The Association of Eating Behaviour with Physical Activity and Screen Time among Adolescents in the Klang Valley, Malaysia: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. The Inclusion and Exclusion Criteria
2.3. Instruments
2.3.1. Sample Size
2.3.2. Ethical Issues
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Respondents
3.2. The Effect of Screen Time during Weekends and Weekdays between Gender
3.3. Relationship between Screen Time and Eating Behaviour
3.4. Prediction of Eating Behaviour by Screen Time and Gender with Physical Activity Level as a Moderating Variable
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hegde, A.M.; Suman, P.; Unais, M.; Jeyakumar, C. Effect of electronic gadgets on the behaviour, academic performance and overall health of school going children-a descriptive study. J. Adv. Med. Dent. Sci. Res. 2019, 7, 100–103. [Google Scholar] [CrossRef]
- Nawi, A.; Zameran, F.A. Exploring the Relationship Between Smartphone Use and Adolescent Well-Being: A Systematic Literature Review. In Proceedings of the Intelligent Communication Technologies and Virtual Mobile Networks (ICICV 2022), Singapore, 10–11 February 2022; pp. 461–471. [Google Scholar] [CrossRef]
- Lucena, J.M.S.D.; Cheng, L.A.; Cavalcante, T.L.M.; Silva, V.A.D.; Farias Júnior, J.C.D. Prevalence of excessive screen time and associated factors in adolescents. Rev. Paul. Pediatr. 2015, 33, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Oberle, E.; Ji, X.R.; Kerai, S.; Guhn, M.; Schonert-Reichl, K.A.; Gadermann, A.M. Screen time and extracurricular activities as risk and protective factors for mental health in adolescence: A population-level study. Prev. Med. 2020, 141, 106291. [Google Scholar] [CrossRef] [PubMed]
- Dubey, M.; Nongkynrih, B.; Gupta, S.K.; Kalaivani, M.; Goswami, A.K.; Salve, H.R. Screen-based media use and screen time assessment among adolescents residing in an Urban Resettlement Colony in New Delhi, India. J. Fam. Med. Prim. Care 2018, 7, 1236. [Google Scholar] [CrossRef] [PubMed]
- Hardy, L.L.; Denney-Wilson, E.; Thrift, A.P.; Okely, A.D.; Baur, L.A. Screen time and metabolic risk factors among adolescents. Arch. Pediatr. Adolesc. Med. 2010, 164, 643–649. [Google Scholar] [CrossRef]
- American Academy of Pediatrics. Committee on Public Education. American Academy of Pediatrics: Children, adolescents, and television. Pediatrics 2001, 107, 423–426. [Google Scholar] [CrossRef]
- Gan, W.Y.; Mohamed, S.F.; Law, L.S. Unhealthy lifestyle associated with higher intake of sugar-sweetened beverages among Malaysian school-aged adolescents. Int. J. Environ. Res. Public Health 2019, 16, 2785. [Google Scholar] [CrossRef]
- Sharif, R.; Chong, K.H.; Zakaria, N.H.; Ong, M.L.; Reilly, J.J.; Wong, J.E.; Saad, H.A.; Poh, B.K. Results from Malaysia’s 2016 report card on physical activity for children and adolescents. J. Phys. Act. Health 2016, 13, S201–S205. [Google Scholar] [CrossRef]
- Madigan, S.; Browne, D.; Racine, N.; Mori, C.; Tough, S. Association between screen time and children’s performance on a developmental screening test. JAMA Pediatr. 2019, 173, 244–250. [Google Scholar] [CrossRef]
- Fang, K.; Mu, M.; Liu, K.; He, Y. Screen time and childhood overweight/obesity: A systematic review and meta-analysis. Child Care Health Dev. 2019, 45, 744–753. [Google Scholar] [CrossRef]
