Importance of Asprosin for Changes of M. Rectus Femoris Area during the Acute Phase of Medical Critical Illness: A Prospective Observational Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Serum Asprosin Measurement
2.4. Ultrasonographic Assessment
2.5. Statistics
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations and Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP/248; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Metnitz, P.G.; Moreno, R.P.; Almeida, E.; Jordan, B.; Bauer, P.; Campos, R.A.; Iapichino, G.; Edbrooke, D.; Capuzzo, M.; Le Gall, J.R.; et al. SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive Care Med. 2005, 31, 1336–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vosylius, S.; Sipylaite, J.; Ivaskevicius, J. Determinants of outcome in elderly patients admitted to the intensive care unit. Age Ageing 2005, 34, 157–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsson, M.S.; Christiansen, C.F.; Johansen, M.B.; Rasmussen, B.S.; Tonnesen, E.; Norgaard, M. Mortality in elderly ICU patients: A cohort study. Acta Anaesthesiol. Scand. 2014, 58, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lew, C.C.H.; Yandell, R.; Fraser, R.J.L.; Chua, A.P.; Chong, M.F.F.; Miller, M. Association Between Malnutrition and Clinical Outcomes in the Intensive Care Unit: A Systematic Review. JPEN J. Parenter. Enter. Nutr. 2017, 41, 744–758. [Google Scholar] [CrossRef] [PubMed]
- Kress, J.P.; Hall, J.B. ICU-acquired weakness and recovery from critical illness. N. Engl. J. Med. 2014, 371, 287–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Phadke, R.; Dew, T.; Sidhu, P.S.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef] [Green Version]
- Derde, S.; Hermans, G.; Derese, I.; Guiza, F.; Hedstrom, Y.; Wouters, P.J.; Bruyninckx, F.; D’Hoore, A.; Larsson, L.; Van den Berghe, G.; et al. Muscle atrophy and preferential loss of myosin in prolonged critically ill patients. Crit. Care Med. 2012, 40, 79–89. [Google Scholar] [CrossRef]
- Bloch, S.; Polkey, M.I.; Griffiths, M.; Kemp, P. Molecular mechanisms of intensive care unit-acquired weakness. Eur. Respir. J. 2012, 39, 1000–1011. [Google Scholar] [CrossRef]
- Weber-Carstens, S.; Schneider, J.; Wollersheim, T.; Assmann, A.; Bierbrauer, J.; Marg, A.; Al Hasani, H.; Chadt, A.; Wenzel, K.; Koch, S.; et al. Critical illness myopathy and GLUT4: Significance of insulin and muscle contraction. Am. J. Respir. Crit. Care Med. 2013, 187, 387–396. [Google Scholar] [CrossRef]
- Casaer, M.P.; Langouche, L.; Coudyzer, W.; Vanbeckevoort, D.; De Dobbelaer, B.; Guiza, F.G.; Wouters, P.J.; Mesotten, D.; Van den Berghe, G. Impact of early parenteral nutrition on muscle and adipose tissue compartments during critical illness. Crit. Care Med. 2013, 41, 2298–2309. [Google Scholar] [CrossRef]
- Ferrie, S.; Allman-Farinelli, M.; Daley, M.; Smith, K. Protein Requirements in the Critically Ill: A Randomized Controlled Trial Using Parenteral Nutrition. JPEN J. Parenter. Enter. Nutr. 2016, 40, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Fetterplace, K.; Deane, A.M.; Tierney, A.; Beach, L.J.; Knight, L.D.; Presneill, J.; Rechnitzer, T.; Forsyth, A.; Gill, B.M.T.; Mourtzakis, M.; et al. Targeted Full Energy and Protein Delivery in Critically Ill Patients: A Pilot Randomized Controlled Trial (FEED Trial). JPEN J. Parenter. Enter. Nutr. 2018, 42, 1252–1262. [Google Scholar] [CrossRef] [PubMed]
