A Semi-Automatic Method on a Small Italian Sample for Estimating Sex Based on the Shape of the Crown of the Maxillary Posterior Teeth
Abstract
:1. Introduction
2. Materials and Methods
- Four fixed landmarks were manually placed on each tooth: the buccal and lingual cusp tips and the mesial and distal fossae. All the landmarks were initially projected from the occlusal view and double checked by rotating the models (red points).
- Nine semi-landmarks were placed manually to identify major ridges and to delimitate the occlusal circumference. To accomplish this, two curves were drawn over the mesial and distal ridges, respectively, connecting the buccal and lingual cusp tips. The software automatically placed equally spaced semi-landmarks along each curve (blue and green points).
- Fifty surface semi-landmarks were automatically transposed to all the specimens using thin plate spline transformation (black points).
- The curve and surface semi-landmarks were slid to minimize the bending energy between each premolar configuration and the reference specimen. Then, the semilandmarks were automatically re-projected six times on their curves or surfaces.
- Four fixed landmarks were manually placed in correspondence with the mesio-palatine, disto-palatine, disto-buccal, and mesio-buccal cusps. All the landmarks were initially projected from an occlusal view and double-checked by rotating the models (four red dots).
- Fifty-one semilandmarks were placed manually to identify the mesial and distal marginal ridges, the palatal ridge, and the buccal ridge. Then, in sequence, the central sulcus, buccal sulcus, and palatal sulcus. Finally, all the cusp ridges were analysed—the mesio-palatal, mesio-buccal, disto-palatal, and disto-buccal—reaching a total of 51 semi-landmarks on the curves (green dots).
- A total of 210 surface semi-landmarks were then automatically added using the configuration adopted with the thin plate spline transformation (black dots).
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capitaneanu, C.; Willems, G.; Thevissen, P. A systematic review of odontological sex estimation methods. J. Forensic Odonto-Stomatol. 2017, 35, 1–19. [Google Scholar]
- Krishan, K.; Chatterjee, P.M.; Kanchan, T.; Kaur, S.; Baryah, N.; Singh, R.K. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci. Int. 2016, 261, 165.e1–165.e8. [Google Scholar] [CrossRef] [PubMed]
- de Boer, H.H.; Obertová, Z.; Cunha, E.; Adalian, P.; Baccino, E.; Fracasso, T.; Kranioti, E.; Lefévre, P.; Lynnerup, N.; Petaros, A.; et al. Strengthening the role of forensic anthropology in personal identification: Position statement by the Board of the Forensic Anthropology Society of Europe (FASE). Forensic Sci. Int. 2020, 315, 110456. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M.; Willis, S. Interpol review of forensic biology and forensic DNA typing 2016-2019. Forensic Sci. Int. Synerg. 2020, 2, 352–367. [Google Scholar] [CrossRef]
- Quincey, D.; Carle, G.; Alunni, V.; Quatrehomme, G. Difficulties of sex determination from forensic bone degraded DNA: A comparison of three methods. Sci. Justice 2013, 53, 253–260. [Google Scholar] [CrossRef]
- Popovici, M.; Groza, V.; Bejenaru, L.; Petraru, O. Geometric morphometrics of the second molar teeth within the human population from the late medieval city of Iași, Romania. Archaeometry 2022, 64, 1479–1498. [Google Scholar] [CrossRef]
