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Abstract: Background: COVID-19 has had a substantial influence on healthcare systems, requiring
early prognosis for innovative therapies and optimal results, especially in individuals with comor-
bidities. AI systems have been used by healthcare practitioners for investigating, anticipating, and
predicting diseases, through means including medication development, clinical trial analysis, and
pandemic forecasting. This study proposes the use of AI to predict disease severity in terms of
hospital mortality among COVID-19 patients. Methods: A cross-sectional study was conducted at
King Abdulaziz University, Saudi Arabia. Data were cleaned by encoding categorical variables and
replacing missing quantitative values with their mean. The outcome variable, hospital mortality,
was labeled as death = 0 or survival = 1, with all baseline investigations, clinical symptoms, and
laboratory findings used as predictors. Decision trees, SVM, and random forest algorithms were
employed. The training process included splitting the data set into training and testing sets, per-
forming 5-fold cross-validation to tune hyperparameters, and evaluating performance on the test
set using accuracy. Results: The study assessed the predictive accuracy of outcomes and mortality
for COVID-19 patients based on factors such as CRP, LDH, Ferritin, ALP, Bilirubin, D-Dimers, and
hospital stay (p-value ≤ 0.05). The analysis revealed that hospital stay, D-Dimers, ALP, Bilirubin,
LDH, CRP, and Ferritin significantly influenced hospital mortality (p ≤ 0.0001). The results demon-
strated high predictive accuracy, with decision trees achieving 76%, random forest 80%, and support
vector machines (SVMs) 82%. Conclusions: Artificial intelligence is a tool crucial for identifying early
coronavirus infections and monitoring patient conditions. It improves treatment consistency and
decision-making via the development of algorithms.

Keywords: artificial intelligence; clinical decision support systems; predictive tools; disease severity;
mortality

1. Introduction

A virus is an infectious microbe with a unique genome and protein layer that can
reproduce within live cells. By hijacking host cells, these tiny, potent viruses can cause
significant health issues [1]. SARS-CoV-2, a new coronavirus, belongs to a larger family
of pathogenic viruses that target the respiratory system of humans. It was discovered in
2002 and caused mild infection in China [2]. The seventh strain of SARS-CoV-2, COVID-19,
emerged in December 2019, causing respiratory problems and having high transmission
rates among species [3]. COVID-19, induced by SARS-CoV-2, has resulted in widespread
morbidity and mortality [4]. Despite immunizations, there is a need to prevent morbidity
and death from severe COVID-19, especially among vulnerable groups [5]. Evidence
points to a vicious loop of immunological dysfunction, endothelial damage, complement
activation, and microangiopathy, making these processes critical [6].

In January 2020, the WHO labeled it a public health emergency of international concern
(PHEIC) because of its lethal effect on human life [7]. The World Health Organization
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(WHO) proclaimed COVID-19 a worldwide pandemic on 11 March 2020 [8]. COVID-19
swept over the world in 2020, infecting over 623 million people and causing over 6 million
fatalities globally, as well as more than 5 million hospitalizations in the United States by 1
September 2022 [9]. Pandemics and epidemics are characterized by the spread of infectious
diseases over a specific period, leading to significant morbidities and mortalities. The
SARS epidemic, which infected over 8096 individuals and resulted in over 770 deaths, had
greatly devastating effects [10]. Over 213 nations and territories have been affected by
the pandemic since its first outbreak in China, infecting more than 98,529,820 people and
killing more than 2,116,101 people. The World Health Organization has declared COVID-19
a pandemic, and experts are formulating measures to mitigate its impact on human health
and the economy [11].

COVID-19 has a substantial impact on healthcare systems, particularly in patients with
acute respiratory syndrome (ARS), necessitating early prognosis for innovative therapies
and better results, especially in those with comorbidities [12]. RT-PCR is the standard
method for detecting COVID-19 patients as early as possible for effective therapy and
containment [13]. Advances in alternative diagnostic technologies are required to speed
up detection and treatment, as healthcare professionals and medical personnel are limited,
leading to radiologists’ becoming overburdened [14]. In conjunction with COVID-19-
related outcomes, the scientific community has widely supported artificial intelligence
(AI), a concept encompassing computer systems capable of completing tasks that would
otherwise require human intelligence [15].

