A Multi-Parametric Approach for Characterising Cerebral Haemodynamics in Acute Ischaemic and Haemorrhagic Stroke
Abstract
:1. Introduction
2. Methods
2.1. Subjects and Measurements
2.2. Data Analysis
2.3. Statistical Analysis
3. Results
3.1. Peripheral Hemodynamic and Baroreceptor Sensitivity Parameters
3.2. Cerebral Autoregulatory Parameters
4. Discussion
4.1. Main Findings
4.1.1. Differences between AIS and ICH
4.1.2. Methodological Considerations
4.1.3. Clinical Perspectives
4.2. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; Abu-Rmeileh, N.M.; et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.P., Jr.; del Zoppo, G.; Alberts, M.J.; Bhatt, D.L.; Brass, L.; Furlan, A.; Grubb, R.L.; Higashida, R.T.; Jauch, E.C.; Kidwell, C.; et al. Guidelines for the early management of adults with ischemic stroke: A guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 2007, 38, 1655–1711. [Google Scholar] [PubMed]
- Lees, K.R.; Bluhmki, E.; von Kummer, R.; Brott, T.G.; Toni, D.; Grotta, J.C.; Albers, G.W.; Kaste, M.; Marler, J.R.; Hamilton, S.A.; et al. Time to treatment with intravenous alteplase and outcome in stroke: An updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010, 375, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Pulvers, J.N.; Watson, J.D.G. If Time Is Brain Where Is the Improvement in Prehospital Time after Stroke? Front. Neurol. 2017, 8, 617. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Yoshimura, S.; Hiyama, N.; Oki, Y.; Matsumoto, T.; Tokuda, R.; Yamaura, I.; Saito, S.; Takeuchi, M.; Shigeta, K.; et al. Clinical Prediction Rules to Classify Types of Stroke at Prehospital Stage. Stroke 2018, 49, 1820–1827. [Google Scholar] [CrossRef] [PubMed]
- Duvekot, M.H.C.; Venema, E.; Rozeman, A.D.; Moudrous, W.; Vermeij, F.H.; Biekart, M.; Lingsma, H.F.; Maasland, L.; Wijnhoud, A.D.; Mulder, L.J.M.M.; et al. Comparison of eight prehospital stroke scales to detect intracranial large-vessel occlusion in suspected stroke (PRESTO): A prospective observational study. Lancet Neurol. 2021, 20, 213–221. [Google Scholar] [CrossRef]
- Nguyen, T.T.M.; van den Wijngaard, I.R.; Bosch, J.; van Belle, E.; van Zwet, E.W.; Dofferhoff-Vermeulen, T.; Duijndam, D.; Koster, G.T.; de Schryver, E.L.L.M.; Kloos, L.M.H.; et al. Comparison of Prehospital Scales for Predicting Large Anterior Vessel Occlusion in the Ambulance Setting. JAMA Neurol. 2021, 78, 157–164. [Google Scholar] [CrossRef]
- Ye, S.; Pan, H.; Li, W.; Wang, J.; Zhang, H. Development and validation of a clinical nomogram for differentiating hemorrhagic and ischemic stroke prehospital. BMC Neurol. 2023, 23, 95. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Hayashi, Y.; Shimada, T.; Hattori, N.; Tomita, K.; Miura, R.E.; Yamao, Y.; Tateishi, S.; Iwadate, Y.; Nakada, T.A. Prehospital stroke-scale machine-learning model predicts the need for surgical intervention. Sci. Rep. 2023, 13, 9135. [Google Scholar] [CrossRef]
- Aaslid, R.; Lindegaard, K.F.; Sorteberg, W.; Nornes, H. Cerebral autoregulation dynamics in humans. Stroke 1989, 20, 45–52. [Google Scholar] [CrossRef]
- Nogueira, R.C.; Aries, M.; Minhas, J.S.; Petersen, N.H.; Xiong, L.; Kainerstorfer, J.M.; Castro, P. Review of studies on dynamic cerebral autoregulation in the acute phase of stroke and the relationship with clinical outcome. J. Cereb. Blood Flow. Metab. 2022, 42, 430–453. [Google Scholar] [CrossRef] [PubMed]
