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Abstract: Background/Objectives: This study aimed to develop a predictive algorithm for the early
diagnosis of dementia in the high-risk group of older adults using artificial intelligence technologies.
The objective is to create an accessible diagnostic method that does not rely on traditional medical
equipment, thereby improving the early detection and management of dementia. Methods: Lifelog
data from wearable devices targeting this high-risk group were collected from the AI Hub platform.
Various indicators from these data were analyzed to develop a dementia diagnostic model. Machine
learning techniques such as Logistic Regression, Random Forest, LightGBM, and Support Vector
Machine were employed. Data augmentation techniques were applied to address data imbalance,
thereby enhancing the model performance. Results: Data augmentation significantly improved the
model’s accuracy in classifying dementia cases. Specifically, in gait data, the SVM model performed
with an accuracy of 0.879. In sleep data, a Logistic Regression was performed, yielding an accuracy of
0.818. This indicates that the lifelog data can effectively contribute to the early diagnosis of dementia,
providing a practical solution that can be easily integrated into healthcare systems. Conclusions: This
study demonstrates that lifelog data, which are easily collected in daily life, can significantly enhance
the accessibility and efficiency of dementia diagnosis, aiding in the effective use of medical resources
and potentially delaying disease progression.

Keywords: artificial intelligence; early dementia detection; lifelog data; wearable devices;
machine learning

1. Introduction

The escalating threat of dementia in aging societies poses a significant social and
economic burden. As the global population ages, the number of people with dementia
continues to increase. Dementia is a common geriatric condition affecting approximately
10% of individuals aged 65 years and above [1]. It denotes a state characterized not
only by a decline in cognitive function but also by impairments in language, intelligence,
concentration, and judgment abilities, indicating anomalies in perceptual skills. Once
dementia develops, it is not reversible and tends to either remain stable or progressively
worsen [2]. The disease places a substantial burden not only on the patients themselves but
also on their family members, necessitating proactive national responses [3]. Despite the
various types and symptoms of dementia, its underlying mechanisms remain unclear, and
no definitive treatments are currently available. Consequently, early diagnosis of dementia
is crucial and increasingly emphasized [4,5].

Globally, the number of individuals diagnosed with dementia continues to rise steadily.
According to the World Health Organization (WHO), it is projected that by 2050, the number
of dementia patients will reach approximately 152.8 million, which is nearly three times
the current figure [6]. The economic burden of dementia is significant; in 2019, the global
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cost for 55.2 million individuals with dementia was estimated at USD 1.313, equating to an
average cost of USD 23,796 [7]. This financial burden is expected to increase alongside the
aging population, highlighting the critical need for the establishment of early diagnosis
systems for dementia.

Early diagnosis is the most effective method for managing dementia, allowing for
interventions to delay its progression to severe stages. Traditionally, the diagnosis of demen-
tia relies on the clinical expertise of physicians and often involves expensive neuroimaging
assessments [8]. This makes the early diagnosis of dementia difficult and inaccessible for
many individuals. National-level initiatives, such as the Mini-Mental State Examination for
Dementia Screening conducted at public health centers, aim to address this issue [9]. How-
ever, delays in acknowledging symptoms often prevent timely visits to health centers
for diagnosis.

If dementia is not diagnosed early, patients may miss the critical treatment window,
losing a valuable opportunity to slow the progression of the disease. As previously men-
tioned, dementia is a progressive disorder that worsens over time. Without appropriate
treatment and management during the early stages, the disease can quickly advance to se-
vere stages [2]. Failure to diagnose early means that patients may not receive the necessary
treatment until the disease has significantly progressed, leading to accelerated functional
decline and an increased risk of losing independence in daily activities. Additionally, in
the early stages of dementia, many patients either do not notice the decline in cognitive
function or dismiss mild symptoms, resulting in a diagnosis only after the disease has ad-
vanced considerably. This situation often increases the psychological and financial burden
on both the patients and their families, significantly diminishing the quality of life for those
affected by dementia. Therefore, early detection and proactive treatment are essential for
maintaining patient functionality and improving quality of life.

Traditional dementia diagnosis methods face two main challenges: the need for
individuals to visit diagnostic facilities such as hospitals or health centers, and the reliance
on expensive equipment [10]. Which solutions address these issues? A potential solution
for early diagnosis is to record data generated from daily life activities utilizing equipment
that is readily available, thereby overcoming reliance on expensive diagnostic tools [11].

Lifelog data generated through Internet of Things (IoT) technologies, such as wearable
devices and mobile equipment, provides a comprehensive record of an individual’s daily
life activities. Although lifelog data includes information recorded on social networking
sites, their most noteworthy application is in the healthcare industry [12]. In healthcare,
notable lifelog data include activity levels, sleep information, dietary habits, weight fluctu-
ations, body mass index, and muscle mass data collected from smartphones and wearable
devices [13]. The healthcare industry aims to leverage these data to address weaknesses in
medical management and provide continuously usable services.