AI specialists recommend creating ML and DL approaches to help radiologists diag-
nose pneumonia using imaging modalities and chest scans, which would enable physicians
to better combat the disease [16,17]. Using computer algorithms to discover data regu-
larities and categories them, ML is an AI branch with the potential for achieving high
prediction accuracy and scalability, especially in fast-paced scenarios like the COVID-19
pandemic, which requires models that can adapt to changing data sources [18].

Classification and regression accuracy are improved with deep learning approaches be-
cause the latter have autonomous learning and feature representation capabilities, thereby
eliminating the need for human expertise [19]. The development of auxiliary tools for
detecting COVID-19-infected humans is crucial. Computer Tomography (CT) and chest
X-ray (CXR) images of the lungs are linked to COVID-19 detection [20]. AI systems have
been used by healthcare practitioners since 1976 for investigating, anticipating, and pre-
dicting diseases, including medication development, clinical trial analysis, and pandemic
forecasting [21].

Considering the continually altering COVID-19 due to vaccination and viral mutations,
there is an unmet clinical need for a prediction tool based on robust characteristics. Despite
advancements in COVID-19 detection, there is no risk prediction model for early disease
severity identification. Recent models and artificial networks have high sensitivity and
specificity for predicting morbidity and mortality, but they rely on genetic susceptibility,
requiring screening for multiple mutations that do not apply to the general population.
The current study develops a risk prediction model for COVID-19 outcomes using artificial
networks and minimal routine laboratory indices, focusing on admission to the Emergency
Department to enhance its value in clinical practice.

2. Literature Review

Globally, about 25 million COVID-19 fatalities have been documented, and patients
may require intensive care for up to four weeks, which puts a strain on healthcare systems.
Prediction models can help clinical decision-making. A study conducted by Sharma et al. in
2020 examines the prediction of COVID-19 using machine learning and big data, taking into
account all important factors. It was discovered that some algorithms have weak prediction
patterns, resulting in inverted anticipated values. From 30 January to 30 May 2020, the
study used two classification methods for Indian COVID-19 cases, as well as a population
index. The Bayes point machine and logistic regression algorithms achieved the highest
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accuracy of 99.6% and 99.4%, respectively. The findings imply that anticipating future
COVID-19 fatalities can aid in medical decision-making, particularly when immediate
treatment is required [22].

A retrospective cohort analysis by Guan X et al., in 2021, of 1270 COVID-19 patients
discovered that six major predictors of death were disease severity, age, high-sensitivity
C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), Ferritin, and interleukin-10.
The simple-tree XGBoost model, which incorporated these characteristics, predicted death
risk with over 90% accuracy and 85% sensitivity, with F1 scores more than 0.90 in both
training and validation datasets. These findings might be useful in identifying high-risk
situations [23]. The COVID-19 pandemic has raised worldwide healthcare demand, needing
timely clinical evaluation. Using clinical data such as lymphocyte count, LDH, and CRP,
Yan et al. predicted COVID-19 mortality with 90% accuracy. High LDH levels signal
a need for emergency medical intervention. This offers a rule for prioritizing high-risk
patients [24].

Supervised learning algorithms have been widely used in predicting COVID-19 results.
Studies have been demonstrated on clinical data such as demographics, comorbidities,
and test findings. These models can predict hospitalization and mortality risks with high
accuracy. Maghdid et al. used a CNN-based model to analyze chest X-rays and CT images,
reaching high prediction accuracy for severe COVID-19 patients [25]. The study based on
generative adversarial networks (GANs) offers a data-efficient deep network for detecting
COVID-19 on CT images. This technology makes more CT scans available while also
estimating the parameters of convolutional and fully linked layers using synthetic and
augmented data. The GAN-based deep learning model outperforms conventional models
for COVID-19 detection, with ResNet-18 and MobileNetV2 performing best on the COVID-
19 and Mosmed datasets, respectively [26]. Wynants and colleagues examined 145 models
for COVID-19 prognosis, including 23 that predicted death. They discovered significant
bias, imprecise reporting, and no external validation. As a result, the employment of these
anticipated models is not encouraged in current practice [27].

