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Abstract: The objective of this study was to determine the relationship between weather conditions
and hospital admissions for cardiovascular diseases (CVD). The analysed data of CVD hospital
admissions were part of the database of the Policlinico Giovanni XXIII of Bari (southern Italy) within
a reference period of 4 years (2013–2016). CVD hospital admissions have been aggregated with
daily meteorological recordings for the reference time interval. The decomposition of the time series
allowed us to filter trend components; consequently, the non-linear exposure–response relationship
between hospitalizations and meteo-climatic parameters was modelled with the application of a
Distributed Lag Non-linear model (DLNM) without smoothing functions. The relevance of each
meteorological variable in the simulation process was determined by means of machine learning
feature importance technique. The study employed a Random Forest algorithm to identify the
most representative features and their respective importance in predicting the phenomenon. As
a result of the process, the mean temperature, maximum temperature, apparent temperature, and
relative humidity have been determined to be the most suitable meteorological variables as the best
variables for the process simulation. The study examined daily admissions to emergency rooms for
cardiovascular diseases. Using a predictive analysis of the time series, an increase in the relative risk
associated with colder temperatures was found between 8.3 ◦C and 10.3 ◦C. This increase occurred
instantly and significantly 0–1 days after the event. The increase in hospitalizations for CVD has been
shown to be correlated to high temperatures above 28.6 ◦C for lag day 5.

Keywords: hospital admission; cardiovascular diseases; temperature; distributed lag non-linear
model; time series decomposition; feature importance; random forest

1. Introduction

Climate changes and climate seasonal variability affect human health. Meteorologi-
cal factors, such as temperature, relative humidity, and atmospheric pressure, determine
several negative health outcomes. Exploring relations between health and weather condi-
tions at a local scale may allow us to measure climate change impacts on the population.
Several studies show the correlation existing between ambient temperature and mortality
or morbidity [1,2]. Since the last century, high temperatures and heat waves have been
associated with excess deaths in many US cities [3] and were recognized as important
factors determining deaths, chronic bronchitis, pneumonia, ischemic heart disease, and
cerebrovascular disease in England and Wales [4]. Increased mortality associated with
high average temperatures was found in Seoul, Beijing, Tokyo, and Taipei in Asia [5].
Temperature and mortality have a complex relationship, influenced by geographic, climatic,
and demographic factors [6]. The vulnerability of populations to temperatures can be
influenced by social, economic, demographic, and infrastructural variables and, for this
reason, developing countries are more sensitive to climate change [7]. For the African
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continent, a significant correlation between temperature increase and an increase in mortal-
ity and morbidity for cardiovascular diseases was shown [7–12]. Even on the European
continent, the implications of climate change on human healthcare were addressed [13–18].
The project “Assessment and prevention of acute health effects of weather conditions in
Europe” (PHEWE project) was an attempt to examine the influence of temperature on
various mortality and morbidity outcomes utilising a standardised approach [19]. The
project analysed acute health impacts of highly variable climatic conditions, both during
hot and cold seasons in numerous European countries. It was shown that, in the short
term, temperature and relative humidity were strongly correlated with hospital admissions
and mortality [20]. Although the correlation between high temperatures and mortality is
clear, there is less evidence of the impact of high temperatures on hospitalisation around
the world [21]. Several studies have shown that high temperatures are associated with
increased hospitalisation rates for both cardiovascular and respiratory diseases in several
cities in the United States of America [22]. The short-term effect of temperature on respira-
tory diseases was evident also for children [23]. The potential influence of the environment
on the infarct is underlined, analogous to considerations regarding the increase in stroke
risk. At lowering temperatures, the percentage of attacks would increase by 195% in winter
and 10% in spring. In this case the cold would favour the formation of blood clots with
a consequent increase in risk in patients suffering from fibrillation. Investigation into the
relationships between environment and pathologies could help in implementing preven-
tive measures such as anticoagulant therapies and a reduction of exposure to cold. The
possibility of predicting events linked to cardiovascular diseases, combined with greater
attention to lifestyles and the living environment, suggests a benefit to deeply investigating
the effects of the environment and climate on the risk of cardiovascular diseases through
ad hoc therapeutic strategies. Moreover, it is possible to reduce the economic costs related
to these events. Rising temperatures and the concentration of pollutants in the atmosphere
also have repercussions on respiratory diseases. Climate change acts by leading to an
increase in ozone and fine particulate levels, generating an increase in terms of morbidity
and mortality. Heat mainly may affect a pool of fragile individuals in which death or the
onset of the disease is anticipated by a short period of time [22]. The mortality rate or mor-
bidity is influenced not only by the current day’s temperature but also by the temperature
of previous days [24]. Distributed lag models have been applied to explore the delayed
effect of temperature on mortality [20,25,26]. To overcome the strong correlation among
daily temperatures on short periods, constrained distributed lag structures are used in time
series regressions [27]. Estimates are constrained by the use of smoothing methods, such as
natural cubic splines or polynomials, but both unbound and constrained distributed lag
models presume a linear relationship between temperature and mortality, making them
weak for well characterising the influence of temperature on mortality. Distributed lag
non-linear model (DLNM) has been developed to simultaneously estimate the non-linear
and delayed effects of temperature (or air pollution) on mortality (or morbidity). Using this
model, a three-dimensional plot allows us to show the relative risks both for temperature
and for delays [27,28]. Cardiovascular disease (CVD) is the leading cause of mortality,
morbidity, and disability in Europe and specifically in Italy, requiring greater attention
to cardiovascular risk factors in health planning and resource allocation [29]. For this
reason, we have focused our attention on these specific pathologies in order to identify
meteo-climatic parameters strongly correlated to the incidence of daily hospitalizations.
In this context we apply a methodological procedure for analysing and modelling the
relationship between meteo-climatic factors and the daily hospitalizations for CVD in the
city of Bari, southern Italy. The purpose is to identify the meteorological parameters that
drive admissions to the emergency room for cardiovascular diseases. Furthermore, the
relative risk of the onset of this type of pathology, concerning all the selected meteorological
variables, will be analysed. In this way, it will be possible also to improve the management
of access flows to the emergency room.
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2. Materials and Methods
2.1. Study Area and Data Collection—Hospitalisation Data and Preliminary Statistical Analysis

