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Abstract: Vision loss can be avoided if diabetic retinopathy (DR) is diagnosed and treated promptly.
The main five DR stages are none, moderate, mild, proliferate, and severe. In this study, a deep
learning (DL) model is presented that diagnoses all five stages of DR with more accuracy than
previous methods. The suggested method presents two scenarios: case 1 with image enhancement
using a contrast limited adaptive histogram equalization (CLAHE) filtering algorithm in conjunction
with an enhanced super-resolution generative adversarial network (ESRGAN), and case 2 without
image enhancement. Augmentation techniques were then performed to generate a balanced dataset
utilizing the same parameters for both cases. Using Inception-V3 applied to the Asia Pacific Tele-
Ophthalmology Society (APTOS) datasets, the developed model achieved an accuracy of 98.7% for
case 1 and 80.87% for case 2, which is greater than existing methods for detecting the five stages of
DR. It was demonstrated that using CLAHE and ESRGAN improves a model’s performance and
learning ability.

Keywords: vision loss; diabetic retinopathy; image enhancement; APTOS

1. Introduction

The progressive eye disease known as DR is a direct result of having mellitus. Increases
in blood glucose occur chronically in people with diabetes mellitus where the pancreas
does not generate or release enough blood adrenaline [1,2]. Most diabetics go blind from
DR, especially those of retirement age in low-income nations. Early identification is crucial
for preventing the consequences that can arise from chronic diseases such as diabetes [3,4].

Retinal vasculature abnormalities are the hallmark of DR, which can progress to
irreversible vision loss due to scarring or hemorrhage [1,5]. This may cause gradual vision
impairment and, in its most severe form, blindness. It is not possible to cure the illness, so
treatment focuses on preserving the patient’s present level of eyesight [6,7]. In most cases,
a patient’s sight may be saved if DR is diagnosed and treated as soon as possible. In order
to diagnose DR, an ophthalmologist should inspect images of the retina manually, which
is an expensive and time-consuming process [8]. The majority of ophthalmologists today
still use the tried-and-true method of analyzing retinal pictures for the presence and type
of different abnormalities in order to diagnose DR. Microaneurysms (MIA), hemorrhages
(HEM), soft exudates (SOX), and hard exudates (HEX) are the four most common forms of
lesions identified [1,9], which can be identified as the following:

• In earlier DR, MA appear as tiny, red dots on the retina due to a weakening in the vessel
walls. The dots have distinct borders and a dimension of 125 µm or less. There are six
subtypes of microaneurysms, but the treatment is the same for all of them [10,11].
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• In contrast to MA, HM are characterized by big spots on the retina with uneven edge
widths of more than 125 µm. A hemorrhage can be either flame or blot, according to
whether the spots are on the surface or deeper in the tissue [12,13].

• The swelling of nerve fibers causes soft exudates, which appear as white ovals on the
retina as defined as SX [1,9].

• Yellow spots on the retina, known as EX, are the result of plasma leakage. They extend
across the periphery of the retina and have defined borders [1,2].

• Lesions caused by MA and HM tend to be red, while blemishes caused by the two
forms of exudates tend to be bright. There are five distinct stages of DR that can be
detected: no DR, mild DR, moderate DR, severe DR, and proliferative DR [13], as
shown in Figure 1.

• For DR diagnosis to be performed manually, experts in the field are needed, even
though the most expert ophthalmologists have problems due to DR variability. Accu-
rate machine learning techniques for automated DR detection have the ability to those
defects [2,8].

• Our objective was to develop a quick, fully automated DL based DR categorization that
may be used in practice to aid ophthalmologists in assessing DR. DR can be prevented
if it is detected and treated quickly after it first appears. To achieve this goal, we trained
a model using innovative image preprocessing techniques and an Inception-V3 [14,15]
model for diagnosis using the publicly available APTOS dataset [16].
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Below, we highlight the original contributions of our study.

• To generate high-quality images for the APTOS dataset, we used the (CLAHE) [17] fil-
tering algorithm in conjunction with enhanced super-resolution generative adversarial
networks (ESRGAN) [18], which is the main contribution of the presented work.

• By employing the technique of augmentation, we ensured that the APTOS dataset
contained a consistent amount of data.

• Accuracy (Acc), confusion matrix (CM), precision (Prec), recall (Re), top n accuracy, and
the F1-score (F1sc) were the indicators used in a comprehensive comparative study to
determine the viability of the proposed system.



