Seasonal Impact on Free Flap Surgery in Terms of Flap Loss and Wound Healing Disorders: A Retrospective Cohort Study of 158 Free Flaps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Design
2.3. Demographic Data
2.4. Outcome Parameters
2.5. Statistical Analysis
3. Results
3.1. Postoperative Data
3.2. Revision Rates and Wound Healing Disorders
3.3. Wound Healing Disorders—Comparison of Winter Group and Summer Group
3.4. Revision Rates and Flap Loss
3.5. Flap Losses—Comparison Winter Group and Summer Group
3.6. Temperatures of the 14 Postoperative Days and Flap Loss
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McLean, D.H.; Buncke, H.J., Jr. Autotransplant of omentum to a large scalp defect, with microsurgical revascularization. Plast. Reconstr. Surg. 1972, 49, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Duscher, D.; Kiesl, D.; Aitzetmüller, M.M.; Wenny, R.; Schableger, K.; Staud, C.J.; Pollhammer, M.S.; Shamiyeh, A.; Huemer, G.M. Seasonal impact on surgical-site infections in body contouring surgery: A retrospective cohort study of 602 patients over a period of 6 years. Plast. Reconstr. Surg. 2018, 142, 653–660. [Google Scholar] [CrossRef]
- Sahtoe, A.P.; Duraku, L.S.; Van Der Oest, M.J.; Hundepool, C.A.; De Kraker, M.; Bode, L.G.; Zuidam, J.M. Warm Weather and Surgical Site Infections: A Meta-analysis. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3705. [Google Scholar] [CrossRef] [PubMed]
- Gruskay, J.; Smith, J.; Kepler, C.K.; Radcliff, K.; Harrop, J.; Albert, T.; Vaccaro, A. The seasonality of postoperative infection in spine surgery. J. Neurosurg. Spine 2013, 18, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.P.; Rocha, J.L.; Tuon, F.F. Seasonal humidity may influence Pseudomonas aeruginosa hospital-acquired infection rates. Int. J. Infect. Dis. 2013, 17, e757–e761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaron, S.; Lakshmanan, J.; Sudarsanam, T.D.; Benjamin, K.; Durairaj, J.; Mathew, V.; Sivadasan, A.; Prabhakar, A.T.; Keshava, S.K.; Mannam, P.R.; et al. Cerebral venous thrombosis, seasonal trends, and climatic influence: A region-specific study. Ann. Indian Acad. Neurol. 2020, 23, 522. [Google Scholar] [CrossRef] [PubMed]
- Salehi, G.; Sarraf, P.; Fatehi, F. Cerebral venous sinus thrombosis may follow a seasonal pattern. J. Stroke Cerebrovasc. Dis. 2016, 25, 2838–2843. [Google Scholar] [CrossRef] [PubMed]
- Wetterrückblick Münster/Osnabrück Flughafen. Available online: https://www.wetterkontor.de/de/wetter/deutschland/rueckblick.asp?id=176 (accessed on 15 October 2019).
