The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Main Outcome Measures
2.3.1. Single Leg Stance Test
2.3.2. Y Balance Test
2.3.3. Causes of Re-Injury Worry Questionnaire (CR-IWQ)—Fear of Re-Injury
2.3.4. Vividness of Movement Imagery Questionnaire-2
2.3.5. Intervention Protocol
2.3.6. Statistical Analysis
3. Results
3.1. Static Balance—SLST
3.2. Dynamic Balance—YBT
3.3. Causes of Re-Injury Worry Questionnaire (CR-IWQ)—Fear of Re-Injury
3.4. Vividness of Movement Imagery Questionnaire—VMIQ-GR
3.5. SPO2 and Heart Rate
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Demographic Characteristics Ν = 58 | 1st ΜΙ Group n = 29 | 2nd Placebo Group n = 29 | Statistical Analysis p Value |
---|---|---|---|
Μ ± SD | Μ ± SD | t-Test for Independent | |
Age | 20.5 ± 3.3 | 21.2 ± 3.1 | ΝS, p = 0.37 α, p > 0.05 |
BMI (kg/m2) | 22.8 ± 1.7 | 21.8 ± 2.1 | NS, p = 0.05 α, p < 0.05 |
Yrs of training | 11.0 ± 2.8 | 11.2 ± 2.6 | ΝS, p = 0.81 α, p > 0.05 |
Hrs of training/wk | 11.9 ± 1.6 | 12.3 ± 1.4 | ΝS, p = 0.26 α, p > 0.05 |
Dominant Leg | Frequencies % | Frequencies % | Chi-square |
Right | Ν = 25, 86.2% | Ν = 21, 72.4% | ΝS, p = 0.19 β, p > 0.05 |
Left | Ν = 4, 13.8% | Ν = 8, 27.6% | |
Grade II LAS—Leg | |||
Right | Ν = 21, 72.4% | Ν = 18,62.1% | ΝS, p = 0.40 β, p > 0.05 |
Left | Ν = 8, 27.6% | Ν = 11, 37.9% | |
Previous LAS—Leg | t-test for Independent | ||
Right | Ν = 17, 58.6% | Ν = 21, 72.4% | ΝS, p = 0.30 α, p > 0.05 |
Left | Ν = 6, 20.7% | Ν = 6, 20.7% | |
Both | Ν = 6, 20.7% | Ν = 2, 6.9% | |
Total number of previous LAS | Chi-square for Trends | ||
1 | Ν = 17, 58.6% | Ν = 13, 44.8% | ΝS, p = 0.35 γ, p > 0.05 |
2 | Ν = 9, 31.0% | Ν = 12, 41.4% | |
≥3 | Ν = 3, 10.3% | Ν = 4, 13.8% |
HR (Final Value)—Intersessions | ||||
---|---|---|---|---|
Groups N = 58 | Μ ± SD (bpm) Intersessions | Mean Difference (bpm) | Confidence Interval (CI) 95% | Sign (2-Tailed) |
1st—ΜΙ (n = 29)—1st session | 78.70 ± 9.04 | 6.44 | 0.64–12.24 | t = 2.22 S * = 0.030 p < 0.05 |
2nd—Placebo (n = 29)—1st session | 72.25 ± 12.70 | |||
1st—ΜΙ (n = 29)—2nd session | 78.27 ± 9.49 | 12.43 | 7.58–17.29 | t = 5.13 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—2nd session | 65.83 ± 8.94 | |||
1st—ΜΙ (n = 29)—3rd session | 79.95 ± 7.36 | 14.83 | 10.65–19.01 | t = 7.10 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—3rd session | 65.12 ± 8.49 | |||
1st—ΜΙ (n = 29)—4th session | 78.86 ± 6.20 | 14.85 | 11.24–18.46 | t = 8.24 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—4th session | 64.00 ± 7.45 | |||
1st—ΜΙ (n = 29)—5th session | 79.06 ± 7.97 | 14.68 | 10.91–18.44 | t = 7.80 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—5th session | 64.38 ± 6.25 | |||
1st—ΜΙ (n = 29)—6th session | 78.07 ± 6.49 | 14.68 | 11.46–17.89 | t = 9.14 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—6th session | 63.39 ± 5.70 |
References
- Qader, M.A.; Zaidan, B.B.; Zaidan, A.A.; Ali, S.K.; Kamaluddin, M.A.; Radzi, W.B. A methodology for football players selection problem based on multi-measurements criteria analysis. Meas. J. Int. Meas. Confed. 2017, 111, 38–50. [Google Scholar] [CrossRef]
- Sadigursky, D.; Braid, J.A.; De Lira, D.N.L.; Machado, B.A.B.; Carneiro, R.J.F.; Colavolpe, P.O. The FIFA 11+ injury prevention program for soccer players: A systematic review. BMC Sports Sci. Med. Rehabil. 2017, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.A.; León, J.F.; Serón, R.; Mesana, M.I.; Fleta, J. Body composition in young male football (soccer) players. Nutr. Res. 2004, 24, 235–242. [Google Scholar] [CrossRef]