- Bloch, S.A.; Lee, J.Y.; Syburra, T.; Rosendahl, U.; Griffiths, M.J.; Kemp, P.R.; Polkey, M.I. Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs. Thorax 2015, 70, 219–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilg, H.; Moschen, A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006, 6, 772–783. [Google Scholar] [CrossRef]
- Romere, C.; Duerrschmid, C.; Bournat, J.; Constable, P.; Jain, M.; Xia, F.; Saha, P.K.; Del Solar, M.; Zhu, B.; York, B.; et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell 2016, 165, 566–579. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Li, W.; Zhu, Y.; Yu, B.; Wu, J. Asprosin: A Novel Player in Metabolic Diseases. Front. Endocrinol. 2020, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Lin, T.A.; Liu, K.H.; Liao, C.H.; Liu, Y.Y.; Wu, V.C.; Wen, M.S.; Yeh, T.S. Serum asprosin levels and bariatric surgery outcomes in obese adults. Int. J. Obes. 2019, 43, 1019–1025. [Google Scholar] [CrossRef]
- Cantay, H.; Binnetoglu, K.; Gul, H.F.; Bingol, S.A. Investigation of serum and adipose tissue levels of asprosin in patients with severe obesity undergoing sleeve gastrectomy. Obesity 2022, 30, 1639–1646. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boullata, J.I.; Carrera, A.L.; Harvey, L.; Escuro, A.A.; Hudson, L.; Mays, A.; McGinnis, C.; Wessel, J.J.; Bajpai, S.; Beebe, M.L.; et al. ASPEN Safe Practices for Enteral Nutrition Therapy [Formula: See text]. JPEN J. Parenter. Enter. Nutr. 2017, 41, 15–103. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Pichard, C.; Lochs, H.; Pirlich, M. Prognostic impact of disease-related malnutrition. Clin. Nutr. 2008, 27, 5–15. [Google Scholar] [CrossRef]
- Khalatbari-Soltani, S.; Marques-Vidal, P. The economic cost of hospital malnutrition in Europe; a narrative review. Clin. Nutr. ESPEN 2015, 10, e89–e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, Y.; Huang, M.; Zhang, M.; Zhu, C.; Chen, X.; Bennett, S.; Xu, J.; Zou, J. The Effects of Asprosin on Exercise-Intervention in Metabolic Diseases. Front. Physiol. 2022, 13, 907358. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xu, Y.; Zheng, Y.; Kang, Q.; Lou, Z.; Liu, Q.; Chen, H.; Ji, Y.; Guo, L.; Chen, C.; et al. Increased plasma asprosin levels in patients with drug-naive anorexia nervosa. Eat. Weight Disord. 2021, 26, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, G.; Setayesh, L.; Fadaei, R.; Khamseh, M.E.; Aliakbari, F.; Hosseini, J.; Moradi, N. Circulating levels of asprosin and its association with insulin resistance and renal function in patients with type 2 diabetes mellitus and diabetic nephropathy. Mol. Biol. Rep. 2021, 48, 5443–5450. [Google Scholar] [CrossRef] [PubMed]
- Ferrie, S.; Tsang, E. Monitoring Nutrition in Critical Illness: What Can We Use? Nutr. Clin. Pract. 2018, 33, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Paris, M.T.; Mourtzakis, M.; Day, A.; Leung, R.; Watharkar, S.; Kozar, R.; Earthman, C.; Kuchnia, A.; Dhaliwal, R.; Moisey, L.; et al. Validation of Bedside Ultrasound of Muscle Layer Thickness of the Quadriceps in the Critically Ill Patient (VALIDUM Study). JPEN J. Parenter. Enter. Nutr. 2017, 41, 171–180. [Google Scholar] [CrossRef]
- Duerrschmid, C.; He, Y.; Wang, C.; Li, C.; Bournat, J.C.; Romere, C.; Saha, P.K.; Lee, M.E.; Phillips, K.J.; Jain, M.; et al. Asprosin is a centrally acting orexigenic hormone. Nat. Med. 2017, 23, 1444–1453. [Google Scholar] [CrossRef] [Green Version]