- Choban, P.S.; Flancbaum, L. The impact of obesity on surgical outcomes: A review. J. Am. Coll. Surg. 1997, 185, 593–603. [Google Scholar] [PubMed]
- Turan, A.; Mascha, E.J.; Roberman, D.; Turner, P.L.; You, J.; Kurz, A.; Sessler, D.I.; Saager, L. Smoking and perioperative outcomes. J. Am. Soc. Anesthesiol. 2011, 114, 837–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malone, D.L.; Genuit, T.; Tracy, J.K.; Gannon, C.; Napolitano, L.M. Surgical site infections: Reanalysis of risk factors. J. Surg. Res. 2002, 103, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gazyakan, E.; Bigdeli, A.K.; Will-Marks, P.; Kneser, U.; Hirche, C. Soft tissue free flap for reconstruction of upper extremities. Microsurgery 2019, 39, 463–475. [Google Scholar] [CrossRef]
- Mustansir, F.; Inam, M.; Darbar, A. The Effects of Temperature and Prothrombotic Conditions on Cerebral Venous Sinus Thrombosis Frequency: An Institutional Experience. Asian J. Neurosurg. 2021, 16, 719–724. [Google Scholar] [CrossRef]
- Huisse, M.G.; Pease, S.; Hurtado-Nedelec, M.; Arnaud, B.; Malaquin, C.; Wolff, M.; Gougerot-Pocidalo, M.A.; Kermarrec, N.; Bezeaud, A.; Guillin, M.C.; et al. Leukocyte activation: The link between inflammation and coagulation during heatstroke. A study of patients during the 2003 heat wave in Paris. Crit. Care Med. 2008, 36, 2288–2295. [Google Scholar] [CrossRef] [PubMed]
- Beristain-Covarrubias, N.; Perez-Toledo, M.; Thomas, M.; Henderson, I.; Watson, S.; Cunningham, A. Understanding infection-induced thrombosis: Lessons learned from animal models. Front. Immunol. 2019, 10, 2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.-T.; Mun, G.-H. The efficacy of postoperative antithrombotics in free flap surgery: A systematic review and meta-analysis. Plast. Reconstr. Surg. 2015, 135, 1124–1139. [Google Scholar] [CrossRef] [PubMed]
Overall | Winter Group | Summer Group | |
---|---|---|---|
Age * | Ø 56.41 years (±SD 5.39) | Ø 56,93 years (±SD 14.86) | Ø 55.96 years (±SD 15.93) |
Gender * | 62.3% female (n = 94) 37.7% male (n = 57) | 65.7% female (n = 46) 34.3% male (n = 24) | 59.3% female (n = 48) 40.7% male (n = 33) |
Co-Morbidities | |||
Diabetes Mellitus * | 11.3% (n = 17) | 12.9% (n = 9) | 9.9% (n = 8) |
Hypertension * | 33.8% (n = 51) | 37.1% (n = 26) | 30.9% (n = 25) |
Arteriosclerosis * | 15.2% (n = 23) | 15.7% (n = 11) | 14.8% (n = 12) |
Anemia (WHO-criteria) * | 61.6% (n = 93) | 68.6% (n = 48) | 55.6% (n = 45) |
Nicotine Abuse * | |||
Non-Smoker | 82.1% (n = 124) | 84.3% (n = 59) | 80.2% (n = 65) |
<10 cigarettes per day | 6.6% (n = 10) | 4.3% (n = 3) | 8.6% (n = 7) |
10–20 cigarettes per day | 7.3% (n = 11) | 8.6% (n = 6) | 6.2% (n = 5) |
>20 cigarettes per day | 4.0% (n = 6) | 2.9% (n = 2) | 4.9% (n = 4) |
Body Mass Index * | |||
<20 kg/m2 (underweight) | 0% (n = 0) | 0% (n = 0) | 0% (n = 0) |