- Beishon, L.; Vasilopoulos, T.; Salinet, A.S.M.; Levis, B.; Barnes, S.; Hills, E.; Ramesh, P.; Gkargkoula, P.; Minhas, J.S.; Castro, P.; et al. Individual Patient Data Meta-Analysis of Dynamic Cerebral Autoregulation and Functional Outcome After Ischemic Stroke. Stroke 2024, 55, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Tazarourte, K.; Atchabahian, A.; Tourtier, J.-P.; David, J.-S.; Ract, C.; Savary, D.; Monchi, M.; Vigué, B. Pre-hospital transcranial Doppler in severe traumatic brain injury: A pilot study. Acta Anaesthesiol. Scand. 2011, 55, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Mazya, M.V.; Ahmed, N.; Azevedo, E.; Davalos, A.; Dorado, L.; Karlinski, M.; Lorenzano, S.; Neumann, J.; Toni, D.; Moreira, T.P. Impact of Transcranial Doppler Ultrasound on Logistics and Outcomes in Stroke Thrombolysis. Stroke 2018, 49, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Antipova, D.; Eadie, L.; Macaden, A.S.; Wilson, P. Diagnostic value of transcranial ultrasonography for selecting subjects with large vessel occlusion: A systematic review. Ultrasound J. 2019, 11, 29. [Google Scholar] [CrossRef]
- Wong, A.A.; Read, S.J. Early changes in physiological variables after stroke. Ann. Indian Acad. Neurol. 2008, 11, 207–220. [Google Scholar] [CrossRef]
- Salinet, A.S.M.; Minhas, J.S.; Panerai, R.B.; Bor-Seng-Shu, E.; Robinson, T.G. Do acute stroke patients develop hypocapnia? A systematic review and meta-analysis. J. Neurol. Sci. 2019, 402, 30–39. [Google Scholar] [CrossRef]
- Fan, J.-S.; Chen, Y.-C.; Huang, H.-H.; How, C.-K.; Yen, D.H.-T.; Huang, M.-S. The association between on-scene blood pressure and early neurological deterioration in patients with spontaneous intracerebral haemorrhage. Emerg. Med. J. 2015, 32, 239. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, S.; Chen, C.; Govindarajan, P. Prehospital Systolic Hypertension and Outcomes in Patients with Spontaneous Intracerebral Hemorrhage. Cureus 2017, 9, e998. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xia, X.; Liu, X.; Wu, G.; Wang, Y.; Yang, D.; Liu, P.; Chen, Z.; Wang, L.; Li, X. Twenty-four-hour ambulatory blood pressure variability and association with ischemic stroke subtypes in the subacute stage. Front. Neurol. 2023, 14, 1139816. [Google Scholar] [CrossRef]
- Minhas, J.S.; Moullaali, T.J.; Rinkel, G.J.E.; Anderson, C.S. Blood Pressure Management After Intracerebral and Subarachnoid Hemorrhage: The Knowns and Known Unknowns. Stroke 2022, 53, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.; Serrador, J.M.; Rocha, I.; Sorond, F.; Azevedo, E. Efficacy of Cerebral Autoregulation in Early Ischemic Stroke Predicts Smaller Infarcts and Better Outcome. Front. Neurol. 2017, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Tian, G.; Lin, W.; Wang, W.; Wang, L.; Leung, T.; Mok, V.; Liu, J.; Chen, X.; Wong, K.S. Is Dynamic Cerebral Autoregulation Bilaterally Impaired after Unilateral Acute Ischemic Stroke? J. Stroke Cerebrovasc. Dis. 2017, 26, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Panerai, R.B.; Haunton, V.; Katsogridakis, E.; Saeed, N.P.; Salinet, A.; Brodie, F.; Syed, N.; D’Sa, S.; Robinson, T.G. The Leicester cerebral haemodynamics database: Normative values and the influence of age and sex. Physiol. Meas. 2016, 37, 1485–1498. [Google Scholar] [CrossRef] [PubMed]
