
- Levine, D.M.; Ouchi, K.; Blanchfield, B.; Diamond, K.; Licurse, A.; Pu, C.T.; Schnipper, J.L. Hospital-Level Care at Home for Acutely Ill Adults: A Pilot Randomized Controlled Trial. J. Gen. Intern. Med. 2018, 33, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Siu, A.L.; Zhao, D.; Bollens-Lund, E.; Lubetsky, S.; Schiller, G.; Saenger, P.; Ornstein, K.A.; Federman, A.D.; DeCherrie, L.V.; Leff, B. Health equity in Hospital at Home: Outcomes for economically disadvantaged and non-disadvantaged patients. J. Am. Geriatr. Soc. 2022, 70, 2153–2156. [Google Scholar] [CrossRef]
- May, P.; Normand, C.; Noreika, D.; Skoro, N.; Cassel, J.B. Using predicted length of stay to define treatment and model costs in hospitalized adults with serious illness: An evaluation of palliative care. Health Econ. Rev. 2021, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Rachoin, J.-S.; Skaf, J.; Cerceo, E.; Fitzpatrick, E.; Milcarek, B.; Kupersmith, E.; Scheurer, D.B. The impact of hospitalists on length of stay and costs: Systematic review and meta-analysis. Am. J. Manag. Care 2012, 18, e23–e30. [Google Scholar] [PubMed]
- Newhouse, R.P.; Stanik-Hutt, J.; White, K.M.; Johantgen, M.; Bass, E.B.; Zangaro, G.; Wilson, R.F.; Fountain, L.; Steinwachs, D.M.; Heindel, L.; et al. Advanced practice nurse outcomes 1990–2008: A systematic review. Nurs. Econ. 2012, 29, 230–250, quiz 251. [Google Scholar]
- Kapu, A.N.; Kleinpell, R.; Pilon, B. Quality and Financial Impact of Adding Nurse Practitioners to Inpatient Care Teams. JONA J. Nurs. Adm. 2014, 44, 87–96. [Google Scholar] [CrossRef] [PubMed]
- LeBar, K.; Murawski, S.; Umayam, S.; Quinn, V. The Role of Advanced Practice Providers and Telemedicine in Reinventing Care: The Transition of a CAR T-Cell Transplantation Program to the Outpatient Setting. J. Adv. Pract. Oncol. 2020, 11, 757–763. [Google Scholar]
Demographic Characteristics | Florida (n = 455) | Wisconsin (n = 298) | p-Value |
---|---|---|---|
Mean Age (SD) | 70.2 (15.1) | 70.2 (14.1) | p > 0.05 * |
Sex n (%) | |||
Male | 245 (53.8) | 166 (55.7) | p > 0.05 † |
Female | 210 (46.2) | 132 (44.3) | |
Race n (%) | |||
African American | 29 (6.4) | 0 | p < 0.05 ‡ |
American Indian/Alaskan Native | 2 (0.4) | 0 | |
American born African | 1 (0.2) | 0 | |
Asian Filipino | 12 (2.6) | 2 (0.7) | |
Choose not to disclose | 7 (1.5) | 2 (0.7) | |
Other | 12 (2.6) | 0 | |
White | 392 (86.2) | 294 (98.7) | |
Ethnicity n (%) | |||
Central American | 0 | 2 (0.7) | p < 0.05 ‡ |
Choose not to Disclose | 11 (2.4) | 6 (2.0) | |
Hispanic or Latino | 11 (2.4) | 2 (0.7) | |
Not Hispanic or Latino | 426 (93.6) | 288 (96.6) | |
Other Spanish Culture | 3 (0.7) | 0 | |
Puerto Rican | 4 (0.9) | 0 |
Florida | Wisconsin | 95% Confidence Interval † | p-Value † | |
---|---|---|---|---|
PRIOR TO ACQUISITION APP (6 July 2020–31 May 2021) | ||||
ED and/or BAM hospital LOS (mean days) | 2.40 | 2.00 | [−0.18, 0.98] | 0.17 |
ACH Virtual Inpatient Care LOS (mean days) | 3.72 | 3.87 | [−0.84, 0.53] | 0.65 |
Total Combined Physical and Virtual Hospital LOS (mean days) | 6.12 | 5.87 | [−0.84, 1.34] | 0.64 |
Transition Time from ACH Consult to Home Admission (mean days) | 1.32 | 1.87 | [−1.21, 0.11] | 0.10 |