- Junge, A.; Dvorak, J. Soccer injuries: A review on incidence and prevention. Sports Med. 2004, 34, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Stares, J.; Dawson, B.; Peeling, P.; Heasman, J.; Rogalski, B.; Drew, M.; Colby, M.; Dupont, G.; Lester, L. Identifying high risk loading conditions for in-season injury in elite Australian football players. J. Sci. Med. Sport 2018, 21, 46–51. [Google Scholar] [CrossRef] [PubMed]
- McCriskin, B.J.; Cameron, K.L.; Orr, J.D.; Waterman, B.R. Management and prevention of acute and chronic lateral ankle instability in athletic patient populations. World J. Orthop. 2015, 6, 161–171. [Google Scholar] [CrossRef]
- Halabchi, F.; Hassabi, M. Acute ankle sprain in athletes: Clinical aspects and algorithmic approach. World J. Orthop. 2020, 1, 534–558. [Google Scholar] [CrossRef] [PubMed]
- Wikstrom, E.A.; Tillman, M.D.; Borsa, P.A. Detection of dynamic stability deficits in subjects with functional ankle instability. Med. Sci. Sports Exerc. 2005, 37, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Petersen, W.; Rembitzki, I.V.; Koppenburg, A.G.; Ellermann, A.; Liebau, C.; Brüggemann, G.P.; Best, R. Treatment of acute ankle ligament injuries: A systematic review. Arch. Orthop. Trauma Surg. 2013, 133, 1129–1141. [Google Scholar] [CrossRef]
- Mattacola, C.G.; Dwyer, M.K. Rehabilitation of the ankle after acute sprain or chronic instability. J. Athl. Train. 2002, 37, 413–429. [Google Scholar]
- Al Bimani, S.A.; Gates, L.S.; Warner, M.; Bowen, C. Factors influencing return to play following conservatively treated ankle sprain: A systematic review. Physician Sportsmed. 2019, 47, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Alawna, M.; Unver, B.; Yuksel, E. Effect of ankle taping and bandaging on balance and proprioception among healthy volunteers. Sport Sci. Health 2021, 17, 665–676. [Google Scholar] [CrossRef]
- Gribble, P.A.; Hertel, J.; Plisky, P. Using the star excursion balance test to assess dynamic postural-control deficits and outcomes in lower extremity injury: A literature and systematic review. J. Athl. Train. 2012, 47, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, B.; Garrett, M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clin. Biomech. 2004, 19, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Abassi, M.; Bleakley, C.; Whiteley, R. Athletes at late stage rehabilitation have persisting deficits in plantar- and dorsiflexion, and inversion (but not eversion) after ankle sprain. Phys. Ther. Sport 2019, 38, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Meras Serrano, H.; Mottet, D.; Caillaud, K. Validity and Reliability of Kinvent Plates for Assessing Single Leg Static and Dynamic Balance in the Field. Sensors 2023, 23, 2354. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.E.; Guskiewicz, K.M.; Gross, M.T.; Yu, B. Balance measures for discriminating between functionally unstable and stable ankles. Med. Sci. Sports Exerc. 2009, 41, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, E.; Van Der Beek, A.; Twisk, J.; Bouter, L.; Bahr, R.; Van Mechelen, W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: A prospective controlled trial. Am. J. Sports Med. 2004, 32, 1385–1393. [Google Scholar] [CrossRef]