20–24 kg/m (normal weight) | 41.1% (n = 62) | 50.0% (n = 35) | 33.3% (n = 27) |
25–30 kg/m2 (overweight) | 33.1% (n = 50) | 27.1% (n = 19) | 38.3% (n = 31) |
>30 kg/m2 (obese) | 25.8% (n = 39) | 22.9% (n = 16) | 28.4% (n = 23) |
C-reactive protein value in mg/L (postoperative) * | 55.5 (±SD 50.20) | 73.91 (±SD 73.75) | 103.48 (±SD 96.89) |
postoperative antibiotic therapy * | 36.4% (n = 55) | 37.1% (n = 26) | 35.8% (n = 29) |
number of postoperative hospitalized days * | 12.74 (±SD 9.41) | 12.40 (±SD 7.67) | 13.04 (±SD 10.75) |
indications for defect coverage * | |||
trauma | 33.5% (n = 53) | 34.3% (n = 24) | 35.8% (n = 29) |
tumor | 57.6% (n = 89) | 58.6% (n = 41) | 59.3% (n = 48) |
infection | 7.0% (n = 8) | 7.1% (n = 5) | 3.7% (n = 3) |
location of the defect * | |||
lower extremity | 49.4% (n = 74) | 45.7% (n = 32) | 51.9% (n = 42) |
upper extremity | 7.0% (n = 10) | 8.6% (n = 6) | 4.9% (n = 4) |
mamma/abdomen | 43.7% (n = 67) | 45.7% (n = 32) | 43.2% (n = 35) |
flap design * | |||
ALT | 32.3% (n = 51) | 35.7% (n = 25) | 32.1% (n = 26) |
Latissimus-Dorsi | 8.2% (n = 13) | 7.1% (n = 5) | 9.9% (n = 8) |
DIEP | 20.3% (n = 32) | 20.0% (n = 14) | 22.2% (n = 18) |
PAP | 20.9% (n = 33) | 22.9% (n = 16) | 21.0% (n = 17) |
TRAM | 1.3% (n = 2) | 2.9% (n = 2) | 0.0% (n = 0) |
SCIP | 11.4% (n = 18) | 11.4% (n = 8) | 12.3% (n = 10) |
Gracilis | 1.3% (n = 2) | 0.0% (n = 0) | 2.5% (n = 2) |
Overall | Winter Group | Summer Group | |
---|---|---|---|
average temperature on day of surgery | 9.09 °C | 19.02 °C | |
vascular complications | 8.2% (n = 13) | 4.0% (n = 3) | 12.0% (n = 10) |
arterial thrombosis | 8.2% (n = 13) | 5.3% (n = 4) | 10.8% (n = 9) |
venous thrombosis | 0% (n = 0) | 0% (n = 0) | 0% (n = 0) |
postoperative flap loss | 7.0% (n = 11) | 1.3% (n = 1) | 12.0% (n = 10) |
wound healing disorders | 43.1% (n = 65) | 49.3% (n = 37) | 34.9% (n = 28) |
flap related | |||
necrosis | 14.6% (n = 2) | 18.7% (n = 14) | 10.8% (n = 9) |
wound dehiscence | 27.2% (n = 43) | 30.7% (n = 23) | 24.1% (n = 20) |
infection | 8.2% (n = 13) | 6.7% (n = 5) | 9.6% (n = 8) |
hematoma | 1.9% (n = 3) | 2.7% (n = 2) | 1.2% (n = 1) |
seroma | 1.3% (n = 2) | 1.3% (n = 1) | 1.2% (n = 1) |
donor site | |||
necrosis | 1.3% (n = 2) | 1.3% (n = 1) | 1.2% (n = 1) |
wound dehiscence | 27.2% (n = 43) | 25.3% (n = 19) | 28.9% (n = 24) |
infection | 0.6% (n = 1) | 1.3% (n = 1) | 0.0% (n = 0) |
granulation problems | 7.6% (n = 12) | 6.7% (n = 5) | 8.4% (n = 7) |
hematoma | 0.6% (n = 1) | 0.0% (n = 0) | 1.2% (n = 1) |
seroma | 4.4% (n = 7) | 5.3% (n = 4) | 3.6% (n = 3) |
systemic complications | |||
pulmonary artery embolism | 3.3% (n = 5) | 2.9% (n = 2) | 3.7% (n = 3) |
sepsis | 2.0% (n = 3) | 0.0% (n = 0) | 3.7% (n = 3) |
Regression Coefficient B | Standard Error | Significance | Exp(B) | 95% Confidence Interval für Exp(B) | ||