- Pardo, E.; El Behi, H.; Boizeau, P.; Verdonk, F.; Alberti, C.; Lescot, T. Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients. BMC Anesthesiol. 2018, 18, 205. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, H.I.; Saygin, O.; Ozel Turkcu, U. Assessment of acute aerobic exercise in the morning versus evening on asprosin, spexin, lipocalin-2, and insulin level in overweight/obese versus normal weight adult men. Chronobiol. Int. 2020, 37, 1252–1268. [Google Scholar] [CrossRef]
- Du, C.; Wang, C.; Guan, X.; Li, J.; Du, X.; Xu, Z.; Li, B.; Liu, Y.; Fu, F.; Huo, H.; et al. Asprosin is associated with anorexia and body fat mass in cancer patients. Support. Care Cancer 2021, 29, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Bechard, L.J.; Cahill, N.; Wang, M.; Day, A.; Duggan, C.P.; Heyland, D.K. Nutritional practices and their relationship to clinical outcomes in critically ill children—An international multicenter cohort study*. Crit. Care Med. 2012, 40, 2204–2211. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Bechard, L.J.; Zurakowski, D.; Duggan, C.P.; Heyland, D.K. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: A multicenter, prospective, cohort study. Am. J. Clin. Nutr. 2015, 102, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrie, S.; Allman-Farinelli, M. Commonly used “nutrition” indicators do not predict outcome in the critically ill: A systematic review. Nutr. Clin. Pract. 2013, 28, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.L.; Witney, G.B.; Christie, P.M.; Church, J.M. Protein status and metabolic expenditure determine the response to intravenous nutrition—A new classification of surgical malnutrition. Br. J. Surg. 1991, 78, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Lee, J.S.; Chae, S.H.; Ahn, B.S.; Chang, D.J.; Shin, C.S. Prealbumin is not sensitive indicator of nutrition and prognosis in critical ill patients. Yonsei Med. J. 2005, 46, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bargues, L.; Cottez-Gacia, S.; Jault, P.; Renard, C.; Vest, P. Clinical and biological monitoring of nutritional status in severe burns. Pathol. Biol. 2009, 57, 524–529. [Google Scholar] [CrossRef]
- Erstad, B.L.; Campbell, D.J.; Rollins, C.J.; Rappaport, W.D. Albumin and prealbumin concentrations in patients receiving postoperative parenteral nutrition. Pharmacotherapy 1994, 14, 458–462. [Google Scholar]
Variables | Total (n = 46) |
---|---|
Age (years) ± SD | 72 ± 6 |
Gender, n (%) | |
Male | 25 (54.3) |
Female | 21 (41.7) |
BMI, median (IQR) | 22.0 (20.9–29.0) |
Reason for ICU admission, n (%) | |
Respiratory failure | 8 (17.4) |
Sepsis/septic shock | 12 (26.1) |
Cerebrovascular disease | 8 (17.4) |
Metabolic reasons | 17 (37.0) |
Post-op | 1 (2.2) |
Comorbidity disease, n (%) | |
Diabetes mellitus | 16 (34.8) |
Hypertension | 29 (63.0) |
Chronic obstructive pulmonary disease | 12 (26.1) |
Cardiac failure | 10 (21.7) |
Chronic renal failure | 8 (17.4) |
Dementia | 10 (21.7) |
Other (…) | 17 (37.0) |
APACHE II score, ± SD | 19.8 ± 6.98 |
SOFA score, ± SD | |
Day 1 | 6.8 ± 3.43 |
Day 4 | 7.3 ± 4.17 |
Charlson comorbidity index, median (IQR) | 6.0 (4.0–8.0) |
Baseline Glasgow score, median (IQR) | 10.0 (3.0–13.0) |
Malnutrition at risk, n (%) | 32 (70.0) |
Daily energy requirement (kcal/day), ±SD | 1540 ± 193.0 |
Daily energy intake (kcal), ±SD | |
Day 1 | 530 ± 371.3 |
Day 2 | 931 ± 574.5 |
Day 3 | 1023 ± 560.4 |
Day 4 | 1062 ± 622.9 |