- Willie, C.K.; Colino, F.L.; Bailey, D.M.; Tzeng, Y.C.; Binsted, G.; Jones, L.W.; Haykowsky, M.J.; Bellapart, J.; Ogoh, S.; Smith, K.J.; et al. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J. Neurosci. Methods 2011, 196, 221–237. [Google Scholar] [CrossRef]
- Bos, W.J.W.; Imholz, B.P.M.; Goudoever Jv Wesseling, K.H.; van Montfrans, G.A. The Reliability of Noninvasive Continuous Finger Blood Pressure Measurement in Patients With Both Hypertension and Vascular Disease. Am. J. Hypertens. 1992, 5, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Giller, C.A. The frequency-dependent behavior of cerebral autoregulation. Neurosurgery 1990, 27, 362–368. [Google Scholar] [CrossRef]
- Panerai, R.B.; Brassard, P.; Burma, J.S.; Castro, P.; Claassen, J.A.; van Lieshout, J.J.; Liu, J.; Lucas, S.J.; Minhas, J.S.; Mitsis, G.D.; et al. Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update. J. Cereb. Blood Flow Metab. 2023, 43, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zuckerman, J.H.; Giller, C.A.; Levine, B.D. Transfer function analysis of dynamic cerebral autoregulation in humans. Am. J. Physiol.-Heart Circ. Physiol. 1998, 274, H233–H241. [Google Scholar] [CrossRef]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Panerai, R.B. Assessment of cerebral pressure autoregulation in humans--a review of measurement methods. Physiol. Meas. 1998, 19, 305–338. [Google Scholar] [CrossRef]
- Tiecks, F.P.; Lam, A.M.; Aaslid, R.; Newell, D.W. Comparison of static and dynamic cerebral autoregulation measurements. Stroke 1995, 26, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Lucini, D.; Pagani, M.; Mela, G.S.; Malliani, A. Sympathetic Restraint of Baroreflex Control of Heart Period in Normotensive and Hypertensive Subjects. Clin. Sci. 1994, 86, 547–556. [Google Scholar] [CrossRef]
- Robbe, H.W.; Mulder, L.J.; Rüddel, H.; Langewitz, W.A.; Veldman, J.B.; Mulder, G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 1987, 10, 538–543. [Google Scholar] [CrossRef]
- Bamford, J.; Sandercock, P.; Dennis, M.; Burn, J.; Warlow, C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991, 337, 1521–1526. [Google Scholar] [CrossRef] [PubMed]
- Armstead, W.M. Cerebral Blood Flow Autoregulation and Dysautoregulation. Anesthesiol. Clin. 2016, 34, 465–477. [Google Scholar] [CrossRef]
- Silverman, A.; Petersen, N.H. Physiology, Cerebral Autoregulation. In StatPearls; StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mortara, A.; Rovere, M.T.L.; Pinna, G.D.; Prpa, A.; Maestri, R.; Febo, O.; Pozzoli, M.; Opasich, C.; Tavazzi, L. Arterial Baroreflex Modulation of Heart Rate in Chronic Heart Failure. Circulation 1997, 96, 3450–3458. [Google Scholar] [CrossRef]
- Sykora, M.; Diedler, J.; Poli, S.; Rizos, T.; Turcani, P.; Veltkamp, R.; Steiner, T. Autonomic Shift and Increased Susceptibility to Infections After Acute Intracerebral Hemorrhage. Stroke 2011, 42, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Sykora, M.; Diedler, J.; Rupp, A.; Turcani, P.; Steiner, T. Impaired Baroreceptor Reflex Sensitivity in Acute Stroke Is Associated With Insular Involvement, But Not With Carotid Atherosclerosis. Stroke 2009, 40, 737–742. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Tang, S.-C.; Jeng, J.-S.; Shieh, J.-S. Nonlinear analyses applied in cerebral autoregulation and blood flow changes in patients with acute intracerebral hemorrhage. Biomed. Signal Process. Control 2017, 31, 102–107. [Google Scholar] [CrossRef]