---|---|---|---|---|---|---|
lower value | upper value | |||||
Age | 0.022 | 0.028 | 0.427 | 1.023 | 0.968 | 1.081 |
Gender | 0.597 | 0.695 | 0.391 | 1.816 | 0.465 | 7.098 |
Body Mass Index | 0.008 | 0.456 | 0.986 | 1.008 | 0.412 | 2.465 |
Diabetes Mellitus | 0.348 | 1.046 | 0.739 | 1.416 | 0.182 | 10.995 |
Hypertension | 0.002 | 0.829 | 0.998 | 1.002 | 0.198 | 5.087 |
Arteriosclerosis | −1.074 | 1.220 | 0.379 | 0.342 | 0.031 | 3.732 |
Anemia | −0.118 | 0.776 | 0.879 | 0.889 | 0.194 | 4.064 |
Postoperative antibiotic therapy | 0.613 | 0.865 | 0.478 | 1.846 | 0.339 | 10.062 |
Smoking | 0.251 | 0.379 | 0.508 | 1.285 | 0.611 | 2.701 |
Season | 2.267 | 1.085 | 0.037 | 9.655 | 1.152 | 80.918 |
Regression Coefficient B | Standard Error | Significance | Exp(B) | 95% Confidence Interval for Exp(B) | ||
---|---|---|---|---|---|---|
lower value | upper value | |||||
Age | 0.025 | 0.028 | 0.378 | 1.025 | 0.970 | 1.083 |
Gender | 0.688 | 0.699 | 0.325 | 1.989 | 0.506 | 7.823 |
Body Mass Index | 0.117 | 0.448 | 0.793 | 1.124 | 0.468 | 2.703 |
Diabetes Mellitus | 0.086 | 1.049 | 0.935 | 1.089 | 0.139 | 8.515 |
Hypertension | −0.056 | 0.822 | 0.945 | 0.945 | 0.189 | 4.735 |
Arteriosclerosis | −1.018 | 1.210 | 0.400 | 0.361 | 0.034 | 3.867 |
Anemia | −0.153 | 0.755 | 0.840 | 0.858 | 0.196 | 3.769 |
Postoperative antibiotic therapy | 0.552 | 0.830 | 0.506 | 1.737 | 0.341 | 8.845 |
Smoking | 0.425 | 0.381 | 0.265 | 1.529 | 0.725 | 3.225 |
Average temperature 14 days postop. | 0.144 | 0.065 | 0.027 | 1.155 | 1.017 | 1.312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klietz, M.-L.; Mewe, C.; Wiebringhaus, P.; Hirsch, T.; Aitzetmüller, M.M.; Kückelhaus, M. Seasonal Impact on Free Flap Surgery in Terms of Flap Loss and Wound Healing Disorders: A Retrospective Cohort Study of 158 Free Flaps. Healthcare 2023, 11, 403. https://doi.org/10.3390/healthcare11030403
Klietz M-L, Mewe C, Wiebringhaus P, Hirsch T, Aitzetmüller MM, Kückelhaus M. Seasonal Impact on Free Flap Surgery in Terms of Flap Loss and Wound Healing Disorders: A Retrospective Cohort Study of 158 Free Flaps. Healthcare. 2023; 11(3):403. https://doi.org/10.3390/healthcare11030403
Chicago/Turabian StyleKlietz, Marie-Luise, Chiara Mewe, Philipp Wiebringhaus, Tobias Hirsch, Matthias Michael Aitzetmüller, and Maximilian Kückelhaus. 2023. "Seasonal Impact on Free Flap Surgery in Terms of Flap Loss and Wound Healing Disorders: A Retrospective Cohort Study of 158 Free Flaps" Healthcare 11, no. 3: 403. https://doi.org/10.3390/healthcare11030403
APA StyleKlietz, M. -L., Mewe, C., Wiebringhaus, P., Hirsch, T., Aitzetmüller, M. M., & Kückelhaus, M. (2023). Seasonal Impact on Free Flap Surgery in Terms of Flap Loss and Wound Healing Disorders: A Retrospective Cohort Study of 158 Free Flaps. Healthcare, 11(3), 403. https://doi.org/10.3390/healthcare11030403