- Bullock, G.S.; Arnold, T.W.; Plisky, P.J.; Butler, R.J. Basketball Players’ Dynamic Performance Across Competition Levels. J. Strength Cond. Res. 2018, 32, 3528–3533. [Google Scholar] [CrossRef]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The reliability of an instrumented device for measuring components of the star excursion balance test. N. Am. J. Sports Phys. Ther. 2009, 4, 92–99. [Google Scholar]
- Fischerauer, S.F.; Talaei-Khoei, M.; Bexkens, R.; Ring, D.C.; Oh, L.S.; Vranceanu, A.M. What is the relationship of fear avoidance to physical function and pain intensity in injured athletes? Clin. Orthop. Relat. Res. 2018, 476, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Vereijken, A.; Aerts, I.; Jetten, J.; Tassignon, B.; Verschueren, J.; Meeusen, R.; van Trijffel, E. Association between functional performance and return to performance in high-impact sports after lower extremity injury: A systematic review. J. Sports Sci. Med. 2020, 19, 564–576. [Google Scholar] [PubMed]
- Hsu, C.J.; Meierbachtol, A.; George, S.Z.; Chmielewski, T.L. Fear of Reinjury in Athletes: Implications for Rehabilitation. Sports Health 2017, 9, 162–167. [Google Scholar] [CrossRef]
- Christakou, A.; Zervas, Y.; Stavrou, N.A.; Psychountaki, M. Development and validation of the causes of re-injury worry questionnaire. Psychol. Health Med. 2011, 16, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Plakoutsis, G.; Paraskevopoulos, E.; Zavvos, A.; Papandreou, M. The Effects of Motor Imagery on Pain in Lower Limb Sports Injuries: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 2545. [Google Scholar] [CrossRef]
- Evans, L.; Hare, R.; Mullen, R. Imagery Use During Rehabilitation from Injury. J. Imag. Res. Sport Phys. Act. 2006, 1, 1–21. [Google Scholar] [CrossRef]
- Christakou, A.; Zervas, Y. The effectiveness of imagery on pain, edema, and range of motion in athletes with a grade II ankle sprain. Phys. Ther. Sport 2007, 8, 130–140. [Google Scholar] [CrossRef]
- Christakou, A.; Zervas, Y.; Lavallee, D. The adjunctive role of imagery on the functional rehabilitation of a grade II ankle sprain. Hum. Mov. Sci. 2007, 26, 141–154. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Fousekis, K.; Tsepis, E.; Papandreou, M. Cross cultural adaptation, validity and reliability of the Greek version of the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2). Discov. Psychol. 2023, 2, 30. [Google Scholar] [CrossRef]
- Paravlic, A.H.; Maffulli, N.; Kovač, S.; Pisot, R. Home-based motor imagery intervention improves functional performance following total knee arthroplasty in the short term: A randomized controlled trial. J. Orthop. Surg. Res. 2020, 15, 451. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Martínez, F.; Reina-Varona, Á.; Castillo-García, J.; La Touche, R.; Angulo-Díaz-Parreño, S.; Suso-Martí, L. Pain relief by movement representation strategies: An umbrella and mapping review with meta-meta-analysis of motor imagery, action observation and mirror therapy. Eur. J. Pain 2022, 26, 284–309. [Google Scholar] [CrossRef] [PubMed]
- Javdaneh, N.; Molayei, F.; Kamranifraz, N. Effect of adding motor imagery training to neck stabilization exercises on pain, disability and kinesiophobia in patients with chronic neck pain. Complement. Ther. Clin. Pract. 2021, 42, 101263. [Google Scholar] [CrossRef] [PubMed]