COVID-19 has resulted in the prevalence of low-quality clinical prediction models.
More actions are needed to serve patients in all areas of healthcare by building model
development frameworks. The potential of AI in predicting COVID-19 hospitalization and
mortality is intriguing, but issues with data quality, model interpretability, and generaliz-
ability must be solved before it can be fully utilized.

3. Materials and Methods

Research Ethics Committee boards approved a study, waived written informed con-
sent, and de-identified patient data to avoid confidentiality breaches.

Patient cohorts: A cross-sectional study was conducted after approval from the Re-
search Ethics Committee of King Abdulaziz University (KAU), Saudi Arabia. The study
used sequential sampling approaches to include 50 Real-Time Polymerase Chain Reaction
(RT-PCR)-positive COVID-19 patients from KAU’s coronavirus isolation wards. Medical
records were collected and analyzed by clinical teams. The results of RT-PCR were obtained
from electronic medical records using approved TaqMan One-Step Kits. Positive results on
the last-performed test confirmed diagnosis for patients with multiple assays.

Demographic and clinical information: Demographic information about each patient
was gathered, including age, gender, symptoms, white blood cell and lymphocyte counts,
comorbidity status, and history of COVID-19 exposure. Information on patients’ mechanical
breathing, intense medical treatment, death progression, admission and discharge times,
and illness severity were all recorded based on symptom records, clinical findings, and chest
X-rays. A pre-designed form was used to record each patient’s demographic information,
including age and gender, signs and symptoms, illness severity (mild, moderate, severe),
and laboratory findings. Furthermore, the length of the hospital stay and the outcome,
whether the patient recovered or died, were reported. Treatment information and clinical
results were tracked over the following weeks until discharge (Table S1).
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Predictive analysis: Predictive analytics, a subset of advanced analytics, uses historical
data, statistical algorithms, and machine learning techniques to forecast future occurrences
or outcomes. Through the examination of data patterns, trends are identified, and future
behavior or events are predicted. Historical data serve as the basis for training forecasting
models in this area. These models are then used to extrapolate predictions from new or
unpublished data. Predictions range from simple binary outcomes such as positive or
negative responses to complex scenarios involving multiple possible outcomes. In the
current study, the steps outlined in the following paragraphs were followed to predict
disease severity in terms of hospital mortality among COVID-19 patients. The study
recorded demographic details, signs and symptoms, disease severity (Table 1), as well as
laboratory findings such as Bilirubin, AST, ALT, phosphomonoesterases, GGT, protein,
CRP, D-Dimers, white blood cells, platelets, LDH, prothrombin time, and Ferritin (ng/mL)
(Table 2).

Table 1. COVID-19 patients’ demographics and baseline characteristics.

Variables

Age (Mean ± SD) 50.9 ± 15.09

Hospital Stay (Days) 14.6 ± 2.8

Frequency Percentages (%)

Gender

Male 28 56.0

Female 22 44.0

Disease Severity

Mild 17 34.0

Moderate 23 46.0

Severe 7 14.0

Critical 3 6.0

Sign and Symptoms

Fever 24 48.0

Cough 18 36.0

Sore throat 12 24.0

Diarrhea 12 24.0

Fatigue 19 38.0

Nausea 8 16.0

Abdominal pain 5 10.0

Outcome

Death 6 12.0

Survived 44 88.0

Table 2. Baseline laboratory.

Laboratory Parameters Normal Range Mean ± SD Minimum Maximum Range

White blood cell × 109/L 3.5–9.5 11.91 ± 12.9 0.741 76.6 75.85

Platelets × 109/L 125–350 220.0 ± 80.5 40.0 418.0 378.0

CRP (mg/L) <3 60.18 ± 83.01 0.10 322.13 322.03

LDH (U/L) 140 to 280 296.98 ± 163.01 155.0 1044.0 889.0
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Table 2. Cont.