Hospitalisation data analysis involves daily accesses to the emergency room in the
Bari Policlinico “Giovanni XXIII” for the 2013–2016 reference four-year period. Bari is
the ninth Italian municipality in terms of population size, the third most populous mu-
nicipality in southern Italy after Naples and Palermo with almost 300,000 inhabitants.
The database of daily admissions in the emergency room was formatted according to the
compilation scheme: first name; surname; sex; date of birth; birthplace; place of residence;
citizenship; day, month, year of acceptance; acceptance time; main problem; day, month,
year of discharge; discharge procedure; observation methods; hospitalisation department.
Particularly, pathology and/or symptomatology was classified on the basis of 33 codes
(Table 1).

Table 1. Main symptoms entering the emergency room and identification code.

CODE Main
Problem/Symptomatology CODE Main

Problem/Symptomatology

1 Coma 18 Oto rhino laryngeal symptoms
or disorders

2 Acute neurological syndrome 19 Obstetric-gynaecological
symptoms or disorders

3 Other nervous
system symptoms 20 Dermatological symptoms

or disorders

4 Abdominal pain 21 Odontostomatological
symptoms or disorders

5 Chest pain 22 Urological symptoms
or disorders

6 Dyspnea 23 Other symptoms or disorders
7 Precordial pain 24 Legal-medical investigations
8 Shock 25 Social problem
9 Non-traumatic haemorrhage 26 Fall from high
10 Trauma 27 Scalding
11 Intoxication 28 Psychiatric

12 Fever 29 Pneumology-Respiratory
pathology

13 Allergic reaction 30 Violence from other
14 Changes in Rhythm 31 Self-harm
15 Hypertension 98 Dehydration
16 Psychomotor agitation 99 Animal bite
17 Eye symptoms or disorders

In Table 2 and in Figure 1, for each year, the number of admissions, divided for
genders, is summarised. In particular, for the year 2013, 75,927 entries into the emergency
room were counted, of which, 40,265 were male patients, 35,032 were female patients, and
630 data cases were missing inherent in sex. For the year 2014, a total of 80,690 admissions
were counted, of which, there were 42,554 referring to the male gender, 37,127 female,
and 1009 cases of missing data. For the year 2015, the total number of admissions to the
emergency room amounts to 75,334, of which, 40,091 were men, 34,327 were women, and
916 were cases of missing data. For the year 2016, 71,550 visits to the emergency room
were registered, of which, 38,007 were male patients, 32,914 were female patients, and 629
were cases of missing data. For this study, only the data associated with cardiovascular
pathologies were selected and examined. According to the ESC (European Society of
Cardiology), the high rate of deaths (in Europe there are about 4 million a year) caused
by cardiovascular diseases and the correlation of these with decreasing temperatures are
strongly evident. The ESC stresses that cardiovascular disorders are the leading cause of
death in all European countries, especially for women; moreover, congenital heart disease
alone is the leading cause of death below 65 years. Canadian and Taiwanese studies
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have shown that each 10 ◦C reduction in atmospheric temperature corresponds to an
increase of 7% in the myocardial infarction (sudden rupture of a coronary artery plate) and
that a reduction of 5 ◦C corresponds to an increase equal to 13% in the risk of thrombo-
embolic fibrillation stroke. In the case of the heart attack, the study was able to identify the
possibility of preceding the event 2 days in advance by observing the temperature trend,
which, if they remain below 0 ◦C in the daytime hours, the risk of heart attack increases.

Table 2. Number of admissions in the Emergency Room (ER) divided for gender.

Gender 2013 2014 2015 2016 Total

Men 40,265 42,554 40,091 38,007 160,917
Women 35,032 37,127 34,327 32,914 139,400
No data 630 1,009 916 629 3184
Total 75,927 80,690 75,334 71,550 303,501
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Figure 1. Annual hospital admissions in ER by gender.

Therefore, considering cardiovascular diseases, we select only the admissions with the
codes shown in Table 3.