- Mitchell, J.A.; Rodriguez, D.; Schmitz, K.H.; Audrain-McGovern, J. Greater screen time is associated with adolescent obesity: A longitudinal study of the BMI distribution from ages 14 to 18. Obesity 2013, 21, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Tambalis, K.D.; Panagiotakos, D.B.; Psarra, G.; Sidossis, L.S. Screen time and its effect on dietary habits and lifestyle among schoolchildren. Cent. Eur. J. Public Health 2020, 28, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Pearson, N.; Griffiths, P.; Biddle, S.J.; Johnston, J.P.; McGeorge, S.; Haycraft, E. Clustering and correlates of screen-time and eating behaviours among young adolescents. BMC Public Health 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; Buscemi, S.; Scuderi, A.; Matalone, M.; Platania, A.; Giorgianni, G.; Rametta, S.; Nolfo, F.; Galvano, F.; et al. Factors associated with adherence to the Mediterranean diet among adolescents living in Sicily, Southern Italy. Nutrients 2013, 5, 4908–4923. [Google Scholar] [CrossRef] [PubMed]
- Mougharbel, F.; Valois, D.D.; Lamb, M.; Buchholz, A.; Obeid, N.; Flament, M.; Goldfield, G.S. Mediating role of disordered eating in the relationship between screen time and BMI in adolescents: Longitudinal findings from the Research on Eating and Adolescent Lifestyles (REAL) study. Public Health Nutr. 2020, 23, 3336–3345. [Google Scholar] [CrossRef] [PubMed]
- Bui, C.; Lin, L.-Y.; Wu, C.-Y.; Chiu, Y.-W.; Chiou, H.-Y. Association between emotional eating and frequency of unhealthy food consumption among Taiwanese adolescents. Nutrients 2021, 13, 2739. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Michel, S.T.; Unger, J.B.; Spruijt-Metz, D. Dietary correlates of emotional eating in adolescence. Appetite 2007, 49, 494–499. [Google Scholar] [CrossRef]
- Jääskeläinen, A.; Nevanperä, N.; Remes, J.; Rahkonen, F.; Järvelin, M.R.; Laitinen, J. Stress-related eating, obesity and associated behavioural traits in adolescents: A prospective population-based cohort study. BMC Public Health 2014, 14, 321. [Google Scholar] [CrossRef]
- Subramaniam, K.; Low, W.Y.; Chinna, K.; Chin, K.F.; Krishnaswamy, S. Psychometric properties of the Malay version of the Dutch Eating Behaviour Questionnaire (DEBQ) in a sample of Malaysian adults attending a health care facility. Malays. J. Med. Sci. 2017, 24, 64–73. [Google Scholar] [CrossRef]
- Koh, D.; Zainudin, N.H.; Zawi, M.K. Validity and Reliability of the Modified Physical Activity Questionnaire for Adolescents (PAQ-A) among Malaysian Youth. SAJ 2020, 8, 355–360. [Google Scholar] [CrossRef]
- Andarge, E.; Trevethan, R.; Fikadu, T. Assessing the Physical Activity Questionnaire for Adolescents (PAQ–A): Specific and General Insights from an Ethiopian Context. BioMed Res. Int. 2021, 2021, 5511728. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, K.C.; Crocker, P.R.; Donen, R.M. The physical activity questionnaire for older children (PAQ-C) and adolescents (PAQ-A) manual. Coll. Kinesiol. Univ. Sask. 2004, 87, 1–38. [Google Scholar]
- Cochran, W.G. Sampling Techniques; Wiley: New York, NY, USA, 1963. [Google Scholar]
- Institute for Public Health (IPH). National Health and Morbidity Survey (NHMS) 2017: Adolescent Health Survey; Ministry of Health Malaysia: Kuala Lumpur, Malaysia, 2017.
- Hayes, A.F. PROCESS: A Versatile Computational Tool for Observed Variable Mediation, Moderation, and Conditional Process Modelling (White Paper). 2012. Available online: http://afhayes.com/spss-sasand-mplus-macros-and-code.html (accessed on 1 February 2023).