- Teschler-Nicola, M.; Prossinger, H. Sex Determination Using Tooth Dimensions. In Dental Anthropology; Alt, K.W., Rösing, F.W., Teschler-Nicola, M., Eds.; Springer: Vienna, Austria, 1998. [Google Scholar] [CrossRef]
- Schwartz, G.T.; Dean, M.C. Sexual dimorphism in modern human permanent teeth. Am. J. Phys. Anthr. 2005, 128, 312–317. [Google Scholar] [CrossRef]
- Pinchi, V.; Torricelli, F.; Nutini, A.L.; Conti, M.; Iozzi, S.; Norelli, G.-A. Techniques of dental DNA extraction: Some operative experiences. Forensic Sci. Int. 2011, 204, 111–114. [Google Scholar] [CrossRef]
- Beschiu, L.M.; Ardelean, L.C.; Tigmeanu, C.V.; Rusu, L.-C. Cranial and Odontological Methods for Sex Estimation—A Scoping Review. Medicina 2022, 58, 1273. [Google Scholar] [CrossRef]
- Heng, D.; Manica, S.; Franco, A. Forensic Dentistry as an Analysis Tool for Sex Estimation: A Review of Current Techniques. Res. Rep. Forensic Med. Sci. 2022, 12, 25–39. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C.; Tartaglia, G.M.; Colombo, A.; Serrao, G. Size and shape of the human first permanent molar: A Fourier analysis of the occlusal and equatorial outlines. Am. J. Phys. Anthropol. 1999, 108, 281–294. [Google Scholar] [CrossRef]
- Iscan, M.Y.; Kedici, P.S. Sexual variation in bucco-lingual dimensions in Turkish dentition. Forensic Sci. Int. 2003, 137, 160–164. [Google Scholar] [CrossRef]
- Kondo, S.; Townsend, G.C.; Yamada, H. Sexual dimorphism of cusp dimensions in human maxillary molars. Am. J. Phys. Anthr. 2005, 128, 870–877. [Google Scholar] [CrossRef]
- Acharya, A.B.; Mainali, S. Univariate sex dimorphism in the Nepalese dentition and the use of discriminant functions in gender assessment. Forensic Sci. Int. 2007, 173, 47–56. [Google Scholar] [CrossRef]
- Acharya, A.B.; Mainali, S. Sex Discrimination Potential of Buccolingual and Mesiodistal Tooth Dimensions. J. Forensic Sci. 2008, 53, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.; Acharya, A.B. Odontometric sex assessment in Indians. Forensic Sci. Int. 2009, 192, 129.e1–129.e5. [Google Scholar] [CrossRef]
- Acharya, A.B.; Prabhu, S.; Muddapur, M.V. Odontometric sex assessment from logistic regression analysis. Int. J. Leg. Med. 2011, 125, 199–204. [Google Scholar] [CrossRef]
- Polychronis, G.; Christou, P.; Mavragani, M.; Halazonetis, D.J. Geometric morphometric 3D shape analysis and covariation of human mandibular and maxillary first molars. Am. J. Phys. Anthr. 2013, 152, 186–196. [Google Scholar] [CrossRef]
- Mujib, A.B.; Tarigoppula, R.K.; Kulkarni, P.G.; Bs, A. Gender determination using diagonal measurements of maxillary molar and canine teeth in davangere population. J. Clin. Diagn. Res. 2014, 8, ZC141–ZC144. [Google Scholar] [CrossRef]
- Yadav, S.K.; Yadav, A.B.; Angadi, P.V. Sex assessment efficacy of permanent maxillary first molar cusp dimensions in Indians. Contemp. Clin. Dent. 2015, 6, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Lagos, D.; Ciocca, L.; Caceres, D. Clinical sensitivity and specificity of mandibular canine index and of mesiodistal canine width to estimate sex: Adjustment of a predictive model. Int. J. Odontostomat. 2016, 10, 177183. [Google Scholar]
- Kazzazi, S.M.; Kranioti, E.F. Odontometric analysis of sexual dimorphism in permanent maxillary and mandibular molars. J. Forensic Sci. Criminol. 2017, 5, 102. [Google Scholar]
- Tabasum, Q.; Sehrawat, J.S.; Talwar, M.K.; Pathak, R.K. Odontometric sex estimation from clinically extracted molar teeth in a North Indian population sample. J. Forensic Dent. Sci. 2017, 9, 176. [Google Scholar] [CrossRef]