Table 3. Selected codes for cardiovascular diseases.

Code Specific Problem Classification

5 Chest pain

Cardiovascular diseases
7 Precordial pain
14 Changes in Rhythm
15 Hypertension

For each year, the distribution of cardio-vascular admissions in the emergency room
is shown in Table 4 and in Figure 2. In Figure 3 the frequencies of different codes in CVD
are shown. Furthermore, for epidemiological purposes, it is important to separate data
admission on the basis of age of the patient (Figure 4 and Table 5).
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Table 4. Number of admissions in ER for CVD diseases.

Cardiovascular. 2013 2014 2015 2016

No. of admissions 6854 6252 5728 5319
CVD admissions (%) 9.0 7.7 7.6 7.4
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Table 5. Admissions for CVD classified by age class.

Age Class 2013 2014 2015 2016

under 20 92 95 71 88
20–29 447 401 348 338
30–39 688 597 545 464
40–54 1617 1532 1456 1320
55–64 1236 1122 1035 1020
65–75 1440 1251 1218 1073

over 75 1326 1250 1053 1016
No Data 8 4 2 0

Total 6854 6252 5728 5319

As shown in Figure 4, the 40–54 age group has the highest number of hospital admis-
sions. Typically, the over-60-years and the over-70-years are the categories most affected
by cardiovascular diseases, both for the severity of the disease and for the greater risk of
complications caused by the presence of other diseases. In this case, instead, the highest
incidence is observed in more young people.

2.2. Meteo-Climatic Parameters and Preliminary Statistical Analysis

The meteo-climatic data for the investigated period were collected by ARPA of the
Apulia region. For the monitoring activities, ARPA manages a Telemetric Network, with
five automatic stations. Each automatic meteorological station includes the following:
an “ECO2” series acquisition unit with 8 analogue inputs, which controls the system
and provides for the acquisition, pre-processing, and storage of data; a software package
(Ecodata32) dedicated to the management of the survey stations and able to dialogue
with the stations and to manage and process the data; sensors consisting of electronic
or mechanical devices that measure a specific meteorological parameter. The data are
recorded with a half-hourly frequency and are always expressed in solar time. In this study,
the meteo-climatic parameters taken into account are as follows: average daily minimum
temperature (Tmin); average maximum daily temperature (Tmax); average temperature
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(Tmean); temperature at the dew point (Tdewp); apparent or perceived temperature (Tapp);
atmospheric pressure (P_atm); average relative humidity (RH); and average absolute
humidity (AH). In Table 6, the descriptive statistics for each variable are summarised.

Table 6. Descriptive data statistics. Legend: avg = average; std = standard deviation; 25%, 50%, and
75% = 25th, 50th, and 75th percentiles, respectively; min–max = range.

Tmin Tmean Tmax Tdewp Tapp P_atm RH AH

(◦C) (◦C) (◦C) (◦C) (◦C) (mbar) (%) (%)

avg 16.1 17.7 19.1 12.4 23.3 1008.2 72.2 11.3

std 6.4 6.1 6.3 5.4 8.7 8.6 10.9 3.6

min 0.0 3.5 3.7 −4.2 3.0 976.6 37.0 3.5

25% 11.0 12.2 14.0 8.2 15.8 1003.0 65.0 8.3

50% 16.0 17.3 19.0 12.5 22.2 1007.3 73.0 10.8

75% 20.8 22.8 24.1 16.9 30.2 1014.0 80.0 14.0

max 30.8 32.0 37.0 26.0 52.8 1042.0 99.0 24.1

2.3. Methodology

In order to determine the meteorological variables that most influence admissions to
the emergency room for cardiovascular disease and to calculate the related relative risk, the
methodology illustrated in Figure 5 was adopted. It is composed of two phases: Phase 1:
correlation analysis and Phase 2: application of Machine Learning feature importance and
DLNM model.
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In Phase 1, the pair dependence between meteorological variables and admissions
to the emergency room for cardiovascular diseases is analysed with means of correlation
analysis (see Section 3.1).

If the Pearson coefficient r is higher or equal than a prefixed threshold (0.45 in this
case) and the p-value is lower than 0.01, Phase 2 will be carried out.

Conversely, the trend components are extracted using the Seasonal and Trend de-
composition via Loess (STL) (see Section 3.2), and Phase 2 will be carried out using trend
components data.

In Phase 2, a feature importance procedure is applied (with artificial intelligence
techniques, see Section 3.3) to determine the most significant meteorological variables, and
then the DLNM model [28] is applied to estimate the related relative risk (see Section 3.4).

3. Results
3.1. Correlation Analysis

Correlation analysis shows how the features are related to each other or with the target
variable. Positive correlation indicates that an increase in one feature’s value increases
the value of the target variable, whereas negative correlation means that an increase in
one feature’s value reduces the value of the target variable. A correlation matrix was used
calculating the Pearson Correlation Coefficient r, for each pair of quantitative features. [30]
The Pearson’s correlation between any two variables x,y is:

rxy =
∑n

i=1(xi − x)
(

yi − y
)

√
∑n

i=1(xi − x)2
√

∑n
i=1

(
yi − y

)2

where:

• n is the sample size;
• xi, yi are the individual sample points and x, y are the sample means.