- Cohen, J. The Effect Size. In Statistical Power Analysis for the Behavioral Sciences; Taylor & Francis: Abingdon, UK, 1988; pp. 77–83. [Google Scholar]
- Tan, S.T.; Tan, S.S.; Tan, C.X. Screen time-based sedentary behaviour, eating regulation and weight status of university students during the COVID-19 lockdown. Nutr. Food Sci. 2022, 52, 281–291. [Google Scholar] [CrossRef]
- Singh, S.; Balhara, Y.P.S. “Screen-time” for children and adolescents in COVID-19 times: Need to have the contextually informed perspective. Indian J. Psychiatry 2021, 63, 192. [Google Scholar] [CrossRef] [PubMed]
- Selfhout, M.H.; Branje, S.J.; Delsing, M.; ter Bogt, T.F.; Meeus, W.H. Different types of Internet use, depression, and social anxiety: The role of perceived friendship quality. J. Adolesc. 2009, 32, 819–833. [Google Scholar] [CrossRef] [PubMed]
- Davey, S.; Davey, A. Assessment of smartphone addiction in Indian adolescents: A mixed method study by systematic-review and meta-analysis approach. Int. J. Prev. Med. 2014, 5, 1500. [Google Scholar] [PubMed]
- Neophytou, E.; Manwell, L.A.; Eikelboom, R. Effects of excessive screen time on neurodevelopment, learning, memory, mental health, and neurodegeneration: A scoping review. Int. J. Ment. Health Addict. 2021, 19, 724–744. [Google Scholar] [CrossRef]
- Twenge, J.M.; Campbell, W.K. Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Prev. Med. Rep. 2018, 12, 271–283. [Google Scholar] [CrossRef]
- Allcott, H.; Braghieri, L.; Eichmeyer, S.; Gentzkow, M. The welfare effects of social media. Am. Econ. Rev. 2020, 110, 629–676. [Google Scholar] [CrossRef]
- Pyper, E.; Harrington, D.; Manson, H. The impact of different types of parental support behaviours on child physical activity, healthy eating, and screen time: A cross-sectional study. BMC Public Health 2016, 16, 568. [Google Scholar] [CrossRef]
- Bawaked, R.A.; Gomez, S.F.; Homs, C.; Esteve, R.C.; Cardenas, G.; Fíto, M.; Schröder, H. Association of eating behaviors, lifestyle, and maternal education with adherence to the Mediterranean diet in Spanish children. Appetite 2018, 130, 279–285. [Google Scholar] [CrossRef]
- Tambalis, K.; Panagiotakos, D.B.; Kavouras, S.A.; Sidossis, L.S. Responses of blood lipids to aerobic, resistance, and com-bined aerobic with resistance exercise training: A systematic review of current evidence. Angiology 2009, 60, 614–632. [Google Scholar] [CrossRef] [PubMed]
- Zuraini, Z.; Nur, Z.; Nor, F.; Siti, A.H.; Noraziah, M. Relationship between physical activity level and cardiovascular risk factors among teachers. Asian J. Epidemiol. 2019, 12, 1–8. [Google Scholar] [CrossRef]
- Kannel, W.B.; Wolf, P.A.; Castelli, W.P.; D’Agostino, R.B. Fibrinogen and risk of cardiovascular disease. The Framingham Study. JAMA 1987, 258, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Dudaev, V.A.; Dyukov, I.V.; Borodkin, V.V. Change of the level of fibrinogen and its high molecular derivatives as a result of physical-training in chd patients. Ter. Arkhiv 1986, 58, 62–67. [Google Scholar]
- Lee, A.; Smith, W.; Lowe, G.; Tunstall-Pedoe, H. Plasma fibrinogen and coronary risk factors: The Scottish heart health study. J. Clin. Epidemiol. 1990, 43, 913–919. [Google Scholar] [CrossRef]
- Ivanov, I. Hemorheological Alterations and Physical Activity. Appl. Sci. 2022, 12, 10374. [Google Scholar] [CrossRef]