Healthcare 2023, 11, 863 3 of 17

• Pre-trained networks trained on the APTOS data set were fine-tuned with the use of
an Inception-V3 weight-tuning algorithm.

• By adopting a varied training procedure backed by various permutations of train-
ing strategies, the general reliability of the suggested method was enhanced, and
overfitting was avoided (e.g., learning rate, data augmentation, batch size, and
validation patience).

• The APTOS dataset was used during both the training and evaluation phases of the
model’s development. By employing stringent 80:20 hold-out validation, the model
achieved a remarkable 98.71% accuracy of classification using enhancement techniques
and 80.87% without using enhancement techniques.

This research presents two cases scenarios. In case 1, an optimal technique for DR
stage enhancement using CLAHE followed by ESRGAN techniques was developed. In
case 2 no enhancement was applied to the images. Due to the class imbalance in the dataset,
oversampling was required using augmentation techniques. In addition, we trained the
weights of each model using Inception-V3, and the results of the models were compared
using APTOS dataset images. Section 2 provides context for the subsequent discussion of
the related work. Section 4 presents and analyzes the results of the technique described in
Section 3, and Section 5 summarizes the research.

2. Related Work

There are various issues with DR picture detection when done manually. Numerous
patients in underdeveloped nations face challenges due to a shortage of competence (trained
ophthalmologists) and expensive tests. Because of the importance of timely detection in
the fight against blindness, automated processing methods have been devised to facilitate
accessibility for accurate and speedy diagnosis and treatment. Automated DR classification
accuracy has recently been achieved by Machine Learning (ML) models trained on ocular
fundus pictures. A lot of work has gone into developing automatic methods that are both
efficient and inexpensive [19–21].

This means that these methods are now universally superior to their traditional
counterparts. Following, we present a deeper examination of the two primary schools of
thought in DR categorization research: classical, specialist approaches, and state-of-the-art,
machine-learning-based approaches. For instance, Kazakh-British et al. [22], performed
experimental studies with a relevant processing pipeline that extracted arteries from fundus
pictures, and then a CNN model was trained to recognize lesions. Other work presented
by Alexandr et al. [23] contrasted two widely-used classic designs (DenseNet and ResNet)
with a new, enhanced structure (EfficientNet). Use of the APTOS symposium dataset
allowed for the retinal image to be classified into one of five categories. Local binary
convolutional neural network (LBCNN) deterministic filter generation was introduced by
Macsik et al. [24] which mimicked the successfulness of the CNN with a smaller training
set and less memory utilization, making it suitable for systems with limited memory or
computing resources. Regarding binary classification of retinal fundus datasets into healthy
and diseased groups, they compared their method with traditional CNN and LBCNN that
use probabilistic filter sequence.

Al-Antary & Yasmine [19] suggested a multi-scale attention network (MSA-Net) for
DR categorization. The encoder network embeds the retina image in a high-level rep-
resentational space, enriching it with mid- and high-level characteristics. A multi-scale
feature pyramid describes the retinal structure in another location. In addition to high-
level representation, a multi-scale attention mechanism improves feature representation
discrimination. The model classifies DR severity using cross-entropy loss. The model de-
tects healthy and unhealthy retina pictures as an extracurricular assignment using weakly
annotations. This surrogate task helps the model recognize non-healthy retina pictures.
EyePACS and APTOS datasets performed well with the proposed technique. Medical
DR identification was the focus of an investigation by Khalifa et al. [25] on deep transfer
learning models. A series of experiments was conducted with the help of the APTOS 2019
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dataset. Five different neural network architectures (AlexNet, Res-Net18, SqueezeNet,
GoogleNet, VGG16, and VGG19) were used in this research. Selecting models with fewer
layers than DenseNet and Inception-Resnet was a key factor. Model stability and overfitting
were both enhanced by additional data. Hemanth et al. [26] presented a convolutional
neural network–based approach to DR detection and classification. They employed HIST
and CLAHE to improve contrast in the images, and the resulting CNN model achieved
97% accuracy in classification and a 94% F-measure. Maqsood et al. [27] introduced a new
3D CNN model to localize hemorrhages, an early indicator of DR, using a pre-trained
VGG-19 model to extract characteristics from segmented hemorrhages. Their studies
used 1509 photos from HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, and DIARETDB1
databases and averaged 97.71% accuracy. Das et al. [28] suggested a unique CNN for
categorizing normal and abnormal patients utilizing the fundus images. The blood arteries
were recovered from the images using a maximal principal curvature approach. Adaptive
histogram equalization and morphological opening were used to correct improperly seg-
mented regions. The DIARETDB1 dataset was considered, and an accuracy and precision
of 98.7% and 97.2%, respectively, was attained.