- Driskell, J.E.; Copper, C.; Moran, A. Does mental practice enhance performance? J. Appl. Psychol. 1994, 79, 481–492. [Google Scholar] [CrossRef]
- Nunes, G.; de Noronha, M. Imagética motora no tratamento da entorse lateral de tornozelo em atletas de futebol de campo: Um estudo piloto. Fisioter. Pesqui. 2015, 22, 282–290. [Google Scholar]
- Tsekoura, M.; Billis, E.; Samada, E.K.; Savvidou, I.; Fousekis, K.; Xergia, S.; Lampropoulou, S.; Tsepis, E. Cross cultural adaptation, reliability and validity of the Greek version of Identification of Functional Ankle Instability (IdFAI) questionnaire. Foot Ankle Surg. 2021, 27, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Plakoutsis, G.; Zapantis, D.; Panagiotopoulou, E.M.; Paraskevopoulos, E.; Moutzouri, M.; Koumantakis, G.A.; Papandreou, M. Reliability and Validity of the Portable KForce Plates for Measuring Countermovement Jump (CMJ). Appl. Sci. 2023, 13, 11200. [Google Scholar] [CrossRef]
- Brumitt, J.; Patterson, C.; Dudley, R.; Sorenson, E.; Hill, G.; Peterson, C. Comparison of Lower Quarter Y-Balance Test Scores for Female Collegiate Volleyball Players Based on Competition Level, Position, and Starter Status. Int. J. Sports Phys. Ther. 2019, 14, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Hartley, E.M.; Hoch, M.C.; Boling, M.C. Y-balance test performance and BMI are associated with ankle sprain injury in collegiate male athletes. J. Sci. Med. Sport 2018, 21, 676–680. [Google Scholar] [CrossRef]
- McGuine, T.A.; Keene, J.S. The effect of a balance training program on the risk of ankle sprains in high school athletes. Am. J. Sports Med. 2006, 34, 1103–1111. [Google Scholar] [CrossRef]
- Eils, E.; Schröter, R.; Schröderr, M.; Gerss, J.; Rosenbaum, D. Multistation proprioceptive exercise program prevents ankle injuries in basketball. Med. Sci. Sports Exerc. 2010, 42, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.A.; Mintken, P.; McDevitt, A.; Bieniek, M.; Carpenter, K.; Kulp, K.; Whitman, J.M. Manual physical therapy and exercise versus supervised home exercise in the management of patients with inversion ankle sprain: A multicenter randomized clinical trial. J. Orthop. Sports Phys. Ther. 2013, 43, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Dunsky, A.; Barzilay, I.; Fox, O. Effect of a specialized injury prevention program on static balance, dynamic balance and kicking accuracy of young soccer players. World J. Orthop. 2017, 8, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Mchugh, M.L. The Chi-square test of independence Lessons in biostatistics. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Cho, M.; Ki, C.S. Correct use of repeated measures analysis of variance. Korean J. Lab. Med. 2009, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Taherzadeh Chenani, K.; Madadizadeh, F. Popular Statistical Tests for Investigating the Relationship between Two Variables in Medical Research. J. Commun. Health Res. 2020, 9, 1–3. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Cupal, D.; Brewer, B. Relaxation and Imagery on Knee Strength and Re-Injury. Rehabil. Phychol. 2001, 46, 28–43. [Google Scholar] [CrossRef]
- Guerra, Z.F.; Lucchetti, A.L.G.; Lucchetti, G. Motor Imagery Training after Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Neurol. Phys. Ther. 2017, 41, 205–214. [Google Scholar] [CrossRef]