- Ma, H.; Guo, Z.-N.; Liu, J.; Xing, Y.; Zhao, R.; Yang, Y. Temporal Course of Dynamic Cerebral Autoregulation in Patients With Intracerebral Hemorrhage. Stroke 2016, 47, 674–681. [Google Scholar] [CrossRef]
- Ma, H.; Guo, Z.-N.; Sun, X.; Liu, J.; Lv, S.; Zhao, L.; Guo, W.; Jin, H.; Yang, Y. Hematoma volume is a predictive factor of disturbed autoregulation after spontaneous intracerebral hemorrhage. J. Neurol. Sci. 2017, 382, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, M.; Neunhoeffer, F.; Gerds, T.A.; Niesen, W.D.; Buttler, K.J.; Timmer, J.; Schmidt, B.; Czosnyka, M.; Weiller, C.; Hetzel, A. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med. 2010, 36, 264–271. [Google Scholar] [CrossRef]
- Lin, C.H.; Yen, C.C.; Hsu, Y.T.; Chen, H.H.; Cheng, P.W.; Tseng, C.J.; Lo, Y.K.; Chan, J.Y.H. Baroreceptor Sensitivity Predicts Functional Outcome and Complications after Acute Ischemic Stroke. J. Clin. Med. 2019, 8, 300. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.C.; Lin, H.C.; Lai, Y.R.; Hsu, C.W.; Huang, C.C.; Wang, H.C.; Su, C.M.; Su, Y.J.; Lin, W.C.; Cheng, B.C.; et al. The Effect of Stroke Subtypes on Baroreceptor Sensitivity, a Predict for Acute Stroke Outcome. Biomed. Res. Int. 2019, 2019, 7614828. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, J.K.; Ince, J.; Minhas, J.S.; Chung, E.M.L. Emerging Detection Techniques for Large Vessel Occlusion Stroke: A Scoping Review. Front. Neurol. 2021, 12, 780324. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, S.G.; Thibeault, C.M.; Canac, N.; Jalaleddini, K.; Dorn, A.; Wilk, S.J.; Devlin, T.; Scalzo, F.; Hamilton, R.B. Toward automated classification of pathological transcranial Doppler waveform morphology via spectral clustering. PLoS ONE 2020, 15, e0228642. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, S.G.; Thibeault, C.M.; Canac, N.; Wilk, S.J.; Devlin, T.; Hamilton, R.B. Decision Criteria for Large Vessel Occlusion Using Transcranial Doppler Waveform Morphology. Front. Neurol. 2018, 9, 847. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, S.G.; Thibeault, C.M.; Wilk, S.J.; O’Brien, M.; Canac, N.; Ranjbaran, M.; Devlin, C.; Devlin, T.; Hamilton, R.B. Velocity Curvature Index: A Novel Diagnostic Biomarker for Large Vessel Occlusion. Transl. Stroke Res. 2019, 10, 475–484. [Google Scholar] [CrossRef]
- Minhas, J.S.; Panerai, R.B.; Swienton, D.; Robinson, T.G. Feasibility of improving cerebral autoregulation in acute intracerebral hemorrhage (BREATHE-ICH) study: Results from an experimental interventional study. Int. J. Stroke 2020, 15, 627–637. [Google Scholar] [CrossRef]
- Salinet, A.S.; Silva, N.C.; Caldas, J.; de Azevedo, D.S.; de-Lima-Oliveira, M.; Nogueira, R.C.; Conforto, A.B.; Texeira, M.J.; Robinson, T.G.; Panerai, R.B.; et al. Impaired cerebral autoregulation and neurovascular coupling in middle cerebral artery stroke: Influence of severity? J. Cereb. Blood Flow. Metab. 2019, 39, 2277–2285. [Google Scholar] [CrossRef]