Each cell of the matrix receives a single number from −1 to +1; therefore, the table
shows the strength of the (linear) relationship between any two features. The correlation
analysis is also based on the p-value. In null hypothesis significance testing, the p-value is
the probability of obtaining test results at least as extreme as the results actually observed,
under the assumption that the null hypothesis is correct. A very small p-value means that
such an extreme observed outcome would be very unlikely under the null hypothesis. This
statistical measure defines the reliability of the values obtained from the correlation, as it
helps to understand if the results of an experiment fall within the normal range of values
for the event under observation. Only the p-value values less than 0,01 and r greater than or
equal to 0.45 were considered for the hypothesis of acceptability for the set of input features.
In Table 7, the correlation matrix among meteorological parameters and CVD admissions is
shown. We note that (last column of the Table 7), for CVD, all the r-values satisfy the p-test.

Moreover, we note that for all the pairs, CVD admission and meteorological parameters
r-values are lower than 0.45, the fixed threshold.

3.2. Decomposition Model

The Seasonal and Trend decomposition using Loess (STL) is a filtering procedure
for decomposing a time series into seasonal, trend, and remainder components [31]. The
trend component is the low frequency variation in the data together with the nonstationary,
long-term changes level. The seasonal component is the variation in the data at or near
the seasonal frequency. The remainder component is the remaining variation in the data
beyond that in the seasonal and trend components. Suppose the data, the trend component,
the seasonal component, and the remainder component are denoted by Yv, Tv, Sv, and Rv,
respectively, for v = 1 to N; then:

Yv = Tv + Sv + Rv
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Table 7. Correlation matrix; the asterisks indicate the cases in which the hypothesis null on p-value is
not satisfied.

r Tmean Tdewp Tapp Tmin Tmax P_atm RH AH CVD

Tmean 1 0.91 0.99 0.94 0.95 −0.13 −0.38 0.90 −0.25

Tdewp 0.91 1 0.91 0.88 0.84 −0.14 0.03 * 0.99 −0.21

Tapp 0.99 0.91 1 0.91 0.95 −0.12 * −0.35 0.90 −0.25

Tmin 0.94 0.88 0.91 1 0.80 −0.27 −0.30 0.87 −0.18

Tmax 0.95 0.84 0.95 0.80 1 0.02 * −0.40 0.82 −0.28

P_atm −0.13 −0.14 −0.12 * −0.27 0.02 * 1 0.01 * −0.14 −0.14

RH −0.38 0.03 * −0.35 −0.30 −0.40 0.01 * 1 0.03 * 0.15

AH 0.90 0.99 0.90 0.87 0.82 −0.14 0.03 * 1 −0.22

CVD −0.25 −0.21 −0.25 −0.18 −0.28 −0.14 0.15 −0.22 1

The STL model uses robust local-weighted regression as a smoothing method for
time series decomposition. When estimating the value of a response variable, a subset of
data is selected from the vicinity of the predicted variable, and then linear or quadratic
regression is performed on the subset by using the weighted least squares method to reduce
the weight of the value far from the estimated point. Finally, the value of the response
variable can be estimated by the local regression model. This point-by-point method is
generally used to fit the whole curve to decompose the time series accurately. The aim was
to identify a simple method to verify that signal decomposition would lead to a noticeable
improvement in results and allow the use of ML techniques for simulating these processes.
This was accomplished by verifying the validity of STL and evaluating the stationarity of
the data series using the Dickey–Fuller method.

In Table 8, we compare the absolute values of r calculated among CVD admissions and
meteorological parameters before and after the application of the decomposition model.
As you can note, the variables Tmean, Tmax, Tapp, and RH show r-values greater than
the threshold value 0.45, and only for atmospheric pressure (P_atm) is the p-value test not
verified; therefore, it will be removed from the following analysis.

Table 8. Correlation between meteorological parameters and CVD admissions, with absolute value
of Pearson’s coefficient (|r|) before (CVD1) and after (CVD2) decomposition model application.

Variable CVD1 CVD2

Tmean 0.25 0.47

Tdewp 0.21 0.42

Tapp 0.25 0.47

Tmin 0.18 0.36

Tmax 0.28 0.54

P_atm 0.14 0.30

RH 0.15 0.45

AH 0.22 0.42

3.3. Application of Feature Importance

Building a ranking of features is useful for better understanding the data and better
understanding a model. Given an external estimator that assigns weights to features, Fea-
ture Importance calculates relative importance of the variables, enabling the identification
of the features that have the most impact on the simulation of the phenomenon. A Random
Forest was used here as an external estimator to determine the relative importance of all
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features. The aim is to quantify the strength of the relationship between the predictors and
the outcome. The higher the score, the more important or relevant is the feature towards
the output variable.