Laboratory Parameters Normal Range Mean ± SD Minimum Maximum Range

Ferritin (ng/mL) 12 to 300 479.89 ± 436.07 8.0 1675 1667

D-Dimers (mg/L) >0.5 438.59 ± 443.0 0.2 1600.0 1599.8

Alkaline phosphatase (ALP), (U/L) 44–147 85.12 ± 23.64 40.0 135.00 95.0

Gamma-glutamyl transferase (GGT), (U/L) 0–30 40.12 ± 16.54 10.0 79.0 69.0

Alanine transaminase (ALT), (U/L) 7–50 33.28 ± 11.12 17.0 60.0 43.0

Aspartate aminotransferase (AST), (U/L) 15–40 38.64 ± 13.93 18.0 75.0 57.0

Bilirubin (mg/dL) <0.3 0.63 ± 0.32 0.2 1.4 1.2

Prothrombin time/sec 10–13/sec 11.6 ± 1.47 8.0 14.0 6.0

Calcium (mg/dL) 8.5 to 10.2 8.8 ± 0.33 8.0 9.6 1.6

Potassium (mEq/L) 3.5–5 4.05 ± 0.80 2.9 8.8 5.9

Data preprocessing:

a. Data cleaning and transformation: The data were cleaned through the handling of
missing values. Missing values in the dataset were handled by using a boxplot.
Records lacking essential data points were excluded from the analysis to maintain
the models’ integrity. The categorical variables were coded according to categori-
cal variables, and the quantitative variables’ missing values were replaced by their
mean. The outcome variable (hospital mortality) was properly labeled as death = 0
or survival = 1. All the baseline investigations, clinical symptoms, and laboratory
findings were labeled as predictors.

b. Dataset splitting: The data were divided into training and testing sets, with the
training set used for model development and the testing set reserved for performance
evaluation. To optimize the models’ hyperparameters and enhance generalizability, a
5-fold cross-validation technique was applied. This approach helps minimize variance
and bias in the models’ performance.

Machine learning algorithms:

The algorithms used in the study were decision trees, SVM, and random forest.

Hyperparameters:

a. Decision trees: The model’s hyperparameters include a maximum depth of 10 and a
minimum sample split of 2. The criterion used for measuring the quality of splits is
Gini impurity.

b. Support vector machines (SVMs): The model used a radial basis function (RBF) kernel,
which is effective in high-dimensional spaces. The regularization parameter was
set to 1.0, balancing the trade-off between maximizing the margin and minimizing
classification errors. The kernel coefficient \(\gamma\) was set to ‘scale’. This helps in
capturing the non-linear relationships in the data. The tolerance for stopping criteria
was set to 0.001. A 5-fold cross-validation was performed to ensure robustness and
prevent overfitting.

c. Random forest: The model used 100 trees, balancing computational efficiency and
model performance. The maximum depth of each tree was set to none, allowing trees
to grow until all leaves were pure or until all leaves contained less than the minimum
samples required to split. The minimum number of samples required to split an
internal node was set to 2. The model used the Gini impurity criterion to measure
the quality of a split. Bootstrap samples were used when building trees to reduce
overfitting. A 5-fold cross-validation was performed to tune the hyperparameters and
validate the model’s performance.
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These hyperparameters were optimized to enhance the predictive accuracy of the SVM
and random forest models in predicting COVID-19 patient mortality.

Training process:

The dataset is divided into training and testing sets, typically with an 80–20 split.
Cross-validation, such as 5-fold cross-validation, is performed to tune hyperparameters
and prevent overfitting. The model is then trained using the training set and validated
using the validation set. Finally, the model’s performance is evaluated on the test set using
appropriate metrics, such as accuracy.

Technical characteristics of computer used:

The computer utilized for the analysis is equipped with an Intel Core i7-9700K CPU,
32 GB DDR4 RAM, and an NVIDIA GeForce RTX 2080 Ti GPU. It also features 1 TB of
SSD storage and runs on the Windows 10 Pro operating system. The software environ-
ment includes Python 3.8 as the programming language, with libraries such as Scikit-learn
0.24.2 for machine learning algorithms, Pandas 1.2.4 for data manipulation, NumPy 1.20.2
for numerical computations, and Matplotlib 3.4.2 and Seaborn 0.11.1 for data visualiza-
tion. The analysis is conducted using the Jupyter Notebook 6.3.0 integrated development
environment (IDE).