Wang et al. [29] created Lesion-Net to improve the encoder’s representational power
by including lesion detection into severity grading. InceptionV3 trained and verified the
design. Liu et al. [30] used TL with different models to investigate DR from EyePACS.
A new cross-entropy loss function and three hybrid model structures classified DR with
86.34% accuracy.

Table 1 summarizes the many attempts to detect DR anomalies in photos using various
DL techniques [19,24,31–37]. According to the results of the research into DR identification
and diagnostic methods, there are still a lot of loopholes that need to be investigated.
For example, there has been minimal emphasis on constructing and training a bespoke
DL model entirely from the beginning because of a lack of a large amount of data, even
though numerous researchers have obtained excellent dependability values with pre-
trained models using transfer-learning.

Table 1. A review of the literature comparing several DR diagnostic techniques.

Reference Year Technique Total Number
of Images Classes Dataset Accuracy Precision Recall

Receiver Operating
Characteristic
ROC

[19] 2021
Multi-scale attention
network (MSA-Net) 5

APTOS 84.6% 90.5% 91% -

Eyepacs 87.5% 78.7% 90.6% 76.7%

[24] 2022
Local binary
convolutional neural
network (LBCNN)

2 APTOS 97.41% 96.59% 94.63% 98.71%

[31] 2022
Support vector
machine (SVM)

Test: 1928
2

APTOS 94.5% 75.6%

Test: 103 IDRiD 93.3% 78.5%

[32] 2022 CNN 2 APTOS 95.3%

[33] 2022 Inception-ResNet-v2 5 APTOS 82.18%

[34] 2021
Squeeze Excitation
Densely Connected
deep CNN

5
APTOS 96%

EyePACS 93%

[35] 2021 VGG-16 Test = 1728 5 APTOS 74.58%

[36] 2022
VGG16

13,626 2 APTOS
73.26% 99% 99%

DenseNet121 96.11%

[37] 2022 DenseNet201

3662 5 APTOS 93.85% 90.90% 80.60%

2355 3 New
Dataset 94.06% 94.74% 94.45%
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Ultimately, training DL models with raw images instead of preprocessed images
severely restricts the final classification network’s scalability, as was the case in nearly
all of these studies. In order to resolve these problems, the current research created a
lightweight DR detection system by integrating multiple layers into the architecture of
pre-trained models. This leads to a more efficient and effective proposed system that meets
users’ expectations.

3. Research Methodology

For the DR detection system to operate, as shown in Figure 2, a transfer DL strategy
(Inception-V3) was retrained in the image dataset to learn discriminative and usable feature
representations. This section offers a concise summary of the method followed when
working with the provided dataset. The preprocessing stage is then clearly outlined, and
implementation specifics of the proposed system are covered. These include the two cases
scenarios used in this context, the preprocessing techniques proposed, the basic design,
and the training methodology for the approach that was ultimately chosen.
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Figure 2. An illustration of the DR detecting system process.

3.1. Data Set Description

Selecting a dataset with a sufficient number of high-quality photos is crucial. This
study made use of the APTOS 2019 (Asia Pacific Tele-Ophthalmology Society) Blindness
Detection Dataset [16], a publicly available Kaggle dataset that incorporates a huge number
of photos. In this collection, high-resolution retinal pictures are provided for the five stages
of DR, classified from 0 (none) to 4 (proliferate DR), with labels 1–4 corresponding to the
four levels of severity. There are 3662 retinal pictures in total; 1805 are from the “no DR”
group, 370 are from the “mild DR” group, 999 are from the “moderate DR” group, 193 are
from the “severe DR” group, and 295 are from the “proliferate DR” group, as illustrated
in Table 2. Images are 3216 × 2136 pixels in size, and Figure 1 shows some examples of
these kind of pictures. There is background noise in the photographs and the labels, much
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like any real-world data set. It is possible that the provided images will be flawed in some
way, be it with artifacts, blurriness, improper exposure, or some other issue. The photos
were collected over a long period of time from a number of different clinics using different
cameras, all of which contribute to the overall high degree of diversity.