The Figure 6 shows the Relative Importance (RI) of the meteo-climatic features ob-
tained with a Random Forest model in our case. The graph shows that the variable Tmax
alone explains over 40 percent of the model’s values, RH is over 20%, Tapp is about 20%,
and Tmean is about 10%.
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3.4. Application of Distributed Lag Non-Linear Model (DLNM)

DLNMs are statistical methods developed for time series data and used to describe
the additional time dimension of the exposure–response relationship determining the
distribution of next effects after the occurrence of events (in lag times). Several studies
have shown how DLNM simultaneously estimates the nonlinear and delayed effects of
temperature on mortality or morbidity [27,28]. This statistical framework rests on the
definition of a “cross-base” function, a two-dimensional functional space expressed by
the combination of two sets of basic functions, which specify the relationships in the
dimensions of predictor and delays [28]. In order to model the shape of the non-linear
relationship in each of the two spaces we are considering, that of the predictor and the lags,
we must simultaneously apply two transformations:

• Choose a basis for x (vector of the exposures) such as to define the dependence in the
space of the predictor, specifying the basis matrix Z obtained by applying the basis
functions to x;

• Create the additional delay dimension for each of the derived base variables of x stored
in Z.

This operation produces an array representing the lagged occurrences of each base
variable x. Despite its complicated parameterization, estimating and inferring the parame-
ters of a DLNM is no more difficult compared to any other generalised linear model and
can be performed using standard statistical software after cross-base variables have been
provided [28]. This application preserves the hypothesis of non-linearity of the exposure–
response relationship and the hypothesis that the exposure is variable over time while
maintaining the algebra of the DLNM unchanged except for the use of smoothing func-
tions for time series. Decomposition of the time series into trend components allows for
modelling the non-linear relationship of exposure–response with the DLNM. A generalised
linear regression model with quasi-Poisson distribution, combined with the DLNM, was
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used to fit the relationship between the trend components of daily CVD hospital admissions
and meteo-climatic factors. The fits of models with different response variable specifications
were compared using AIC and BIC, identifying the most suitable model and evaluating the
evidence for a non-linear exposure response as well as the consistent risk along the lag. The
results obtained show that the response variables best correlated to the phenomenology are
the trend components of Tmax, Tapp, and RH.

The DLNM model becomes the following:

Y = Poisson (µt)
Log(µt) = α + βTmaxt,l + Tapp + RH + time + Dow

where µt is the trend component of daily CVD hospital admissions at calendar day t (t = 1,
2, 3, . . . , 1447); α is the intercept; Tmaxt,l is the cross-basis matrix produced by DLNM [28]
(Gasparrini et al., 2010). This matrix is obtained by the combination of the exposure–
response function with three internal knots placed at the 10th, 75th, and 90th percentiles
of the maximum temperature distributions and the lag–response function modelled with
three internal knots placed at equally spaced values in the log scale. According to previous
studies, the maximum lag was set up to 21 days for effects of cold temperature which
appeared only after some delay and lasted for several days; the trend components of
relative humidity (RH) and apparent temperature (Tapp) were used as response variables;
Day of the week (Dow) was also included in the model as indicator variables [32,33]. The
median value of temperature (20 ◦C) was defined as the baseline temperature (centring
value) for calculating the RR [34–36]. All the analyses were performed with the software R,
version 4.0.4, using the “dlnm package”, available on the R comprehensive archive network
(CRAN). The package contains functions for building basic matrices for specifying DLNM
and then for predicting and tracking results for a fitted model. The expected effect was
explained according to the Relative Risk parameter (RR). RR represents the probability
that a subject, belonging to a group exposed to certain factors, develops the disease, with
respect to the probability that a subject belonging to an unexposed group develops the
same disease. This index is used in cohort studies where exposure is measured over time.
If the RR is equal to 1, the risk factor is irrelevant to the appearance of the disease; if the
RR is greater than 1, the risk factor is implicated in the onset of the disease; if the RR is
less than 1, the risk factor defends against the disease (defence factor). The results were
expressed in terms of percentage increase and respective 95% confidence intervals.

The two-dimensional relationship of exposure–response estimated with DLNM can
be graphically summarised in 3D (Figure 7) and contour plot (Figure 8). The distributed
nonlinear lag surface revealed a non-linear relationship between temperature and hospital
admissions for cardiovascular diseases. In general, the lag patterns for hot and cold effects
showed statistically positive but not significant cold effects occurred, while hot effects were
strong and not correlated significantly. The cold effects followed a pattern of increasing RR
on the current day or on lag day 0–1.

In order to provide a specific assessment of the dose–response curve, the cumulative
effects of temperatures at lag 0, 5, 15, and 20 days and by lag at specific temperatures 8.3 ◦C,
10.3 ◦C, 10.9 ◦C, and 30.9 ◦C corresponding to 0.1th, 5th, 95th, and 99.9th percentiles of
temperature distribution are reported in Figure 9.
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4. Conclusions and Remarks