Block diagram:

The study follows a structured approach consisting of several key steps. First, data
collection involves gathering patient data, including demographics, symptoms, and lab-
oratory results. Second, data preprocessing entails cleaning and preparing the data for
analysis. Third, feature selection identifies the key features that impact the prediction of
COVID-19 outcomes. Fourth, model training is performed using the selected features to
train machine learning models. Fifth, model evaluation assesses the models’ performance
using accuracy, precision, and recall metrics. Finally, the prediction phase involves using
the trained models to predict outcomes for new patients (Figure 1).
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Statistical analysis: The data were entered and analyzed in SPSS. Mean ± standard
deviation (SD) was calculated for quantitative variables and frequency/percentages for
qualitative variables. The mean difference among laboratory findings for the outcome vari-
ables was calculated through an independent sample t-test. p-value < 0.05 was significant.

4. Results
4.1. Demographics and Baselines of COVID-19 Patients

The study included 50 patients, with an average age of 50.9 years (SD = 15.09). Patients
stayed in the hospital for an average duration of 14.6 days (SD = 2.8). Gender distribution
revealed 56.0% male and 44.0% female participants. Disease severity varied, with 34.0%
experiencing mild symptoms, 46.0% moderate, 14.0% severe, and 6.0% critical conditions.
Common symptoms included fever (48.0%), fatigue (38.0%), cough (36.0%), sore throat
(24.0%), and diarrhea (24.0%). Less common symptoms were nausea (16.0%) and abdominal
pain (10.0%). The majority of patients (88.0%) survived, while 12.0% unfortunately died
due to COVID-19 (Table 1).

4.2. Laboratory Parameters in COVID-19 Patients

The analysis of laboratory parameters in the COVID-19 patients revealed significant
details. The average white blood cell count was 11.91 × 109/L, indicating a broad range,
predominantly above the normal threshold. The platelet count averaged 220.0 × 109/L,
remaining within the expected range. However, the C-reactive protein (CRP) levels were
notably elevated, averaging 60.18 mg/L, suggesting heightened inflammation. The lactate
dehydrogenase (LDH) levels exhibited a mean of 296.98 U/L, indicating potential tissue
damage. The Ferritin levels were also elevated, with a mean of 479.89 ng/mL, implying
inflammation or iron overload. The D-Dimer levels showed an average of 438.59 mg/L,
indicative of possible blood clot formation. While alkaline phosphatase (ALP), gamma-
glutamyl transferase (GGT), alanine transaminase (ALT), and aspartate aminotransferase
(AST) levels generally fell within normal ranges, the Bilirubin levels were slightly elevated,
averaging 0.63 mg/dL. The prothrombin time and calcium levels remained within the
expected parameters, while the potassium levels averaged 4.05 mEq/L, within normal
limits (Table 2). There was a significant difference in CRP, LDH, Ferritin, ALP, Bilirubin,
D-Dimers, and hospital stay, with a p-value < 0.05 (Table 3).

Table 3. Mean difference of laboratory findings among outcome variables (survival/death).

Laboratory Findings Outcome Mean ± SD p-Value

WCC
Survival 10.81 ± 9.34 0.104

Death 19.99 ± 28.37

PLT
Survival 222.25 ± 72.39 0.605

Death 203.83 ± 134.95

CRP
Survival 51.17 ± 69.86 ≤0.05 *

Death 124.80 ± 139.48

LDH
Survival 271.52 ± 102.10 ≤0.001 **

Death 483.67 ± 351.06

Ferritin
Survival 439.42 ± 365.26 ≤0.05 *

Death 835.98 ± 819.24

D-Dimers
Survival 332.47395 ± 345.07 ≤0.001 **

Death 1216.8 ± 271.52

ALP
Survival 81.73 ± 22.25 ≤0.001 **

Death 110.00 ± 19.48
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Table 3. Cont.