- Llwyd, O.; Salinet, A.S.; Panerai, R.B.; Lam, M.Y.; Saeed, N.P.; Brodie, F.; Bor-Seng-Shu, E.; Robinson, T.G.; Nogueira, R.C. Cerebral Haemodynamics following Acute Ischaemic Stroke: Effects of Stroke Severity and Stroke Subtype. Cerebrovasc. Dis. Extra 2018, 8, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kang, D.W. Induced hypertensive therapy in an acute ischemic stroke patient with early neurological deterioration. J. Clin. Neurol. 2007, 3, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Lindsberg, P.J.; Roine, R.O. Hyperglycemia in Acute Stroke. Stroke 2004, 35, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Rowat, A.M.; Dennis, M.S.; Wardlaw, J.M. Hypoxaemia in Acute Stroke Is Frequent and Worsens Outcome. Cerebrovasc. Dis. 2006, 21, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Price, C.I.; Shaw, L.; Islam, S.; Javanbakht, M.; Watkins, A.; McMeekin, P.; Snooks, H.; Flynn, D.; Francis, R.; Lakey, R.; et al. Effect of an Enhanced Paramedic Acute Stroke Treatment Assessment on Thrombolysis Delivery During Emergency Stroke Care: A Cluster Randomized Clinical Trial. JAMA Neurol. 2020, 77, 840–848. [Google Scholar] [CrossRef]
- Marmarelis, V.Z.; Shin, D.C.; Orme, M.E.; Zhang, R. Closed-loop dynamic modeling of cerebral hemodynamics. Ann. Biomed. Eng. 2013, 41, 1029–1048. [Google Scholar] [CrossRef]
Characteristic | AIS n = 68 | ICH n = 12 | p-Value |
---|---|---|---|
Age, years, mean (SD) | 66 (12) | 68 (16) | 0.80 |
Sex (male), n (%) | 41 (60.3) | 8 (66.7) | 0.67 |
NIHSS admission, median (IQR) (SD) | 6 (4) | 3.5 (3.5) | |
Time to Assessment, hours (SD) | 18.64 (13.5) | 24.08 (11.1) | 0.19 |
OCSP (Stroke subtype), n (%) | |||
TACS | 8 (11.8) | 1 (8.3) | 0.72 |
PACS | 29 (42.6) | 4 (33.3) | 0.54 |
LACS | 27 (39.7) | 4 (33.3) | 0.67 |
POCS | 4 (5.9) | 3 (25) | 0.03 |
Hemodynamics parameters | |||
Systolic BP, mean (SD) | 148.3 (27.1) | 145.2 (24.6) | 0.69 |
Diastolic BP, mean (SD) | 81.7 (15.2) | 75.3 (15.3) | 0.19 |
End-tidal CO2, mean (SD) | 33.4 (3.0) | 34.9 (4.0) | 0.43 |
Heart Rate, bpm | 70.1 (13.6) | 72.6 (13.6) | 0.60 |
ABP, mean (SD), mmHg | 102.6 (17.5) | 99.2 (15.05) | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehri, A.; Panerai, R.B.; Salinet, A.; Lam, M.Y.; Llwyd, O.; Robinson, T.G.; Minhas, J.S. A Multi-Parametric Approach for Characterising Cerebral Haemodynamics in Acute Ischaemic and Haemorrhagic Stroke. Healthcare 2024, 12, 966. https://doi.org/10.3390/healthcare12100966
Alshehri A, Panerai RB, Salinet A, Lam MY, Llwyd O, Robinson TG, Minhas JS. A Multi-Parametric Approach for Characterising Cerebral Haemodynamics in Acute Ischaemic and Haemorrhagic Stroke. Healthcare. 2024; 12(10):966. https://doi.org/10.3390/healthcare12100966
Chicago/Turabian StyleAlshehri, Abdulaziz, Ronney B. Panerai, Angela Salinet, Man Yee Lam, Osian Llwyd, Thompson G. Robinson, and Jatinder S. Minhas. 2024. "A Multi-Parametric Approach for Characterising Cerebral Haemodynamics in Acute Ischaemic and Haemorrhagic Stroke" Healthcare 12, no. 10: 966. https://doi.org/10.3390/healthcare12100966
APA StyleAlshehri, A., Panerai, R. B., Salinet, A., Lam, M. Y., Llwyd, O., Robinson, T. G., & Minhas, J. S. (2024). A Multi-Parametric Approach for Characterising Cerebral Haemodynamics in Acute Ischaemic and Haemorrhagic Stroke. Healthcare, 12(10), 966. https://doi.org/10.3390/healthcare12100966