This study examines the correlations between the meteo-climatic factors and hospital-
izations for cardiovascular diseases in the city of Bari. Correlations previously identified
in epidemiological studies regarding the exposure–response relationship between daily
visits to the emergency room and the variation of some meteo-climatic parameters sug-
gest that morbidity in the case of cardiovascular diseases was related to the lowering of
the average seasonal temperature. Our results confirm this relationship by evaluating a
forecast scenario that shows an increase in the relative risk of hospitalizations as a function
of the delayed effects of time. The correlation analysis carried out after the time series
data decomposition highlights that the number of daily admissions to the emergency room
for cardiovascular diseases and the daily parameters of maximum temperature, apparent
temperature, and relative humidity are strongly related. A machine learning methodology,
including Feature Importance, has mathematically validated the selection of the more
relevant meteo-climatic variables to be used in the statistical model for the definition of a
possible risk scenario, reducing the overfitting and, consequently, reducing the variance of
the data. The non-linearity of the exposure–response relationship was, therefore, addressed
through the application of the DLNM, using the trend components as input data. The
prediction analysis carried out on decomposed time series shows an evident but not signifi-
cant increase in the relative risk associated with colder temperatures between 8.3 ◦C and
10.3 ◦C. The effect, as highlighted in Figures 7–9, occurs instantly and significantly between
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0–1 days after the event and subsequently 4–10 days later. In agreement with other studies,
the sample size may have contributed to underestimating the cold effect in the percentage
increase in relative risk. The effect of temperature on cardiovascular diseases has been
shown to be evident with the lowering of the seasonal temperature averages; however,
most of these studies were conducted on at least a ten-year timeframe of observations.
The increase in hospitalizations for CVD has been shown to be correlated to temperatures
above 28.6 ◦C for lag day 5. This correlation does not appear to be significant; the increase
in percentage terms of the relative risk associated with high temperatures is 0.73 (95%
CIs), and this value is very low compared to the forecasted statistical scenario. Previous
results suggest that the scenario produced by the application of the DLNM has identified
an increased relative risk of hospitalisation due to lower temperatures. The sensitivity
of the phenomenon to hot days has been shown to be very low. The study highlighted
the delayed effects in terms of lag days. The results obtained do not show very high-risk
percentages due to the numerosity of the input data. The small number of observations may
have contributed to underestimating the risk percentages obtained. This study provides
encouraging results that validate the extent of the influence of weather–climatic parameters
on human health. Although the forecast scenario shows a lower percentage increase in RR
compared to the reference scenarios of other studies, our methodological procedure for
selecting the predictors and the evaluation of their influence on daily access to the emer-
gency room appears to be reliable and in line with epidemiological studies. Furthermore,
the results confirm the applicability of the DLNM method. Our findings align with those of
many other studies [37] who utilised the DLNM to study the relationship between PM2.5
exposure, temperature, and health outcomes in five cities in Poland. Their findings showed
the effectiveness of the DLNM approach, with PM2.5 being identified as the most significant
pollutant. Additionally, several other studies [38–41] in China have leveraged the DLNM
method to investigate the connection between PM2.5 exposure, temperature, and human
health outcomes, further demonstrating the capabilities of the DLNM approach in these
types of analyses. Furthermore, [42] confirmed that this procedure is able to characterise
the complex pattern existing among environmental variables and human health.

In conclusion, our findings confirm that there is a noticeable correlation between the
variation in meteorological parameters and the daily hospitalizations for cardiovascular
diseases. Longer time series would allow further confirmation of the results and to identify
specific variation ranges of other meteorological parameters, not only of temperature
in which the relative risk increases. Moreover, more advanced signal decomposition
techniques, such as the Ensemble Empirical Mode Decomposition (EEMD) [43–45], will be
applied, for improving our analysis and for uncovering further insights into the relationship
between the environmental features and cardiovascular diseases or other negative impacts
on human health.

Author Contributions: V.T. and G.F. conceived of the presented idea. V.T. encouraged G.C. to
investigate the relationship between weather factors and cardiovascular emergency admissions. V.A.P.
collected the data. V.T., G.C. and C.M. investigated the models and the computational framework.
V.T., G.F., G.C. and M.R. analysed the data and discussed the results. All authors contributed to the
final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in the framework of the project ‘OT4CLIMA’, Funder: MUR-
Italian Ministry of Education, University, and Research (D.D. 2261 6.9.2018, PON R&I 2014–2020 and
FSC). ARS01_000405.

Institutional Review Board Statement: The Emergency Department visit database is fully anonymized
according to the privacy code. It is a completely de-identified data set that, assuch was not subject to
the approval of the ethics committee.No patient contact was made, and patients could not be traced.

Informed Consent Statement: The data provided not contains any personal information about patients.

Data Availability Statement: The data used in this study can be requested from the corresponding
author: Prof. Vito Telesca at vito.telesca@unibas.it.



Healthcare 2023, 11, 690 15 of 16

Acknowledgments: The authors thank Vito Procacci, director of the Internal Medicine department at
Bari Polyclinic, who provided data and expertise that greatly assisted the research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence.

Epidemiol. Rev. 2002, 24, 190–202. [CrossRef] [PubMed]
2. Ye, X.; Wolff, R.; Yu, W.; Vaneckova, P.; Pan, X.; Tong, S. Ambient temperature and morbidity: A review of epidemiological

evidence. Environ. Health Perspect. 2012, 120, 19–28. [CrossRef] [PubMed]
3. Glover, M. Mortality during periods of excessive temperature. Public Health Rep. 1938, 53, 1122–1143. [CrossRef]
4. Langford, I.; Bentham, G. The potential effects of climate change on winter mortality in England and Wales. Int. J. Biometeorol.