- Serrano-Sanchez, J.A.; Martí-Trujillo, S.; Lera-Navarro, A.; Dorado-García, C.; González-Henríquez, J.J.; Sanchís-Moysi, J. Associations between screen time and physical activity among Spanish adolescents. PLoS ONE 2011, 6, e24453. [Google Scholar] [CrossRef]
- Rocka, A.; Jasielska, F.; Madras, D.; Krawiec, P.; Pac-Kożuchowska, E. The impact of digital screen time on dietary habits and physical activity in children and adolescents. Nutrients 2022, 14, 2985. [Google Scholar] [CrossRef]
- Mozafarian, N.; Motlagh, M.E.; Heshmat, R.; Karimi, S.; Mansourian, M.; Mohebpour, F.; Qorbani, M.; Kelishadi, R. Factors associated with screen time in Iranian children and adolescents: The CASPIAN-IV study. Int. J. Prev. Med. 2017, 8, 31. [Google Scholar] [CrossRef]
- Chen, X.; Luo, Y.J.; Chen, H. Body image victimization experiences and disordered eating behaviors among Chinese female adolescents: The role of body dissatisfaction and depression. Sex Roles 2020, 83, 442–452. [Google Scholar] [CrossRef]
- Khor, G.L.; Zalilah, M.S.; Phan, Y.Y.; Ang, M.; Maznah, B.; Norimah, A.K. Perceptions of body image among Malaysian male and female adolescents. Sin. Med. J. 2009, 50, 303. [Google Scholar]
- Ghaffar, S.A.; Talib, R.A.; Karim, N.A. Food choices and diet quality in the school food environment: A qualitative insight from the perspective of adolescents. Malays. J. Med. Health Sci. 2019, 15, 16–24. [Google Scholar]
- Hou, F.; Xu, S.; Zhao, Y.; Lu, Q.; Zhang, S.; Zu, P.; Sun, Y.; Su, P.; Tao, F. Effects of emotional symptoms and life stress on eating behaviors among adolescents. Appetite 2013, 68, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Sze, K.Y.; Lee, E.K.; Chan, R.H.; Kim, J.H. Prevalence of negative emotional eating and its associated psychosocial factors among urban Chinese undergraduates in Hong Kong: A cross-sectional study. BMC Public Health 2021, 21, 583. [Google Scholar] [CrossRef] [PubMed]
- Man, C.S.; Salleh, R.; Ahmad, M.H.; Baharudin, A.; Koon, P.B.; Aris, T. Dietary patterns and associated factors among adolescents in Malaysia: Findings from Adolescent Nutrition Survey 2017. Int. J. Environ. Res. Public Health 2020, 17, 3431. [Google Scholar] [CrossRef] [PubMed]
- Ganason, A.S.; Muhammad, N.A.; Rao, G.; Tohid, H.; Hamzah, M.S.; Omar, K. Relationship of self-regulation and lifestyle behaviour with overweight among male and female adolescents in Selangor. Malays. J. Nutr. 2022, 28, 395–408. [Google Scholar] [CrossRef]
- Jalo, E.; Konttinen, H.; Vepsäläinen, H.; Chaput, J.P.; Hu, G.; Maher, C.; Maia, J.; Sarmiento, O.; Standage, M.; Tudor-Locke, C.; et al. Emotional eating, health behaviours, and obesity in children: A 12-country cross-sectional study. Nutrients 2019, 11, 351. [Google Scholar] [CrossRef]
- Ottevaere, C.; Huybrechts, I.; Benser, J.; De Bourdeaudhuij, I.; Cuenca-Garcia, M.; Dallongeville, J.; Zaccaria, M.; Gottrand, F.; Kersting, M.; P Rey-Lopez, J.; et al. Clustering patterns of physical activity, sedentary and dietary behavior among European adolescents: The HELENA study. BMC Public Health 2011, 11, 328. [Google Scholar] [CrossRef]
- Moradell, A.; Santaliestra-Pasías, A.M.; Aparicio-Ugarriza, R.; Huybrechts, I.; Bertalanné Szommer, A.; Forsner, M.; Gonzalez-Gross, M.; Kafatos, A.; Androutsos, O.; Michels, N.; et al. Are Physical Activity and Sedentary Screen Time Levels Associated with Food Consumption in European Adolescents? The HELENA Study. J. Am. Nutr. Assoc. 2022, 42, 55–66. [Google Scholar] [CrossRef]