- Yong, R.; Ranjitkar, S.; Lekkas, D.; Halazonetis, D.; Evans, A.; Brook, A.; Townsend, G. Three-dimensional (3D) geometric mor-phometric analysis of human premolars to assess sexual dimorphism and biological ancestry in Australian populations. Am. J. Phys. Anthropol. 2018, 166, 373–385. [Google Scholar] [CrossRef]
- Eboh, D.E.O. Odontometric sex discrimination in young Urhobo adults of South-South Nigeria. Anat. Cell Biol. 2019, 52, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bhagawati, B.T.; Manika; Bhagawati, S.; Bhardwaj, N.; Sharma, S. Odontometric Analysis as an aid in Identification of Sexual Dimorphism: A Preliminary Study. Int. J. Recent Sci. Res. 2019, 10, 34573–34577. [Google Scholar]
- Sathawane, R.S.; Moon, G.; Chandak, R.; Lanjekar, A.; Bansod, R.; Sukhdeve, V. Gender determination using odontometric diagonal measurements of teeth: An analytical study. Int. J. Forensic Odontol. 2020, 5, 3–10. [Google Scholar]
- Akshatha, B.; Soundarya, N.; Jain, V.K.; Shetty, S. Sexual dimorphism using permanent maxillary and mandibular incisors, canines and molars: An odontometric analysis. J. Oral Maxillofac. Pathol. 2021, 25, 183–188. [Google Scholar] [CrossRef]
- Oliva, G.; Pinchi, V.; Bianchi, I.; Focardi, M.; Paganelli, C.; Zotti, R.; Dalessandri, D. Three-Dimensional Dental Analysis for Sex Es-timation in the Italian Population: A Pilot Study Based on a Geometric Morphometric and Artificial Neural Network Ap-proach. Healthcare 2021, 10, 9. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Visualizations in geometric morphometrics: How to read and how to make graphs showing shape changes. Hystrix It. J. Mamm. 2013, 24, 15–24. [Google Scholar] [CrossRef]
- Gunz, P.; Mitteroecker, P. Semilandmarks: A Method for Quantifying curves and surfaces. Hystrix It. J. Mamm. 2013, 24, 103–109. [Google Scholar] [CrossRef]
- Van’t Spijker, A.; Rodriguez, J.M.; Kreulen, C.M.; Bronkhorst, E.M.; Bartlett, D.W.; Creugers, N.H. Prevalence of tooth wear in adults. Int. J. Prosthodont. 2009, 22, 35–42. [Google Scholar]
- Viciano, J.; D’Anastasio, R.; Capasso, L. Odontometric sex estimation on three populations of the Iron Age from Abruzzo region (central–southern Italy). Arch. Oral Biol. 2015, 60, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Sonika, V.; Harshaminder, K.; Madhushankari, G.S.; Kennath, J.A.A.S. Sexual dimorphism in the permanent maxillary first molar: A study of the Haryana population (India). J. Forensic Odonto-Stomatol. 2011, 29, 37–43. [Google Scholar]
- Angelakopoulos, N.; Galić, I.; Balla, S.B.; Kiş, H.C.; Gómez Jiménez, L.; Zolotenkova, G.; Mohd Yusof, M.Y.P.; Hadzić Selmanagić, A.; Pandey, H.; Palmela Pereira, C.; et al. Comparison of the third molar maturity index (I3M) between left and right lower third molars to assess the age of majority: A multi-ethnic study sample. Int. J. Leg. Med. 2021, 135, 2423–2436. [Google Scholar] [CrossRef] [PubMed]
- Edgar, H.J.H.; Rautman, A.L.M. Forensic odontology. In A Companion to Dental Anthropology; Irish, J.D., Scott, G.R., Eds.; John Wiley & Sons, Inc.: West Sussex, UK, 2016; pp. 339–363. [Google Scholar]
- Bianchi, I.; Grassi, S.; Castiglione, F.; Bartoli, C.; Pierre, B.D.S.; Focardi, M.; Oliva, A.; Pinchi, V. Dental DNA as an Indicator of Post-Mortem Interval (PMI): A Pilot Research. Int. J. Mol. Sci. 2022, 23, 12896. [Google Scholar] [CrossRef] [PubMed]
- INTERPOL. DVI Guide. 2018. Available online: https://www.interpol.int/en/How-we-work/Forensics/Disaster-Victim-Identification-DVI (accessed on 29 December 2022).