To utilize health lifelog data in real time, the application of artificial intelligence (AI)
technology, capable of classifying large volumes of data and deriving meaningful results
in real time, is essential. AI technology can serve as a critical decision-making tool for the
early diagnosis of dementia. Various studies have demonstrated the extensive use of AI in
real-time data collection and analysis [14]. These studies highlight the important role of AI
technology in real-time data analysis and decision making. In a study utilizing lifelog data
to predict diabetes and cardiovascular diseases, machine learning models demonstrated
a precision of 97.1% and a recall of 96.2%, thereby validating the effectiveness of early
diagnosis through lifelog data analysis [15]. Building on these findings, digital healthcare
platforms that leverage lifelog data have continued to evolve, collecting and automatically
analyzing individual health data to offer personalized health management. These platforms
employ AI-based deep learning modules to perform real-time analyses, making them
highly effective tools for managing chronic diseases [16]. Therefore, the application of AI
technology to the real-time analysis of health lifelog data is considered a valid approach.

Dementia diagnosis is a complex process that requires specialized knowledge of
various conditions and scenarios. However, based on the results of prior research, imple-
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menting an AI-based early dementia diagnosis prediction system by integrating health
lifelog data with AI technology appears feasible. Therefore, in this study, we aim to develop
an AI-based predictive algorithm that enables early dementia diagnosis using health lifelog
data, serving as preliminary research for building an AI-based diagnostic system. The re-
sults of this study are expected to facilitate early dementia diagnosis, enabling appropriate
and timely treatment, thereby slowing disease progression and improving patients’ quality
of life.

2. Methodology
2.1. Participants

To achieve the objectives of this study, we utilized the “Wearable Lifelog Data
for Dementia High-Risk Groups” provided by AI Hub, accessed on 26 June 2024.
(https://www.aihub.or.kr/). AI Hub is an integrated AI platform operated by the
National Information Society Agency of Korea, offering training data in six fields,
including healthcare, to support AI service development. The wearable lifelog data
for dementia high-risk groups were derived from raw data collected using healthcare
wearable devices. These data underwent refinement and labeling processes for lifelog
big data construction for each stage of dementia progression and included datasets
indicating the probability of developing dementia, as assessed by an AI-based early
prediction model. The dataset was collected from men and women aged 55 years
residing in Gwangju Metropolitan City, based on precise diagnoses by specialists. A
total of 300 participants were categorized into Cognitive Normal (CN), Mild Cognitive
Impairment (MCI), and Dementia (Dem), and were equipped with ring-shaped wear-
able devices for data collection. Following data collection, participants with a wearable
device usage period of less than 35 days were excluded through data preprocessing.
The final distributed dataset included the cognitive function data of 174 participants,
with 111 categorized as CN, 51 as MCI, and 12 as Dem.

2.2. Data Preprocessing and Variable Extraction

The Dem group’s relatively small sample size of 12 raises the model bias risk during
training. Therefore, instead of classifying MCI and Dem separately, we combined the MCI
and Dem data to classify them as a high-risk group for dementia. The training and valid
data used in this study are summarized in Table 1.

Table 1. Dataset used in this study.

Classification CN High-Risk Group for Dementia (MCI + Dem)

Train 85 56
Valid 26 7

In this study, lifelog data used to predict high-risk dementia groups were divided into
sleep and gait data. The specific datasets, listed in Table 2, span approximately 35–120 days,
and various metrics were collected daily. As the collection dates varied for each participant,
we calculated the mean, standard deviation, maximum, and minimum values for each
variable per participant to incorporate into the model training.

Specifically, unique participant lists were extracted from sleep and gait data using
each participant’s email address as an identifier. For each participant, the mean, standard
deviation, maximum, and minimum values of the variables were calculated and saved as
separate Excel files. The training and valid data were saved separately to maintain distinct
datasets for analysis.

Nonquantifiable variables (dates, etc.) in the gait lifelog data such as the five-minute
activity log, activity start time, activity end time, and one-minute MET log were excluded
from the analysis. Variables (dates, etc.) in the sleep lifelog data such as sleep start time,

https://www.aihub.or.kr/
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sleep end time, five-minute heart rate log, sleep state log, and five-minute heart rate
variability log were excluded from the analysis.

Table 2. Description of gait and sleep lifelog data.