- Qiu, C.; Hou, M. Association between food preferences, eating behaviors and socio-demographic factors, physical activity among children and adolescents: A cross-sectional study. Nutrients 2020, 12, 640. [Google Scholar] [CrossRef] [PubMed]
- Semar, R.; Bakshi, N. Correlation of Screen Time with Eating Behavior Among School-Going Children Aged 8 to 10 Years in East Delhi, India. J. Indian Assoc. Child Adolesc. Ment. Health 2023, 1–7. [Google Scholar] [CrossRef]
- Farah Wahida, Z.; Mohd Nasir, M.T.; Hazizi, A.S. Physical activity, eating behaviour and body image perception among young adolescents in Kuantan, Pahang, Malaysia. Malays. J. Nutr. 2011, 17, 325–336. [Google Scholar] [PubMed]
- Ng, S.H.; Kelly, B.; Se, C.H.; Chinna, K.; Sameeha, M.J.; Shanti, K.; Karupaiah, T. Obesogenic television food advertising to children in Malaysia: Sociocultural variations. Glob. Health Action 2014, 7, 25169. [Google Scholar] [CrossRef]
- Abd Rahman, N. Dietary patterns of Malaysians during the Movement Control Order (MCO) during the COVID-19 pandemic. Int. J. Acad. Res. Bus. Soc. Sci. 2020, 10, 97–109. [Google Scholar] [CrossRef] [PubMed]
Variable | n | Percentage | Mean | SD |
---|---|---|---|---|
Gender | ||||
Male | 140 | 37.8 | ||
Female | 232 | 62.2 | ||
Age group | ||||
13–15 | 93 | 25 | ||
16–17 | 279 | 75 | ||
Household income | ||||
<RM1000 | 92 | 26.1 | ||
RM1001–RM3000 | 163 | 46.2 | ||
RM3000–RM6000 | 66 | 18.7 | ||
>RM6000 | 29 | 8.2 | ||
Race | ||||
Malay | 300 | 85.0 | ||
India | 36 | 10.2 | ||
Chinese | 15 | 4.2 | ||
Others | 2 | 0.6 | ||
Numbers of devices | ||||
<3 | 234 | 62.9 | ||
≥3 | 138 | 37.1 | ||
Screen time | ||||
<4 h | 38 | 10.2 | ||
≥4 h | 334 | 90.8 | ||
Eating behaviour | ||||
Emotional | 33.91 | 10.86 | ||
External | 22.43 | 6.50 | ||
Restricted | 21.62 | 7.45 | ||
Physical activity | ||||
Low active | 140 | 39.7 | ||
Moderate | 166 | 47.0 | ||
Active | 46 | 13.0 | ||
Total hours screen time (weekday) | 12.477 | 8.01 | ||
Total hours screen time (weekend) | 13.877 | 8.35 | ||
Screen time weekday >2 h | 372 | 99.4 | ||
Screen time weekend >2 h | 372 | 99.3 |
Weekday | Weekend | |||||||
---|---|---|---|---|---|---|---|---|
Gender | Male | Female | Male | Female | ||||
Duration (Hours) | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
Telephone | 7.39 | 3.87 | 6.96 | 3.85 | 7.37 | 3.78 | 6.96 | 3.86 |
Television | 2.15 | 2.179 | 1.99 | 1.933 | 1.86 | 1.82 | 1.99 | 1.93 |
Tablet | 0.43 | 1.379 | 0.46 | 1.106 | 0.34 | 1.324 | 0.48 | 1.36 |
Laptop | 1.13 | 2.009 | 1.06 | 2.534 | 1.01 | 1.86 | 0.98 | 1.83 |
Desktop | 0.44 | 1.294 | 0.44 | 1.499 | 0.44 | 1.49 | 0.30 | 0.81 |
Non-handheld console game | 0.27 ** | 1.114 | 0.587 ** | 0.491 | 0.27 * | 0.83 | 0.12 * | 0.49 |
Handheld console game | 0.26 | 0.93 | 0.15 | 0.724 | 0.16 | 0.89 | 0.15 | 0.72 |
Gender | Male | Female | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Eating behaviour | (n = 140) | (n = 232) | ||
Emotional eating | 29.7000 ** | 9.95941 | 36.4526 ** | 10.61883 |
External eating | 20.2500 ** | 6.51078 | 23.7500 ** | 6.15229 |
Restricted eating | 18.7214 ** | 6.93346 | 23.3707 ** | 7.22134 |
Physical activity | 2.5898 ** | 0.84395 | 2.2210 ** | 0.65624 |
Measurements | Eating Habits (Weekdays) | Eating Habits (Weekends) | Physical Activity (Weekdays) | Physical Activity (Weekends) |
---|---|---|---|---|
Duration (Hours) | Β(SE) | Β(SE) | Β(SE) | Β(SE) |
Telephone | 0.015 (0.008) | 0.020 (0.011) | −0.018 (0.10) | −0.023 (0.009) * |
Television | 0.006 (0.014) | 0.043 (0.020) * | 0.010 (0.019) | 0.031 (0.014) * |