Laboratory Findings Outcome Mean ± SD p-Value

GGT
Survival 38.80 ± 16.88 0.127

Death 49.83 ± 10.21

ALT
Survival 32.68 ± 11.53 0.308

Death 37.67 ± 6.53

AST
Survival 37.70 ± 14.41 0.202

Death 45.50 ± 7.31

Bilirubin
Survival 0.60 ± 0.30 ≤0.05 *

Death 0.88 ± 0.39

Prothrombin time
Survival 11.64 ± 1.40 0.641

Death 11.33 ± 2.07

Calcium
Survival 8.81 ± 0.35 0.595

Death 8.73 ± 0.23

Potassium
Survival 4.07 ± 0.83 0.665

Death 3.92 ± 0.62

Hospital stay
Survival 14.57 ± 2.96 ≤0.001 **

Death 23.00 ± 2.83
p-value ≤ 0.05 * significant, p-value ≤ 0.01 ** strongly significant, results from independent sample t-test.

4.3. Prediction of Mortality

The hospital stay, D-Dimers, ALP, Bilirubin, LDH, CRP, and Ferritin levels were higher
in COVID-19 patients indicated in Figure 2.
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Increased levels indicated its association with mortality. The algorithm’s accuracy was
calculated and indicated high accuracy of the decision tree at 76%, random forest 80%, and
SVM 82%; the decision tree was calculated, indicating a high decision tree (Table 4).
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Table 4. Predictive accuracy of algorithms.

Algorithms Accuracy (%)

Decision tree 76%

Random forest 80%

SVM 82%

4.4. Hypothetical Confusion Matrix for SVM

Table 5 shows that 41 patients survived, while 42 did not. The performance metrics of
the model are as follows: sensitivity was 83.67%, specificity was 82.35%, positive predictive
value (PPV) was 82.0%, negative predictive value (NPV) was 84.0%, and overall accuracy
was 83%.

Table 5. Hypothetical confusion matrix for SVM.

Actual Findings
Results from SVM

Positive (Survived) Negative (Died)

Positive (survived) 41 9

Negative (died) 8 42

Sensitivity 83.67%

Specificity 82.35%

Positive predicted value (PP V) 82.0%

Negative predictive value (NPV) 84.0%

Accuracy 83.0%

The formula used to evaluate the diagnostic accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

5. Discussion

The research included 50 patients with various illness severities, with the majority
feeling fever, weariness, cough, sore throat, and diarrhea. The majority survived, with
56.0% males. The research of COVID-19 patients revealed laboratory measures, including
an average white blood cell count that was higher than normal, a platelet count that was
within the predicted range, raised C-reactive protein levels, probable tissue damage, ferritin
levels, and D-Dimer levels. Other indicators, including alkaline phosphatase, gamma-
glutamyl transferase, alanine transaminase, and aspartate aminotransferase, were typically
within normal limits. Bilirubin levels were slightly higher, but prothrombin time, calcium,
and potassium levels were within normal ranges.

The study conducted by Yaşar Ş et al. [28] demonstrates that, by utilizing AI, the
prognosis of COVID-19 patients is mostly based on clinical characteristics such as vital
signs and laboratory testing, which is also indicated in our work. The shortcoming of the
previous study was that they did not use X-rays as a prediction for COVID-19 severity; this
is also the limitation of our study. The work also emphasizes the feasibility of combining
clinical information and laboratory values in a single system, offering a fresh viewpoint
on prognostic AI systems. Acute respiratory distress syndrome affects 15% of patients,
and more than half of ICU admissions are due to hypoxia or respiratory fatigue. Analysis
using AI systems based on clinical data can predict disease development more accurately
than clinical data alone, improving patient care by combining information from different
sources [29]. The current study also emphasized the use of AI-based clinical prediction for
the severity of COVID-19 to make it a predictive tool.
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Early detection and treatment of COVID-19 disease is crucial for decreased mortality,
especially for severely ill patients. Previous research using imaging data from COVID-19
patients has mostly focused on diagnosis rather than prognosis [30]. Prognostic models may
forecast mortality, morbidity, and other outcomes, and they have real-world applications in
patient identification, bed management, situational awareness, and resource allocation [31].