Table 2. Class-Wide Image Distribution.

Class Index DR Level # Images

0 No DR 1805

1 Mild DR 370

2 Moderate DR 999

3 Severe DR 193

4 Proliferate DR 295
# = number of images.

3.2. Proposed Methodology

An automatic DR classification model was developed using the dataset referenced in
this paper; its general process is demonstrated in Figure 1. It demonstrates two different
scenarios: case 1 in which the preprocessing step is performed using CLAHE followed by
ESRGAN is used, and case 2 in which neither step is performed, while using augmentation
of the images to prevent overfitting in both scenarios. Lastly, images were sent into the
Inception-V3 model for classification step.

3.2.1. Preprocessing Using CLAHE and ESRGAN

Images of the retinal fundus are often taken from several facilities using various
technologies. Consequently, given the high intensity variation in the photographs used by
the proposed method, it was crucial to enhance the quality of DR images and get rid of
various types of noise. All images in case 1 underwent a preliminary preprocessing phase
prior to augmentation, and training necessitated various stages:

1. CLAHE
2. Resize each picture to 224 × 224 × 3 pixels.
3. ESRGAN
4. Normalization

Figure 3 shows that first, CLAHE (shown in Figure 4) was used to improve the DR
image’s fine details, textures, and low contrast by redistributing the input image’s lightness
values [38]. Utilizing CLAHE, the input image was first sectioned into four small tiles.
Each tile underwent histogram equalization with a clip limit, which involved five steps:
computation, excess calculation, distribution, redistribution, and scaling and mapping
using a cumulative distribution function (CDF). For each tile, a histogram was calculated,
where bins value above the clip limit were aggregated and spread to other bins. Histogram
values were then calculated using CDF for the input image pixel scale and then mapped
tile to CDF values. To boost contrast, bilinear interpolation stitched the tiles together [39].
This technique improved local contrast enhancement while also making borders and slopes
more apparent. Following this, all photos were scaled to suit the input of the learning
model, which was 224 × 224 × 3. Figure 3 depicts the subsequent application of ESRGAN
on the output of the preceding stage. ESRGAN [40] (shown in Figure 5) pictures can
more closely mimic image artifacts’ sharp edges [41]. To improve performance, ESRGAN
adopted the basic architecture of SRResNet, in which Residual-in-Residual Dense Blocks
are substituted for the traditional ESRGAN basic blocks, as shown in Figure 5. Intensity
differences between images can be rather large, thus images were normalized so that their
intensities fell within the range −1 to 1. This kept the data within acceptable bounds and
removed noise. As a result of normalization, the model was less sensitive to variations
in weights, making it easier to tune. Since the method shown in Figure 3 improved the
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image’s contrast while simultaneously emphasizing the image’s boundaries and arcs, it
yielded more accurate findings.
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3.2.2. Data Augmentation

Data augmentation was implemented on the training set to increase the number of
images and alleviate the issue of an imbalanced dataset before exposing Inception-V3 to
the dataset images. In most cases, deeper learning models perform better when given
more data to learn from. We can utilize the characteristics of DR photos by applying
several modifications to each image. A deep neural network (DNN) is unaffected by any
changes made to the input image, including scaling it up or down, flipping it horizontally
or vertically, or rotating it by a certain number of degrees. Regulating the data, minimizing
overfitting, and rectifying imbalances in the dataset are all accomplished through the use of



Healthcare 2023, 11, 863 8 of 17

data augmentations (i.e., shifting, rotating, and zooming). One of the transformations used
in this investigation was horizontal shift augmentation, which involves shifting the pixels
of an image horizontally while maintaining the image’s aspect ratio, with the step size
being specified by an integer between 0 and 1. Another kind of transformation is rotation,
in which the image is arbitrarily rotated by an angle between 0 and 180 degrees. To create
fresh samples for the network, all prior alterations to the training set’s images were applied.

In this study, two scenarios were utilized to train Inception-V3. The first was to apply
augmentation to the enhanced images, as depicted in Figure 6, and the second was to
apply augmentation to the raw images, as depicted in Figure 7. Both Figures 4 and 5 are
attempts to expand data volume by making slightly modified copies of current data or by
synthesizing data generated from existing data while keeping all other parameters constant
(Figures 4 and 5), with the same total number of images in both cases.
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In a second use of data augmentation techniques, the issues of inconsistent sample
sizes and complicated classifications were resolved. As seen in Table 2, the APTOS dataset
exemplifies the “imbalanced class” because the samples are not distributed evenly through-
out the several classes. After applying augmentation techniques to the dataset, the classes
are obviously balanced for both scenarios, as depicted in Figure 8.