- Brkic, H.; Lessig, R.; Aves-da-Silva, R.H.; Pinchi, V.; Thevissen, P. Textbook of Forensic Odonto-Stomatology by IOFOS; Naklada Slap: Zagreb, Croatia, 2020; pp. 35–44, 187–188, 215–229. ISBN 978-953-191-940-1. [Google Scholar]
Reference | Parameter | Numeric Value | |||
---|---|---|---|---|---|
Prediction | Female | Male | Accuracy (Acc) | 0.8214 | |
Female | 29 | 8 | Sensitivity (Se) | 0.9355 | |
Male | 2 | 17 | Specificity (Sp) | 0.6800 | |
“Positive” class: FEMALE | Positive predictive value (PPV) | 0.7838 | |||
Negative predictive value (NPV) | 0.8947 | ||||
95% CI | (0.696, 0.9109) | ||||
No information rate | 0.5536 | ||||
p-value (ACC > NIR) | 2.302 × 10−5 | ||||
Kappa | 0.6301 | ||||
McNemar’s test p-value | 0.1138 | ||||
Prevalence | 0.5536 | ||||
detection rate | 0.5179 | ||||
Detection Prevalence | 0.6607 | ||||
Balanced Accuracy | 0.8077 |
Tooth | Numerical Principal Components | Overall |
---|---|---|
Second premolar (SP) | 004 | 100.00 |
First premolar (FP) | 008 | 93.16 |
First premolar | 004 | 76.73 |
Second premolar | 002 | 75.89 |
Second premolar | 013 | 72.72 |
First premolar | 003 | 70.04 |
First premolar | 006 | 63.67 |
First premolar | 005 | 62.31 |
First premolar | Centroid size | 60.68 |
Second premolar | 001 | 59.43 |
Molar (M) | 005 | 53.63 |
First premolar | 012 | 41.71 |
First premolar | 009 | 40.91 |
Molar | 010 | 39.00 |
Molar | 006 | 37.54 |
Molar | 004 | 36.62 |
Molar | 020 | 33.66 |
Molar | 008 | 32.83 |
Second premolar | Centroid size | 32.22 |
Molar | 017 | 32.18 |
N. | Authors/Year | Dental Method | Teeth Model | Sample | Validation | Accuracy Results of Metric Functions | Se (F) and Sp (M) |
---|---|---|---|---|---|---|---|
1 | Işcan et al., 2003 [13] | Odontometric method: BL | All maxillary and mandibular left teeth (third molars excluded) | 100 casts (50 F/50 M) | Cross-validation test | All variables 76% | F 80% M 72% |
All maxilla 75% | F 84% M 66% | ||||||
All mandible 74% | F 74% M 74% | ||||||
Post-maxilla 74% | F 82% M 66% | ||||||
Post-mandible 73% | F 74% M 72% | ||||||
2 | Acharya et al., 2007 [15] | Odontometric method: BL and MD | All maxillary and mandibular teeth (third molars excluded) | 123 casts (58 F/65 M) | Cross-validation test | All variables 92.5% | F 95.5% M 90.3% |
All maxilla 88.7% | F 90.9% M 87.1% | ||||||
Post-mandible | |||||||
+ all maxilla 81% | F 72.7% M 74.2% | ||||||
All mandible 79.2% | F 72.7% M 83.9% | ||||||
Post-maxilla 67.9% | F 68.2% M 67.7% | ||||||
3 | Acharya et al., 2008 [16] | Odontometric method: BL and MD | All maxillary and mandibular teeth (third molars excluded) | 53 casts (22 F/31 M) | Cross-validation test | All variables (BL) 64.2% | F 68.2% M 61.3% |
All maxilla (BL) 62.3% | F 59.1% M 64.5% F | ||||||
All mandible (BL) 64.2% | 68.2% M 61.3% | ||||||
All variables (MD) 83% | F 86.4% M 80.6% | ||||||
All maxilla (MD) 77.4% | F 68.2% M 83.9% | ||||||
All mandible (MD) 77.4% | F 77.3% M 77.4% | ||||||
4 | Prabhu et al., 2009 [17] | Odontometric method: BL and MD | All maxillary and mandibular teeth (third molars excluded) | 105 casts (52 F/53 M) | Cross-validation test | All variables 74.3% | F 73.6% M 75% |
All maxilla 62.9% | F 62.3% M 63.5% | ||||||
All mandible 75.2% | F 75.5% M 75% | ||||||