1995, 38, 141–147. [CrossRef]
5. Chung, J.; Honda, Y.; Hong, Y.; Pan, X.; Guo, Y.; Kim, H. Ambient temperature and mortality:An international study in four

capital cities of East Asia. Sci. Total Environ. 2009, 408, 390–396. [CrossRef] [PubMed]
6. Group, T.E. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and

all causes in warm and cold regions of Europe. Lancet 1997, 349, 1341–1346.
7. McMichael, A.J.; Wilkinson, P.; Kovats, R.S.; Pattenden, S.; Hajat, S.; Armstrong, B.; Vajanapoom, N.; Niciu, E.; Mahomed, H.;

Kingkeow, C.; et al. International study of temperature, heat and urban mortality: The ‘ISOTHURM’project. Int. J. Epidemiol.
2008, 37, 1121–1131. [CrossRef]

8. Chang, L. Epidemiology and quality of life in functional gastrointestinal disorders. Aliment. Pharmacol. Ther. 2004, 20, 31–39.
[CrossRef]

9. Longo-Mbenza, B.; Luila, E.L.; Mbete, P.; Vita, E.K. Is hyperuricemia a risk factor of stroke and coronary heart disease among
Africans? Int. J. Cardiol. 1999, 71, 17–22. [CrossRef]

10. Kynast-Wolf, G.; Preuß, M.; Sié, A.; Kouyaté, B.; Becher, H. Seasonal patterns of cardiovascular disease mortality of adults in
Burkina Faso, West Africa. Trop. Med. Int. Health 2010, 15, 1082–1089. [CrossRef]

11. Sari Kovats, R.; Edwards, S.J.; Charron, D.; Cowden, J.; D’Souza, R.M.; Ebi, K.L.; Gauci, C.; Gerner-Smidt, P.; Hajat, S.; Hales, S.;
et al. Climate variability and campylobacter infection: An international study. Int. J. Biometeorol. 2005, 49, 207–214. [CrossRef]
[PubMed]

12. Heunis, J.C.; Olivier, J.; Bourne, D.E. Short-term relationships between winter temperatures and cardiac disease mortality in Cape
Town. S. Afr. Med. J. 1995, 85, 1016–1019. [PubMed]

13. Åström, D.O.; Bertil, F.; Joacim, R. Heat wave impact on morbidity and mortality in the elderly population: A review of recent
studies. Maturitas 2011, 69, 99–105. [CrossRef] [PubMed]

14. Song, X.; Wang, S.; Hu, Y.; Yue, M.; Zhang, T.; Liu, Y.; Tian, J.; Shang, K. Impact of ambient temperature on morbidity and
mortality: An overview of reviews. Sci. Total Environ. 2017, 586, 241–254. [CrossRef]

15. Almeida, S.P.; Casimiro, E.; Calheiros, J. Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal.
Environ. Health 2010, 9, 1–7. [CrossRef]

16. Gosling, S.N.; Lowe, J.A.; McGregor, G.R.; Pelling, M.; Malamud, B.D. Associations between elevated atmospheric temperature
and human mortality: A critical review of the literature. Clim. Chang. 2009, 92, 299–341. [CrossRef]

17. Analitis, A.; De’Donato, F.; Scortichini, M.; Lanki, T.; Basagana, X.; Ballester, F.; Astrom, C.; Paldy, A.; Pascal, M.; Gasparrini, A.;
et al. Synergistic effects of ambient temperature and air pollution on health in Europe: Results from the PHASE project. Int. J.
Environ. Res. Public Health 2018, 15, 1856. [CrossRef]

18. De Sario, M.; Katsouyanni, K.; Michelozzi, P. Climate change, extreme weather events, air pollution and respiratory health in
Europe. Eur. Respir. J. 2013, 42, 826–843. [CrossRef] [PubMed]

19. Michelozzi, P.; Kirchmayer, U.; Katsouyanni, K.; Biggeri, A.; Bertollini, R.; Anderson, R.H.; Menne, B.; McGregor, G.; Kassomenos,
P. The PHEWE project-Assessment and prevention of acute health effects of weather conditions in Europe. Epidemiology 2004, 15,
S102–S103. [CrossRef]

20. Analitis, A.; Katsouyanni, K.; Biggeri, A.; Baccini, M.; Forsberg, B.; Bisanti, L.; Kirchmayer, U.; Ballester, F.; Cadum, E.; Goodman,
P.G.; et al. Effects of cold weather on mortality: Results from 15 European cities within the PHEWE project. Am. J. Epidemiol. 2008,
168, 1397–1408. [CrossRef]

21. Phung, D.; Hien, T.T.; Linh, H.N.; Luong, L.M.; Morawska, L.; Chu, C.; Binh, N.D.; Thai, P.K. Air pollution and risk of respiratory
and cardiovascular hospitalizations in the most populous city in Vietnam. Sci. Total Environ. 2016, 557, 322–330. [CrossRef]
[PubMed]