Tablet | −0.005 (0.023) | −0.053 (0.034) | 0.112 (0.040) ** | 0.019 (0.037) |
Laptop | 0.027 (0.015) | 0.058 (0.026) * | 0.035 (0.020) | 0.044 (0.019) * |
Desktop | 0.080 (0.037) * | 0.130 (0.084) | −0.032 (0.053) | −0.052 (0.044) |
Non-handheld game console | −0.090 (0.035) * | 0.054 (0.108) | 0.004 (0.043) | 0.019 (0.055) |
Handheld game console | 0.041 (0.046) | −0.070 (0.067) | −0.113 (0.064) | −0.091(0.068) |
Model summary |
Adjusted R2 = 0.117 F = 2.825 * |
Adjusted R2 = 0.117 F = 2.825 * |
Adjusted R2 = 0.043 F = 2.872 ** |
Adjusted R2 = 0.036 F = 2.545 * |
Variable | B [LLCI, ULCI] | SE (HC3) | B [LLCI, ULCI] | SE (HC3) | B [LLCI, ULCI] | SE (HC3) |
---|---|---|---|---|---|---|
DV = Eating Habits (Emotional) | DV = Eating Habits (External) | DV = Eating Habits (Restricted) | ||||
Constant | 22.3023 (18.312, 26.292) | 2.02 | 16.045 (13.713, 18.377) | 1.185 | 13.674 (11.037, 16.312) | 1.340 |
Screen time | 0.2792 (−0.772, 0.213) | 0.2502 | 0.007 (−0.281, 0.295) | 0.146 | 0.074 (−0.251, 0.399) | 0.165 |
Gender | 6.8095 (4.439, 9.180) ** | 1.2046 | 3.738 (2.353, 5.124) ** | 0.704 | 4.524 (2.958, 6.091) ** | 0.796 |
Screen time * Gender | 0.3288 (0.051, 0.617) ** | 0.1466 | 0.072 (−0.096, 0.241) | 0.085 | 0.058 (−0.1323, 0.249) | 0.097 |
Variable | B [LLCI,ULCI] | SE (HC3) | B [LLCI,ULCI] | SE (HC3) | B [LLCI,ULCI] | SE (HC3) |
---|---|---|---|---|---|---|
DV = Eating Habits (Emotional) | DV = Eating Habits (External) | DV = Eating Habits (Restricted) | ||||
Constant | 32.793 (31.481, 33.978) | 0.634 | 21.789 (21.056, 22.522) | 0.372 | 20.593 (19.779, 21.406) | 0.413 |
Screen time | 0.199 (−0.029, 0.427) | 0.116 | 0.0878 (−0.047, 0.223) | 0.069 | 0.161 (0.019, 0.303) * | 0.072 |
Physical activity Level | 2.589 (0.498, 4.678) * | 1.061 | 1.724 (0.441, 3.007) ** | 0.652 | 2.062 (0.527, 3.597) ** | 0.779 |
Screen time * Physical activity level | 0.257 (0.0018, 0.511) ** | 0.129 | 0.047 (−0.094, 0.189) | 0.072 | 0.146 (−0.010, 0.302) | 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saat, N.Z.M.; Hanawi, S.A.; Chew, N.H.H.; Ahmad, M.; Farah, N.M.F.; Kadar, M.; Yahya, H.M.; Warif, N.M.A.; Daud, M.K.M. The Association of Eating Behaviour with Physical Activity and Screen Time among Adolescents in the Klang Valley, Malaysia: A Cross-Sectional Study. Healthcare 2023, 11, 1260. https://doi.org/10.3390/healthcare11091260
Saat NZM, Hanawi SA, Chew NHH, Ahmad M, Farah NMF, Kadar M, Yahya HM, Warif NMA, Daud MKM. The Association of Eating Behaviour with Physical Activity and Screen Time among Adolescents in the Klang Valley, Malaysia: A Cross-Sectional Study. Healthcare. 2023; 11(9):1260. https://doi.org/10.3390/healthcare11091260
Chicago/Turabian StyleSaat, N. Z. M., Siti Aishah Hanawi, Nurul Hasanah Hasmuni Chew, Mahadir Ahmad, Nor M. F. Farah, Masne Kadar, Hanis Mastura Yahya, Nor Malia Abd Warif, and Muhammad Khairuddin Md Daud. 2023. "The Association of Eating Behaviour with Physical Activity and Screen Time among Adolescents in the Klang Valley, Malaysia: A Cross-Sectional Study" Healthcare 11, no. 9: 1260. https://doi.org/10.3390/healthcare11091260
APA StyleSaat, N. Z. M., Hanawi, S. A., Chew, N. H. H., Ahmad, M., Farah, N. M. F., Kadar, M., Yahya, H. M., Warif, N. M. A., & Daud, M. K. M. (2023). The Association of Eating Behaviour with Physical Activity and Screen Time among Adolescents in the Klang Valley, Malaysia: A Cross-Sectional Study. Healthcare, 11(9), 1260. https://doi.org/10.3390/healthcare11091260