5 | Acharya et al., 2011 [18] | Odontometric method: BL and MD | All maxillary and mandibular teeth (third molars excluded) | 105 casts (52 F/53 M) | Cross-validation test | All variables (DA) 57.1% | F 55.8% M 58.5% |
All maxilla (DA) 52.4% | F 48.1% M 56.6% | ||||||
All mandible (DA) 70.5% | F 69.2% M 71.1% | ||||||
All variables (LRA) 100% | F 100% M 100% | ||||||
All maxilla (LRA) 76.2% | F 76.9% M 75.5% | ||||||
All mandible (LRA) 84.8% | F 82.7% M 86.8% | ||||||
6 | Mujib et al., 2014 [20] | Odontometric method: MBDL and DBML | Maxillary canines and first molars | 100 casts (50 F/50 M) | / | All variables 71% | F 73% M 69% |
All canines 67% | F 66% M 67% | ||||||
All molars 65% | F 66% M 65% | ||||||
7 | Kazzazi et al., 2017 [23] | Odontometric method: BL and MD | Maxillary and mandibular molars (third molars excluded) | 75 subjects (28 F/52 M) | Cross-validation test | All maxillary I molars 82.1% | F 69.2% M 90.2% |
All maxillary II molars 85.5% | F 82.6% M 87.2% | ||||||
All mandibular I molars 78.4% | F 64.3% M 87% | ||||||
All mandibular II molars 83.5% | F 70.4% M 90.4% | ||||||
8 | Tabasum et al., 2017 [24] | Odontometric method: MBDL, DBML, MD, and BL | Maxillary and mandibular molars | 130 subjects (73 M/57 F) | / | All maxillary molars MD (DA) 67% | F 75.9% M 58.6% |
All maxillary molars BL (DA) 67% | F 65.5% M 69% | ||||||
All maxillary molars MD (LRA) 67% | F 75.9% M 58.6% | ||||||
All maxillary molars BL (LRA) 67% | F 65.5% M 69% | ||||||
9 | Yong et al., 2018 [25] | GMA | UP1, UP2, LP1, LP2 | 140 casts (70 F/70 M) | Cross-validation test | UP1 Indigenous Australians/ | F 74.3% M 80% |
UP2 Indigenous Australians/ | F 80% M 74.3% | ||||||
UP2 European Australians/ | F 62.9% M 57.1% | ||||||
UP1 European Australians/ | F 57.1% M 57% | ||||||
10 | Oliva et al., 2021 [30] | GMA + ANN | UP1 | 100 scans (50 F/50 M) | Training sample (75 scans) and test sample (25 scans) | Training sample 84% | F 92% M 70% |
Test sample 80% | VPP F 90% M 73% | ||||||
NPV F 73% M 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, I.; Oliva, G.; Vitale, G.; Bellugi, B.; Bertana, G.; Focardi, M.; Grassi, S.; Dalessandri, D.; Pinchi, V. A Semi-Automatic Method on a Small Italian Sample for Estimating Sex Based on the Shape of the Crown of the Maxillary Posterior Teeth. Healthcare 2023, 11, 845. https://doi.org/10.3390/healthcare11060845
Bianchi I, Oliva G, Vitale G, Bellugi B, Bertana G, Focardi M, Grassi S, Dalessandri D, Pinchi V. A Semi-Automatic Method on a Small Italian Sample for Estimating Sex Based on the Shape of the Crown of the Maxillary Posterior Teeth. Healthcare. 2023; 11(6):845. https://doi.org/10.3390/healthcare11060845
Chicago/Turabian StyleBianchi, Ilenia, Giorgio Oliva, Giulia Vitale, Beatrice Bellugi, Giorgio Bertana, Martina Focardi, Simone Grassi, Domenico Dalessandri, and Vilma Pinchi. 2023. "A Semi-Automatic Method on a Small Italian Sample for Estimating Sex Based on the Shape of the Crown of the Maxillary Posterior Teeth" Healthcare 11, no. 6: 845. https://doi.org/10.3390/healthcare11060845
APA StyleBianchi, I., Oliva, G., Vitale, G., Bellugi, B., Bertana, G., Focardi, M., Grassi, S., Dalessandri, D., & Pinchi, V. (2023). A Semi-Automatic Method on a Small Italian Sample for Estimating Sex Based on the Shape of the Crown of the Maxillary Posterior Teeth. Healthcare, 11(6), 845. https://doi.org/10.3390/healthcare11060845