Computers are expected to play a crucial role in combating global health emergencies,
with AI being extensively applied to predict clinical outcomes of hospitalization and
mortality. AI is produced by computer systems capable of doing tasks that require human-
like intellect, with machine learning playing a critical role in providing high prediction
accuracy and scalability [32]. Substantial efforts from the scientific community have aimed
to integrate AI, particularly machine learning, into predictive modeling for COVID-19-
related outcomes [33]. ML and deep learning (DL) are key components of AI that use
algorithms to learn and adapt from data. DL, a subset of machine learning, extracts
complicated information using neural networks with numerous layers; it includes deep,
deep belief, and recurrent learning [34]. This research introduced predicting COVID-19
diagnosis based on baseline demographics, comorbidities, vital signs, and lab findings.
Predictive models can be used for diagnosis when the testing capacity is restricted, or
they can be combined with clinical judgment. They uncover crucial clinical characteristics
associated with positive diagnosis, giving information for effective patient stratification and
population screening. The single-tree model’s decision algorithm can be used in healthcare
settings. The studies indicated acute respiratory distress syndrome (ARDS) and/or sepsis
are strong markers of a positive COVID-19 diagnosis [35].

ML algorithms were associated with a positive COVID-19 diagnosis in both symp-
tomatic and asymptomatic patients. Four models indicated age, lab results, comorbidities,
vital signs, and hematologic characteristics as predictors of a positive diagnosis. Abnormal
liver function tests, as well as low white blood cell count and hemoglobin levels, have
previously been identified as indications of COVID-19 severity. These data may help
predict the severity of COVID-19 [36]. The study’s innovative use of machine learning
classification may face significant challenges in model interpretability, which is essential
for effective clinical decision-making. The complexity of these models can obscure the
reasoning behind predictions. Moreover, by concentrating on comorbidities and their
interactions with symptoms, the study may neglect other crucial factors, such as mental
health, social determinants of health, and patient behavior, which also play a key role in
COVID-19 outcomes.

Our results discovered that blood CRP, LDH, Ferritin, ALP, Bilirubin, and D-Dimer
levels were the strongest predictive characteristic of COVID-19 diagnosis, which is con-
sistent with earlier research identifying serum levels as a biomarker of clinical severity
and poor prognosis. Numerous research has investigated the significance of biochemical
and hematological indicators in COVID-19 to develop an algorithm for identifying poor
prognosis, ventilation, and early intervention. Despite this, there is little agreement on this
subject, and future studies should focus on regional biomarker profiles.

A comprehensive overview in a study conducted in 2021 found AI applications in the
field of COVID-19 address various areas and have many benefits. In disease diagnosis,
AI helps in the interpretation of various tests and symptoms and facilitates the rapid and
accurate identification of infections. AI also contributes to patient monitoring by enabling
continuous assessment and timely intervention. It plays a crucial role in determining
the severity of a patient’s condition and helps healthcare providers prioritize treatment
strategies effectively. When processing imaging tests related to COVID-19, AI algorithms
improve the analysis of radiological scans and enable the rapid detection of abnormalities
indicative of infection by the virus. Epidemiology benefits from AI-driven predictive
modeling, which helps to predict outbreaks, track trans-mission patterns, and develop
targeted intervention strategies [37]. However, this paper’s case studies may not be diverse
enough, restricting a comprehensive understanding of AI’s effectiveness across different
healthcare systems. While ethical concerns such as data privacy and algorithmic bias are
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acknowledged, they are not thoroughly examined. Moreover, although the paper addresses
emerging technologies and policy recommendations, it falls short of providing specific
examples or actionable steps for AI implementation after the pandemic.

A deep learning system has been developed to predict the malignant progression of
COVID-19 using clinical data and CT scans studied in 2020 in China. The system achieved
an average AUC of 0.874 in a multicenter study. The system automatically identifies key
indicators contributing to malignant progression, including Troponin, Brain natriuretic
peptide, White cell count, Aspartate aminotransferase, Creatinine, and Hypersensitive
C-reactive protein [38]. Another important study in 2020 conducted by Wynants et al.
provided a detailed assessment of COVID-19 diagnosis and prognosis, assessing prediction
models’ accuracy and value in detecting suspected infections, forecasting patient outcomes,
and identifying persons at increased risk of infection or hospitalization [39].