- Bae, Y.H.; Ko, Y.J.; Ha, H.G.; Ahn, S.Y.; Lee, W.H.; Lee, S.M. An efficacy study on improving balance and gait in subacute stroke patients by balance training with additional motor imagery: A pilot study. J. Phys. Ther. Sci. 2015, 27, 3245–3248. [Google Scholar] [CrossRef] [PubMed]
- Jansen, P.; Lehmann, J.; Fellner, B.; Huppertz, G.; Loose, O.; Achenbach, L.; Krutsch, W. Relation of injuries and psychological symptoms in amateur soccer players. BMJ Open Sport Exerc. Med. 2019, 5, e000522. [Google Scholar] [CrossRef] [PubMed]
- Grimson, S.; Brickley, G.; Smeeton, N.J.; Abbott, W.; Brett, A. The effects of injury, contextual match factors and training load upon psychological wellbeing in English Premier League soccer players via season-long tracking. Eur. J. Sport Sci. 2023, 23, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Callow, N.; Hardy, L.; Hall, C. The effects of a motivational general-mastery imagery intervention on the sport confidence of high-level badminton players. Res. Q. Exerc. Sport 2001, 72, 389–400. [Google Scholar] [CrossRef]
- Di Rienzo, F.; Debarnot, U.; Daligault, S.; Saruco, E.; Delpuech, C.; Doyon, J.; Collet, C.; Guillot, A. Online and offline performance gains following motor imagery practice: A comprehensive review of behavioral and neuroimaging studies. Front. Hum. Neurosci. 2016, 10, 315. [Google Scholar] [CrossRef]
- Mahoney, M.J.; Avener, M. Psychology of the elite athlete: An exploratory study. Cogn. Ther. Res. 1977, 1, 135–141. [Google Scholar] [CrossRef]
- Hardy, L.; Callow, N. Efficacy of external and internal visual imagery perspectives for the enhancement of performance on tasks in which form is important. J. Sport Exerc. Psychol. 1999, 21, 95–112. [Google Scholar] [CrossRef]
- Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A. Autonomic nervous system correlates in movement observation and motor imagery. Front. Hum. Neurosci. 2013, 7, 52563. [Google Scholar] [CrossRef]
- Decety, J.; Jeannerod, M.; Germain, M.; Pastene, J. Vegetative response during imagined movement is proportional to mental effort. Behav. Brain Res. 1991, 42, 1–5. [Google Scholar] [CrossRef]
- Ferreira Dias Kanthack, T.; Guillot, A.; Saboul, D.; Debarnot, U.; Di Rienzo, F. Breathing with the mind: Effects of motor imagery on breath-hold performance. Physiol. Behav. 2019, 208, 27–29. [Google Scholar]
- Formenti, D.; Rossi, A.; Bongiovanni, T.; Campa, F.; Cavaggioni, L.; Alberti, G.; Longo, S.; Trecroci, A. Effects of Non-Sport-Specific Versus Sport-Specific Training on Physical Performance and Perceptual Response in Young Football Players. Int. J. Environ. Res. Public Health 2021, 18, 1962. [Google Scholar] [CrossRef] [PubMed]
- Pagan, J.I.; Bradshaw, B.A.; Bejte, B.; Hart, J.N.; Perez, V.; Knowles, K.S.; Beausejour, J.P.; Luzadder, M.; Menger, R.; Osorio, C.; et al. Task-specific resistance training adaptations in older adults: Comparing traditional and functional exercise interventions. Front. Aging 2024, 5, 1335534. [Google Scholar] [CrossRef] [PubMed]
- Manouras, N.; Batatolis, C.; Ioakimidis, P.; Karatrantou, K.; Gerodimos, V. The Reliability of Linear Speed with and without Ball Possession of Pubertal Soccer Players. J. Funct. Morphol. Kinesiol. 2023, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Trecroci, A.; Bongiovanni, T.; Cavaggioni, L.; Pasta, G.; Formenti, D.; Alberti, G. Agreement Between Dribble and Change of Direction Deficits to Assess Directional Asymmetry in Young Elite Football Players. Symmetry 2020, 12, 787. [Google Scholar] [CrossRef]