Average number of patients acquired by the ACH program each month (n) | 13.6 | 12.4 | [−4.33, 6.62] | 0.67 |
AFTER ACQUISITION APP INITIATION (1 June 2021–31 January 2022) | ||||
ED and/or BAM hospital LOS (mean days) | 2.91 | 2.59 | [−0.22, 0.87] | 0.22 |
ACH Virtual Inpatient Care (mean days) | 3.71 | 3.75 | [−0.54, 0.47] | 0.88 |
Total Combined Physical and Virtual Hospital LOS (mean days) | 6.63 | 6.34 | [−0.55, 1.12] | 0.47 |
Transition Time from ACH Consult to Home Admission (mean days) | 0.85 | 1.16 | [−0.91, 0.28] | 0.28 |
Average number of patients acquired by the ACH program each month (n) | 38.3 | 21.6 | [11.54, 21.46] | <0.01 |
(6 July 2020–31 May 2021) | (1 June 2021–31 January 2022) | 95% Confidence Interval † | p-Value † | |
---|---|---|---|---|
FLORIDA | ||||
ED and/or BAM hospital LOS (mean days) | 2.40 | 2.91 | [−1.19, 0.17] | 0.13 |
ACH Virtual Inpatient Care LOS (mean days) | 3.72 | 3.71 | [−0.60, 0.61] | 0.98 |
Total Combined Physical and Virtual Hospital LOS (mean days) | 6.12 | 6.63 | [−1.66, 0.64] | 0.37 |
Transition Time from ACH Consult to Home Admission (mean days) | 1.32 | 0.85 | [−0.07, 1.00] | 0.08 |
Average number of patients acquired by the ACH program each month (n) | 13.6 | 38.3 | [−30.91, −18.49] | <0.01 |
WISCONSIN | ||||
ED and/or BAM hospital LOS (mean days) | 2.00 | 2.59 | [−1.04, −0.13] | 0.01 |
ACH Acute Phase LOS (mean days) | 3.87 | 3.75 | [−0.56, 0.80] | 0.71 |
Total Combined Physical and Virtual Hospital LOS (mean days) | 5.87 | 6.34 | [−1.34, 0.40] | 0.27 |
Transition Time from ACH Consult to Home Admission (mean days) | 1.87 | 1.16 | [−0.06, 1.47] | 0.07 |
Average number of patients acquired by the ACH program each month (n) | 12.4 | 21.8 | [−13.69, −5.01] | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felix, H.M.; Cowdell, J.C.; Paulson, M.R.; Maita, K.C.; Dugani, S.B.; Avila, F.R.; Torres-Guzman, R.A.; Forte, A.J.; Matcha, G.V.; Maniaci, M.J. Impact of an Acquisition Advanced Practice Provider on Home Hospital Patient Volumes and Length of Stay. Healthcare 2023, 11, 282. https://doi.org/10.3390/healthcare11030282
Felix HM, Cowdell JC, Paulson MR, Maita KC, Dugani SB, Avila FR, Torres-Guzman RA, Forte AJ, Matcha GV, Maniaci MJ. Impact of an Acquisition Advanced Practice Provider on Home Hospital Patient Volumes and Length of Stay. Healthcare. 2023; 11(3):282. https://doi.org/10.3390/healthcare11030282
Chicago/Turabian StyleFelix, Heidi M., Jed C. Cowdell, Margaret R. Paulson, Karla C. Maita, Sagar B. Dugani, Francisco R. Avila, Ricardo A. Torres-Guzman, Antonio J. Forte, Gautam V. Matcha, and Michael J. Maniaci. 2023. "Impact of an Acquisition Advanced Practice Provider on Home Hospital Patient Volumes and Length of Stay" Healthcare 11, no. 3: 282. https://doi.org/10.3390/healthcare11030282
APA StyleFelix, H. M., Cowdell, J. C., Paulson, M. R., Maita, K. C., Dugani, S. B., Avila, F. R., Torres-Guzman, R. A., Forte, A. J., Matcha, G. V., & Maniaci, M. J. (2023). Impact of an Acquisition Advanced Practice Provider on Home Hospital Patient Volumes and Length of Stay. Healthcare, 11(3), 282. https://doi.org/10.3390/healthcare11030282