22. Schwartz, P.J.; Priori, S.G.; Cerrone, M.; Spazzolini, C.; Odero, A.; Napolitano, C.; Bloise, R.; De Ferrari, G.M.; Klersy, C.; Moss,
A.J.; et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome.
Circulation 2004, 109, 1826–1833. [CrossRef]

23. Telesca, V.; Favia, G.; Marranchelli, C. Effects of extreme temperature and air polluttants on emergerncy department admissions
for childhood respiratory diseases in the City of Bari, Soutern Italy. In Proceedings of the ISCI 2019, University of Tartu, 7th
Conference of the International Society for Child Indicators, Abstract book p. 141. Tartu, Estonia, 27–29 August 2019.

http://doi.org/10.1093/epirev/mxf007
http://www.ncbi.nlm.nih.gov/pubmed/12762092
http://doi.org/10.1289/ehp.1003198
http://www.ncbi.nlm.nih.gov/pubmed/21824855
http://doi.org/10.2307/4582590
http://doi.org/10.1007/BF01208491
http://doi.org/10.1016/j.scitotenv.2009.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19853280
http://doi.org/10.1093/ije/dyn086
http://doi.org/10.1111/j.1365-2036.2004.02183.x
http://doi.org/10.1016/S0167-5273(99)00097-2
http://doi.org/10.1111/j.1365-3156.2010.02586.x
http://doi.org/10.1007/s00484-004-0241-3
http://www.ncbi.nlm.nih.gov/pubmed/15565278
http://www.ncbi.nlm.nih.gov/pubmed/8596965
http://doi.org/10.1016/j.maturitas.2011.03.008
http://www.ncbi.nlm.nih.gov/pubmed/21477954
http://doi.org/10.1016/j.scitotenv.2017.01.212
http://doi.org/10.1186/1476-069X-9-12
http://doi.org/10.1007/s10584-008-9441-x
http://doi.org/10.3390/ijerph15091856
http://doi.org/10.1183/09031936.00074712
http://www.ncbi.nlm.nih.gov/pubmed/23314896
http://doi.org/10.1097/00001648-200407000-00258
http://doi.org/10.1093/aje/kwn266
http://doi.org/10.1016/j.scitotenv.2016.03.070
http://www.ncbi.nlm.nih.gov/pubmed/27016680
http://doi.org/10.1161/01.CIR.0000125523.14403.1E


Healthcare 2023, 11, 690 16 of 16

24. Anderson, B.G.; Bell, M.L. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States.
Epidemiology 2009, 20, 205–213. [CrossRef]

25. Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.R.; Bisanti, L.; D’Ippoliti, D.; Danova,
J.; et al. Heat effects on mortality in 15 European cities. Epidemiology 2008, 19, 711–719. [CrossRef]

26. Hajat, S.; Armstrong, B.G.; Gouveia, N.; Wilkinson, P. Mortality displacement of heat-related deaths: A comparison of Delhi, São
Paulo, and London. Epidemiology 2005, 16, 613–620. [CrossRef] [PubMed]

27. Armstrong, B. Models for the relationship between ambient temperature and daily mortality. Epidemiology 2006, 17, 624–631.
[CrossRef] [PubMed]

28. Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. Stat. Med. 2010, 29, 2224–2234. [CrossRef]
29. Cortesi, P.A.; Fornari, C.; Madotto, F.; Conti, S.; Naghavi, M.; Bikbov, B.; Briant, P.; Caso, V.; Crotti, G.; Johnson, C.; et al. Trends in

cardiovascular diseases burden and vascular risk factors in Italy: The Global Burden of Disease study 1990–2017. Eur. J. Prev.
Cardiol. 2021, 28, 385–396. [CrossRef]

30. Pearson_Correlation_Coefficient. Available online: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient (accessed on
30 November 2022).

31. Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73.
32. Yang, J.; Ou, C.-Q.; Ding, Y.; Zhou, Y.-X.; Chen, P.-Y. Daily temperature and mortality: A study of distributed lag non-linear effect

and effect modification in Guangzhou. Environ. Health 2012, 11, 63. [CrossRef]
33. Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al.

Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375.
[CrossRef] [PubMed]

34. Guo, Y.; Barnett, A.G.; Pan, X.; Yu, W.; Tong, S. The impact of temperature on mortality in Tianjin, China: A case-crossover design
with a distributed lag nonlinear model. Environ. Health Perspect. 2011, 119, 1719–1725. [CrossRef]

35. Chen, C.-C.; Lin, B.-C.; Yap, L.; Chiang, P.-H.; Chan, T.-C. The association between ambient temperature and acute diarrhea
incidence in Hong Kong, Taiwan, and Japan. Sustainability 2018, 10, 1417. [CrossRef]

36. Liang, Z.; Lin, Y.; Ma, Y.; Zhang, L.; Zhang, X.; Li, L.; Zhang, S.; Cheng, Y.; Zhou, X.; Lin, H.; et al. The association between
ambient temperature and preterm birth in Shenzhen, China: A distributed lag non-linear time series analysis. Environ. Health
2016, 15, 1–11. [CrossRef]
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