Static Balance in the OE Condition of the Left Leg for Measuring CoP (mm2) | |||||
Groups N = 58 | Μ ± SD (mm2) Pre | Μ ± SD (mm2) Post | Mean Difference (mm2) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 615.10 ± 190.09 | 496.57 ± 183.17 | 101.82 | 37.47; 166.17 | F = 10.049 S * = 0.002 p < 0.05 |
2nd—Placebo (n = 29) | 628.54 ± 261.48 | 543.42 ± 232.02 | |||
Static balance in the OE condition of the right leg for measuring CoP (mm2) | |||||
Groups N = 58 | Μ ± SD (mm2) Pre | Μ ± SD (mm2) Post | Mean Difference (mm2) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 447.68 ± 157.10 | 387.77 ± 176.09 | 206.5 | 98.4; 314.6 | F = 5.523 S * = 0.022 p < 0.05 |
2nd—Placebo (n = 29) | 655.52 ± 261.52 | 592.95 ± 290.15 | |||
t-test for independent samples for the static balance in the OE condition of the right leg for measuring CoP (mm2) | |||||
Groups N= 58 | Μ ± SD (mm2) Post | Mean Difference (MD) (mm2) | Confidence Interval (CI) 95% | Significance (2-tailed) | |
1st—ΜΙ (n = 29) | 387.77 ± 176.09 | 205.17 | 78.92; 331.43 | t = 3.255 S * = 0.002 p < 0.05 | |
2nd—Placebo (n = 29) | 592.95 ± 290.15 |
Dynamic Balance of the Left Leg (YBT) through the Composite Score (%) | |||||
Groups N = 58 | Μ ± SD (%) Pre | Μ ± SD (%) Post | Mean Difference (%) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 97.19 ± 8.38 | 99.39 ± 8.85 | 2.42 | 1.74; 6.58 | F = 7.622 S * = 0.008 p < 0.05 |
2nd—Placebo (n = 29) | 95.2 ± 7.74 | 96.54 ± 8.08 | |||
Dynamic balance of the right leg (YBT) through the composite score (%) | |||||
Groups N = 58 | Μ ± SD (%) Pre | Μ ± SD (%) Post | Mean Difference (%) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 96.96 ± 8 | 100.77 ± 8.49 | 2.65 | 1.14; 6.46 | F = 11.451 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29) | 95.45 ± 6.72 | 96.97 ± 7.99 |
Fear of Re-Injury Due to the Rehabilitation through the CR-IWQ (Score) | |||||
Groups N = 58 | Μ ± SD (Score) Pre | Μ ± SD (Score) Post | Mean Difference (Score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 22.79 ± 12.87 | 16.24 ± 10.94 | 2.29 | −3.22; 7.81 | F = 13.488 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29) | 23.00 ± 11.47 | 20.62 ± 10.41 | |||
Fear of Re-injury due to the opponent’s ability through the CR-IWQ (score) | |||||
Groups N = 58 | Μ ± SD (score) Pre | Μ ± SD (score) Post | Mean Difference (score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 11.37 ± 4.82 | 8.72 ± 5.2 | 0.12 | −2.09; 2.33 | F = 4.737 S * = 0.034 p < 0.05 |
2nd—Placebo (n = 29) | 10.17 ± 5.39 | 10.17 ± 3.57 |
EVI Perspective of the VMIQ-2-GR (Score) | |||||||||
Groups N = 58 | Μ ± SD (Score) 1st | Μ ± SD (Score) 2nd | Μ ± SD (Score) 3rd | Μ ± SD (Score) 4th | Μ ± SD (Score) 5th | Μ ± SD (Score) 6th | Mean Difference (Score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 28.06 ± 9.80 | 26.34 ± 8.58 | 24.24 ± 8.26 | 23.27 ± 7.67 | 21.75 ± 7.21 | 20.06 ± 6.84 | 2.46 | –1.34; 6.26 | F = 13.697 S * = 0.000 p < 0.05 |
2nd—Placebo (n = 29) | 30.51 ± 9.27 | 30.06 ± 8.57 | 26.13 ± 7.25 | 25.13 ± 7.69 | 23.58 ± 6.97 | 23.06 ± 7.93 | |||
IVI perspective of the VMIQ-2-GR (score) | |||||||||