The received % of daily energy target, ±SD | |
Day 1 | 34.9 ± 24.8 |
Day 2 | 61.4 ± 38.7 |
Day 3 | 67.7 ± 37.4 |
Day 4 | 74.0 ± 42.0 |
Daily protein intake (g/kg/day), ±SD | |
Day 1 | 0.4 ± 0.27 |
Day 2 | 0.7 ± 0.44 |
Day 3 | 0.8 ± 0.42 |
Day 4 | 0.8 ± 0.47 |
The received % of daily protein target, ±SD | |
Day 1 | 35.8 ± 23.54 |
Day 2 | 65.3 ± 40.84 |
Day 3 | 73.1 ± 41.22 |
Day 4 | 79.3 ± 46.67 |
Need for MV support, n (%) | 21 (45.7) |
Need for RRT, n (%) | 21 (45.7) |
Length of ICU stay (day), median (IQR) | 11.5 (9.8–18.5) |
Length of hospital stay (day), median (IQR) | 19.0 (13.0–31.8) |
Mortality, n (%) | 29 (63.0) |
Day 1 | Day 4 | Delta (Δ) | p | |
---|---|---|---|---|
Asprosin value, ng/mL | 31.8 (27.4 to 38.1) | 26.1 (23.4 to 32.3) | −5.77 (−9.21 to 0.28) | <0.001 |
RF, cm2 | 1.68 (1.35 to 2.07) | 1.82 (1.38 to 2.13) | 0.15 (−0.43 to 0.46) | 0.196 |
Day 1 | Day 4 | p | |
---|---|---|---|
Glucose (mg/dL) | 143 (110–194) | 125 (103–170) | <0.001 |
AST (IU/L) | 24 (15–35) | 22 (13–38) | 0.651 |
ALT (IU/L) | 15 (8–24) | 16 (9–25) | 0.433 |
LDH (U/L) | 294 (237–395) | 267 (200–389) | 0.040 |
Albumin (g/dL) | 2.7 (2.4–3.1) | 2.5 (2.2–2.9) | 0.001 |
Prealbumin (g/L) | 0.1 ± 0.04 | 0.1 ± 0.05 | 0.051 |
CRP (mg/L) | 72.3 (36.7–152.5) | 77.6 (30.9–139.5) | 0.666 |
Procalcitonin (µg/L) | 0.49 (0.21–1.96) | 0.60 (0.14–3.30) | 0.984 |
Asprosin Value, ng/mL | ||||
---|---|---|---|---|
Day 1 | Day 4 | Delta | ||
APACHE II | −0.160 | - | −0.050 | |
mNUTRIC score | −0.063 | - | 0.102 | |
Charlson comorbidity index | 0.151 | - | 0.012 | |
SOFA | Day 1 | 0.067 | - | 0.089 |
Day 4 | - | 0.142 | 0.133 | |
Glucose | Day 1 | −0.052 | −0.060 | |
Day 4 | - | −0.067 | ||
AST | Day 1 | −0.088 | −0.078 | |
Day 4 | −0.075 | |||
ALT | Day 1 | −0.082 | −0.056 | |
Day 4 | −0.111 | |||
LDH | Day 1 | −0.007 | −0.096 | |
Day 4 | −0.026 | |||
Albumin | Day 1 | −0.315 * | −0.525 * | |
Day 4 | −0.002 | |||
Prealbumin | Day 1 | −0.334 * | −0.322 * | |
Day 4 | −0.267 | |||
CRP | Day 1 | −0.106 | 0.077 | |
Day 4 | 0.154 | |||
PCT | Day 1 | −0.001 | 0.204 | |
Day 4 | −0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipahioglu, H.; Ilik, H.K.Z.; Ozer, N.T.; Onuk, S.; Koyuncu, S.; Kuzuguden, S.; Elay, G. Importance of Asprosin for Changes of M. Rectus Femoris Area during the Acute Phase of Medical Critical Illness: A Prospective Observational Study. Healthcare 2023, 11, 732. https://doi.org/10.3390/healthcare11050732
Sipahioglu H, Ilik HKZ, Ozer NT, Onuk S, Koyuncu S, Kuzuguden S, Elay G. Importance of Asprosin for Changes of M. Rectus Femoris Area during the Acute Phase of Medical Critical Illness: A Prospective Observational Study. Healthcare. 2023; 11(5):732. https://doi.org/10.3390/healthcare11050732
Chicago/Turabian StyleSipahioglu, Hilal, Hatice Kubra Zenger Ilik, Nurhayat Tugra Ozer, Sevda Onuk, Sumeyra Koyuncu, Sibel Kuzuguden, and Gulseren Elay. 2023. "Importance of Asprosin for Changes of M. Rectus Femoris Area during the Acute Phase of Medical Critical Illness: A Prospective Observational Study" Healthcare 11, no. 5: 732. https://doi.org/10.3390/healthcare11050732
APA StyleSipahioglu, H., Ilik, H. K. Z., Ozer, N. T., Onuk, S., Koyuncu, S., Kuzuguden, S., & Elay, G. (2023). Importance of Asprosin for Changes of M. Rectus Femoris Area during the Acute Phase of Medical Critical Illness: A Prospective Observational Study. Healthcare, 11(5), 732. https://doi.org/10.3390/healthcare11050732