3.2.3. Learning Model (Inception-V3)

In this section, the approach’s fundamental theory is outlined and explained. Inception-
v3 [11,12] is among transfer learning pretrained models, superseding the original architec-
ture for Inception-v1 [42] and Inception-v2 [43]. The Inception-v3 model is trained using
the ImageNet datasets [44,45], which contain the information required for identifying one
thousand classes. The error rate for the top five in ImageNet is 3.5%, while the error rate
for the top one was lowered to 17.3%.

Inception was influenced in particular by technique of Serre et al. [46], which processes
information in several stages. By adopting the Lin et al. [47] method, the developers of
Inception were able to improve the model precision of the neural networks, making them a
significant design requirement. As a result of the dimension reduction to 1*1 convolutions,
this also protected them from computing constraints. Researchers were able to significantly
reduce the amount of time and effort spent on DL picture classification using Inception [48].
Using only the theoretical explanations offered by Arora et al. [49], they emphasized
discovering an optimal spot between the typical technique of improving performance—
increasing both depth and size—and layer separability. When utilized independently, both
procedures are computationally expensive. This was the fundamental goal of the 22-layer
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architecture employed by the Inception DL system, in which all filters are learned. On
the basis of research by Arora et al. [49], a correlation statistical analysis was developed
to generate highly associated categories that were input into the subsequent layer. The
1 × 1 layer, the 3 × 3 layer, and the 5 × 5 convolution layer were all inspired by the concept
of multiscale processing of visual data. Each of these layers eventually becomes a set of
1 × 1 convolutions [48] following a process of dimension reduction.
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4. Experimental Results
4.1. Instruction and Setup of Inception-V3

To demonstrate the effectiveness of the deployed DL system and to compare results
to industry standards, tests were carried out on the APTOS dataset. The dataset was
divided into three categories in accordance with the suggested training method. Eighty
percent of the data was utilized for training (9952 photographs), ten percent for testing
(1012 photos), and the remaining ten percent was randomly selected and used as a vali-
dation set (1025 photos) to evaluate performance and save the best weight combinations.
All photographs were reduced in size during the training process to 224 × 224 × 3 pixel
resolution. We tested the proposed system’s TensorFlow Keras implementation on a Linux
desktop equipped with a GPU RTX3060 and 8 GB of RAM.

Using the Adam optimizer and a method that slows down training when learning
has stalled for too long, the proposed framework was first trained on the APTOS dataset
(i.e., validation patience). Throughout the entirety of the training process, hyperparameters
were input into the Adam optimizer. We used a range of 1 × 103 to 1 × 105 for the learning
rate, 2–64 for the batch size (with an increase of 2× the previous value), 50 epochs, 10 for
patience, and 0.90 for momentum. Our arsenal of anti-infectious measures was completed
by a method known as “batching” for the dissemination of infectious forms.

4.2. Evaluative Parameters

This section describes the evaluation methods and their results. Classifier accuracy
(Acc) is a standard performance measure. It is determined by dividing the number of
successfully categorized instances (images) by the total number of examples in the dataset
(Equation (1)). Picture categorization systems are often evaluated using precision (Prec)
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and recall (Re). As demonstrated in Equation (2), precision improves with the number of
accurately labeled photos, whereas recall is the ratio of properly categorized images in
the dataset to those related numerically (3). The higher the F1-score, the more reliable the
system is at making predictions about the future. The F1-score can be determined using
Equation (4), (F1sc). With respect to the study’s last criterion, top N accuracy, it was found
that the highest probability answers from model N should coincide with the expected
softmax distribution. An accurate classification is made if at least one of N predictions
corresponds to the target label.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn (1)

Precision =
Tp

Tp + Fp (2)

Recall =
Tp

Tp + Fn (3)

F1-score = 2 ∗
(

Prec ∗ Re
Prec + Re

)
(4)

True positives, represented by the symbol (Tp), are successfully anticipated positive
cases, and true negatives (Tn) are effectively predicted negative scenarios. False posi-
tives (Fp) are falsely predicted positive situations, whereas false negatives (Fn) are falsely
projected negative situations.