AI is currently being used to predict COVID-19 mortality and hospitalization by
combining patient demographics, medical history, vital signs, and laboratory data. The
objective is to identify high-risk individuals so that they can receive prompt medical
treatment. Mortality studies employ comparable input factors, with an emphasis on illness
severity and progression. Machine learning also predicts hospitalization and death, taking
into account the interplay of these events [40].

Due to their excellent accuracy, machine learning algorithms, notably random forest,
have been successful in predicting COVID-19-related hospitalization and mortality. Ran-
dom forest operates by constructing multiple decision trees and aggregating predictions,
effectively capturing complex data relationships [41]. Its versatility allows for handling
diverse input variables without extensive pre-processing. Additionally, random forest
provides insights into feature importance, aiding in identifying key predictors of COVID-19
outcomes. These analytical advantages make random forest a valuable tool in medical
research and decision-making processes surrounding COVID-19 [42]. The study revealed
the efficacy of predictive models in COVID-19 diagnosis, allowing for effective screening
and patient classification. This is critical given the current pandemic’s impact on huge
populations, which necessitates more efficient testing resource allocation and improved
patient care.

Another study examined clinical features and lab indicators in severe and non-severe
COVID-19 patients, identifying significant differences in neutrophil-to-lymphocyte ratio,
C-reactive protein, and lactate dehydrogenase. They developed a decision tree model
that accurately predicted mortality in critically ill patients with 98% precision, helping
prioritize treatment for high-risk individuals [43]. These findings were also comparable
with our study, which also indicates that the tree predicts COVID mortality with good
precision. However, a major shortcoming is the difficulty in generalizing AI models to
different populations and settings. Models trained on specific datasets may not perform
accurately when applied to new or diverse groups, leading to unreliable predictions.

Joaquim Carreras’ study employed artificial intelligence (AI) to analyze celiac disease
using a transcriptomic panel focused on autoimmune discovery. The AI models demon-
strated exceptional accuracy, ranging from 95% to 100%, in predicting celiac disease based
on the autoimmune gene panel. This highlights the models’ effectiveness in distinguishing
celiac disease patients from control subjects [44].

6. Conclusions

The gold-standard PCR test for COVID-19 is constrained by high turnaround times,
a lack of specialized equipment, and low sensitivity, providing a challenge to global
healthcare systems. NHS guidelines require testing of all emergency admissions, regardless
of clinical suspicion, emphasizing the critical requirement for prompt and accurate COVID-
19 exclusion in acute care settings. Our models have a strong predictive performance,
making them suitable for screening COVID-19 diagnoses in emergency rooms. They
help make rapid treatment decisions, guide safe patient streaming, and act as a pre-test for
diagnostic molecular testing. Key benefit categories include viral-free individuals who were
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properly predicted to be COVID-19-negative. This strategy is extensively used in clinical
practice. The clinically focused approach ruled out COVID-19 in enriched subpopulations
that were more likely to test positive, proposing conclusive testing, comparable to the
D-Dimer test for suspected deep-vein thrombosis and pulmonary embolism.

The integration of AI has significantly advanced the fight against COVID-19. From
diagnosis to predicting outcomes to modeling future trends, AI has played a crucial role in
interpreting data, improving patient care, and predicting outbreak dynamics. In addition,
the application of ML models has significantly improved predictive accuracy and provided
valuable insights into COVID-19-related hospital admissions and mortality rates. During a
global health crisis, AI can improve public health and solve pandemic-related issues by
improving decision-making and patient outcomes.

Until now, early detection models have mostly focused on radiological imaging evalu-
ation. Few studies have evaluated routine laboratory tests, with studies to date including
small numbers of patients with confirmed COVID-19, using PCR results for data labeling,
and thus not ensuring disease freedom in so-called negative patients, as well as not being
validated in the clinical population that is the target for their intended use.

7. Limitations of the Study

The use of small control cohorts during training is a shortcoming of this study since it
fails to expose models to the breadth and range of alternate infectious and non-infectious
diseases, including seasonal pathologies. Furthermore, while the application of artificial
intelligence approaches for early detection has enormous potential, several published
models are highly biased.
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