Groups N = 58 | Μ ± SD (score) 1st | Μ ± SD (score) 2nd | Μ ± SD (score) 3rd | Μ ± SD (score) 4th | Μ ± SD (score) 5th | Μ ± SD (score) 6th | Mean Difference (score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 20.86 ± 7.83 | 21.58 ± 7.92 | 20.86 ± 8.10 | 19.41 ± 7.17 | 17.96 ± 6.58 | 16.17 ± 5.73 | 0.27 | –3.19; 3.74 | F = 12.191 S * = 0.000 p < 0.05 |
2nd—Placebo (n = 29) | 23.20 ± 5.39 | 22.72 ± 7.27 | 20 ± 6.65 | 18.72 ± 6.69 | 17.17 ± 7.14 | 16.68 ± 7.10 | |||
KVI perspective of the VMIQ-2GR (score) | |||||||||
Groups N = 58 | Μ ± SD (score) 1st | Μ ± SD (score) 2nd | Μ ± SD (score) 3rd | Μ ± SD (score) 4th | Μ ± SD (score) 5th | Μ ± SD (score) 6th | Mean Difference (score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 23.34 ± 8.13 | 21.51 ± 7.27 | 20.75 ± 7.09 | 19.24 ± 6.47 | 18.24 ± 5.71 | 17.27 ± 5.02 | 2.48 | −0.97; 5.95 | F = 6.996 S * = 0.000 p < 0.05 |
2nd—Placebo (n = 29) | 24.82 ± 8.92 | 23.41 ± 8.02 | 22.96 ± 7.76 | 21.89 ± 7.48 | 21.82 ± 8.10 | 20.37 ± 8.29 |
SPO2 (%) Final Value | |||||||||
Groups N = 58 | Μ ± SD (%) 1st | Μ ± SD (%) 2nd | Μ ± SD (%) 3rd | Μ ± SD (%) 4th | Μ ± SD (%) 5th | Μ ± SD (%) 6th | Mean Difference (%) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 97.50 ± 0.70 | 97.55 ± 0.78 | 97.87 ± 0.73 | 97.92 ± 0.61 | 98.17 ± 0.48 | 98.17 ± 0.62 | 0.007 | –0.19; 0.20 | F = 5.136 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29) | 97.92 ± 0.64 | 97.80 ± 0.60 | 97.86 ± 0.89 | 97.87 ± 0.72 | 98.10 ± 0.53 | 97.68 ± 0.59 | |||
HR (bpm) initial value | |||||||||
Groups N = 58 | Μ ± SD (bpm) 1st | Μ ± SD (bpm) 2nd | Μ ± SD (bpm) 3rd | Μ ± SD (bpm) 4th | Μ ± SD (bpm) 5th | Μ ± SD (bpm) 6th | Mean Difference (bpm) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 72.93 ± 8.40 | 74.44 ± 11.15 | 73.20 ± 9.36 | 70.17 ± 8.33 | 71.37 ± 8.24 | 71.00 ± 6.08 | −1.27 | −5.51; 2.97 | F = 7.601 S * = 0.000 p < 0.05 |
2nd—Placebo (n = 29) | 75.75 ± 14.30 | 72.72 ± 11.39 | 70.27 ± 8.68 | 68.72 ± 9.27 | 69.93 ± 7.10 | 68.10 ± 6.62 | |||
HR (bpm) final value | |||||||||
Groups N= 58 | Μ ± SD (bpm) 1st | Μ ± SD (bpm) 2nd | Μ ± SD (bpm) 3rd | Μ ± SD (bpm) 4th | Μ ± SD (bpm) 5th | Μ ± SD (bpm) 6th | Mean Difference (bpm) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 78.70 ± 9.04 | 78.27 ± 9.49 | 79.95 ± 7.36 | 78.86 ± 6.20 | 79.06 ± 7.97 | 78.07 ± 6.49 | −12.99 | −16.64; −9.33 | F = 3.838 S * = 0.005 p < 0.05 |
2nd—Placebo (n = 29) | 72.25 ± 12.70 | 65.83 ± 8.94 | 65.12 ± 8.49 | 64.00 ± 7.45 | 64.38 ± 6.25 | 63.39 ± 5.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plakoutsis, G.; Tsepis, E.; Fousekis, K.; Paraskevopoulos, E.; Papandreou, M. The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains. Healthcare 2024, 12, 1432. https://doi.org/10.3390/healthcare12141432
Plakoutsis G, Tsepis E, Fousekis K, Paraskevopoulos E, Papandreou M. The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains. Healthcare. 2024; 12(14):1432. https://doi.org/10.3390/healthcare12141432
Chicago/Turabian StylePlakoutsis, George, Elias Tsepis, Konstantinos Fousekis, Eleftherios Paraskevopoulos, and Maria Papandreou. 2024. "The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains" Healthcare 12, no. 14: 1432. https://doi.org/10.3390/healthcare12141432
APA StylePlakoutsis, G., Tsepis, E., Fousekis, K., Paraskevopoulos, E., & Papandreou, M. (2024). The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains. Healthcare, 12(14), 1432. https://doi.org/10.3390/healthcare12141432