4.3. Performance of Inception-V3 Model Outcomes

Considering the APTOS dataset, two distinct cases sets were investigated, in which
Inception-V3 was applied to our dataset in two distinct scenarios, the first with enhance-
ment (CLAHE + ESRGAN) and the second without enhancement (CLAHE + ESRGAN),
as depicted in Figure 2. We split it up this way to cut down on the total amount of time
needed to conduct the project. To train a model, 50 epochs were used, with learning
rates ranging from 1 × 103 to 1 × 105, and batch sizes varying from 2 to 64. To achieve
the highest possible level of precision, Inception-V3 was further tweaked by freezing
between 140 and 160 layers. Several iterations of the same model with the same parame-
ters were used to generate a model ensemble, since random weights were generated for
each iteration, the precision fluctuated from iteration to iteration. Mean and standard
deviation statistics for this procedure are displayed in Tables 3 and 4, respectively, for
the cases where the first 143 layers were frozen with CLAHE + ESRGAN and the cases
where they were not.

Table 3. Average and standard deviation accuracy with enhancement (CLAHE + ESRGAN).

Batch Size Learning Rate Accuracy Mean Standard Deviation

2

0.00001 0.983202

0.982543 0.0011409890.0001 0.983202

0.001 0.981225

4

0.00001 0.982213

0.982213 00.0001 0.982213

0.001 0.982213

8

0.00001 0.982213

0.980237 0.0080882820.0001 0.987154

0.001 0.971344
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Table 3. Cont.

Batch Size Learning Rate Accuracy Mean Standard Deviation

16

0.00001 0.980237

0.980896 0.0011410240.0001 0.982213

0.001 0.980237

32

0.00001 0.979249

0.979249 0.0009881260.0001 0.978261

0.001 0.980237

64

0.00001 0.978261

0.977931 0.0005704950.0001 0.978261

0.001 0.977273

Table 4. Average and standard deviation accuracy without enhancement (CLAHE + ESRGAN).

Freeze Batch Size Learning
Rate Accuracy Mean Standard

Deviation

140

2

0.00001 0.779599

0.761992 0.0217310470.0001 0.76867

0.001 0.737705

4

0.00001 0.783242

0.780814 0.0058552710.0001 0.785064

0.00001 0.774135

8

0.00001 0.777778

0.780814 0.0027823820.0001 0.781421

0.001 0.783242

16

0.00001 0.790528

0.7881 0.0042065470.0001 0.783242

0.001 0.790528

32

0.00001 0.786885

0.788707 0.010141660.0001 0.799636

0.001 0.779599

64

0.00001 0.794171

0.798421 0.0089852120.0001 0.808743

0.001 0.79235

The top performance from each iteration was saved and is shown in Tables 5 and 6, for
case 1 and case 2, respectively, revealing that the best results produced with and without
preprocessing using CLAHE + ESRGAN were 98.7% and 80.87%, respectively. Figure 9
depicts the optimal outcome for the two scenarios based on the utilized evaluation metrics
case 1 using CLAHE and ESRGAN, and case 2 without using them.

Table 5. Best accuracy with enhancement (CLAHE + ESRGAN).

Acc Prec Re F1sc Top-2 Accuracy Top-3 Accuracy

0.9872 0.99 0.99 0.99 0.996 0.999
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Table 6. Best accuracy without enhancement (CLAHE + ESRGAN).

Acc Prec Re F1sc Top-2 Accuracy Top-3 Accuracy

0.8087 0.80 0.81 0.80 0.9144 0.9800
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Tables 7 and 8 show the total number of photos utilized for testing in each class for the
APTOS dataset. According to the data, it is clear that the No DR class has the most images
with 504, and its Prec, Re, and F1sc give the highest values of 99 100 and 100% for case 1,
and 97, 97, and 97% for case 2.

Table 7. Detailed results for each class using CLAHE + ESRGAN.

Prec Re F1sc Total Images

Mild DR 0.99 0.97 0.98 93

Moderate DR 0.98 0.99 0.98 280

No DR 0.99 1.00 1.00 504

Proliferative DR 0.97 0.95 0.96 82

Severe DR 0.98 0.96 0.97 53

Average 0.99 0.99 0.99 1012

Table 8. Detailed results for each class without using CLAHE + ESRGAN.

Prec Re F1sc Total Images

Mild DR 0.58 0.62 0.60 93

Moderate DR 0.70 0.78 0.74 280

No DR 0.97 0.97 0.97 504

Proliferative DR 0.68 0.48 0.56 82

Severe DR 0.43 0.31 0.36 53

Average 0.80 0.81 0.80 1012

Using retinal pictures to improve the accuracy with which ophthalmologists identify
infections, while reducing their effort, was demonstrated to be practical in real-world scenarios.
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4.4. Evaluation Considering a Variety of Other Methodologies

Effectiveness was compared to that of other methods. According to Table 9, our
method exceeds other alternatives in terms of effectiveness and performance. The proposed
inception model achieved an overall accuracy rate of 98.7%, surpassing the present methods.

Table 9. Comparison of system performance to previous research using the APTOS Dataset.

Reference Technique Accuracy

[19] MSA-Net 84.6%

[24] LBCNN 97.41%

[31] SVM 94.5%

[32] CNN 95.3%

[33] Inception-ResNet-v2 97.0%,

[35] VGG-16 74.58%

[36]
VGG16 73.26%

DenseNet121 96.11%

[37] DenseNet201 93.85%

[50]
Vision Transformer, Bidirectional Encoder representation for image
Transformer, Class-Attention in Image Transformers, Data efficient
image Transformers

94.63%

[51] EfficientNet-B6 86.03%

[52] SVM classifier and MobileNet_V2 for feature extraction 88.80%

[53] Densenet-121, Xception, Inception-v3, Resnet-50 85.28%

[54] Inception-ResNet-v2 72.33%

[55] MobileNet_V2 93.09%

[56] EfficientNet and DenseNet 96.32%

[57] VGG16 96.86%

[58] Resnet-50 77.22%

[59] Hybrid Residual U-Net 94%

[60] Inception-v3 88.1%

Proposed
Methodology

Inception-V3 (without using CLAHE + ESRGAN) Case 2 80.87%

Inception-V3 (using CLAHE + ESRGAN) Case 1 98.7%

5. Discussion

Based on CLAHE and ESRGAN, a novel DR categorization scheme is presented in this
research. The developed model was tested on the DR images founded in the APTOS 2019
dataset. There were two training scenarios: case 1 with CLAHE + ESRGAN applied to the
APTOS dataset, and case 2 without CLAHE + ESRGAN. Through 80:20 hold-out validation,
the model attained a five-class accuracy rate of 98.7% for case 1 and 80.87% for case 2.
The proposed method classified both cases scenarios using the pretrained Inception-V3
infrastructure. Throughout model construction, we evaluated the classification performance
of two distinct scenarios and found that enhancement techniques produced the best results
(Figure 9). The main contributing element in our methodology was the general resolution
enhancement of CLAHE + ESRGAN, which we proved, with evidence, is responsible for
the great improvement in the accuracy.

6. Conclusions

By identifying retinal images displayed in the APTOS dataset, we established a strat-
egy for quickly and accurately diagnosing five distinct forms of cancer. The proposed
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method employs case 1 with images enhanced with CLAHE and ESRGAN, and case 2 with
original images. The case 1 scenario employs four-stage picture enhancement techniques to
increase the image’s luminance and eliminate noise. CLAHE and ESRGAN were the two
stages with the best impact on accuracy, as demonstrated by experimental results. State-of-
the-art techniques in preprocessed medical imagery were employed to train Inception-V3
with augmentation techniques that helped reduce overfitting and raised the entire compe-
tencies of the suggested methodology. This solution showed that when using Inception-V3,
the conception model achieved a correctness of 98.7% ≈ 99% for the case 1 scenario and
80.87% ≈ 81% for the case 2 scenario, both of which are in line with the accuracy of trained
ophthalmologists. The use of CLAHE and ESRGAN in the preprocessing step further
contributed to the study’s novelty and significance. The proposed methodology outper-
formed established models, as evidenced by a comparison of their respective strengths
and weaknesses. To prove the effectiveness of the proposed method, it must be tested on
a sizable and intricate dataset, ideally consisting of a significant number of potential DR
instances. In the future, new datasets may be analyzed using DenseNet, VGG, or ResNet,
as well as additional augmentation approaches. Additionally, ESRGAN and CLAHE can
be conducted independently to determine their impact on the classification procedure.
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