Classification
Gait Data Sleep Data

Variable Description Variable Description

1 activity_average_met Average Daily Physical Activity
Intensity sleep_awake Wake Time

2 activity_cal_active Daily Activity Calories sleep_breath_average Average Respiratory Rate
per Minute

3 activity_cal_total Total Daily Calorie Expenditure sleep_deep Deep Sleep Time
4 activity_daily_movement Daily Distance Moved sleep_duration Total Sleep Time
5 activity_high High-Intensity Activity Duration sleep_efficiency Sleep Efficiency

6 activity_inactive Inactivity Duration sleep_hr_average Average Heart Rate per
Minute

7 activity_inactivity_alerts Inactivity Alarm Frequency sleep_hr_lowest Low Heart Rate per
Minute

8 activity_low Low-Intensity Activity Duration sleep_is_longest Confirmed Sleep Presence

9 activity_medium Moderate-Intensity Activity
Duration sleep_light Light Sleep Time

10 activity_met_min_high Daily High-Intensity Physical
Activity Intensity sleep_midpoint_at_delta Sleep Midpoint Time

(Delta)

11 activity_met_min_inactive Daily Inactivity Physical Activity
Intensity sleep_midpoint_time Sleep Midpoint Time

12 activity_met_min_low Daily Low-Intensity Physical
Activity Intensity sleep_onset_latency Sleep Latency

13 activity_met_min_medium Daily Moderate-Intensity Physical
Activity Intensity sleep_period_id Sleep Identification ID

14 activity_non_wear Non-wear Duration sleep_rem REM Sleep Duration
15 activity_rest Rest Duration sleep_restless Toss and Turn Rate

16 activity_score Activity Score sleep_rmssd Average Heart Rate
Variability

17 activity_score_meet
_daily_targets Activity Goal Achievement Score sleep_score Overall Sleep Score

18 activity_score_move
_every_hour Hourly Activity Maintenance Score sleep_score_alignment Sleep Timing Score

19 activity_score_recovery
_time Recovery Time Score sleep_score_deep Deep Sleep Score

20 activity_score_stay_active Activity Maintenance Score sleep_score_disturbances Sleep Disturbance Score

21 activity_score_training
_frequency Exercise Frequency Score sleep_score_efficiency Sleep Efficiency Score

22 activity_score_training
_volume Exercise Score Training Volume sleep_score_latency Sleep Latency Score

23 activity_steps Daily Step Count sleep_score_rem REM Sleep Score

24 activity_total Total Activity Duration (minutes) sleep_score_total Sleep Duration
Contribution Score

25 - - sleep_temperature_delta Skin Temperature
Deviation (Delta)

26 - - sleep_temperature_deviation Skin Temperature
Deviation

27 - - sleep_total Sleep Time

Finally, StandardScaler was applied to standardize the training data. Data were
preprocessed to ensure that the same scaler could be applied to the validation data. This
approach was designed to enable early diagnosis of dementia using data standardized
consistently with the training data. The scaler was saved along with the model, allowing
new data not used in this study to be standardized according to identical criteria.

StandardScaler is one method used in data preprocessing for machine learning. It
standardizes data by adjusting each feature to have a mean of 0 and a standard deviation
of 1 [17]. This process can enhance the model’s performance and reduce the training time.

2.3. Data Augmentation

In this study, data augmentation was performed solely on the training data to improve
the model’s performance. Collecting large amounts of data for machine learning research
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can be costly, particularly when using human data [18]. Data augmentation can be used
effectively to enhance the model performance and prevent overfitting during data predic-
tion [19]. We utilized models both with and without data augmentation. For this study, data
augmentation was achieved by randomly adjusting the mean values of each measurement
for participants within a ±10% range of the standard deviation, thereby increasing the
training data size by 20 times. The Mean Value variable represents the measurement’s
average value, and Standard Deviation refers to the measurement’s standard deviation.
The Random Factor variable is a random number generated between −1 and 1 that scales
the adjustment within the range of ±10% of the standard deviation. This method was
applied repeatedly to increase the training dataset size by a factor of 20, ensuring substan-
tial augmentation while maintaining the inherent statistical properties of the original data.
Importantly, no augmentation was applied to the validation data in order to avoid potential
issues that data augmentation might introduce during validation. The final training data
used in this study after augmentation are presented in Table 3.

Augmented Value = Mean Value + (Random Factor × 0.1 × Standard Deviation) (1)

Table 3. Dataset utilized in this study after data augmentation.

Classification CN High-Risk Group for Dementia (MCI + Dem)

Train 1700 1120
Valid 26 7

The final data used in this study after data augmentation are presented in Table 3.

2.4. Learning Model and Hyperparameters

In this study, prediction models were developed using Logistic Regression, Random
Forest, LightGBM, and Support Vector Machine Classification. For datasets with defined
features or limited data, traditional machine learning techniques are more effective than
deep learning [20]. Additionally, to optimize the model’s hyperparameters, GridSearch,
a technique to improve model performance in machine learning, was employed. This
involves entering a list of hyperparameter values for a machine learning model, evaluating
the performance for all possible combinations of these values, and identifying the best
set of values [21]. The optimal hyperparameters for each model, determined using the
GridSearch method, are listed in Table 4.

Table 4. Optimal hyperparameters for each machine learning model.

Classification Model
Hyperparameters

Gait Data Sleep Data

1 Logistic Regression c = 0.01 c = 0.01

2 Random Forest
Max_depth = 15 Max_depth = 15

n_estimators = 200 n_estimators = 50
random_state = 2024 random_state = 2024

3 LightGBM
learning_rate = 0.01 learning_rate = 0.01
n_estimators = 50 num_leaves = 15
num_leaves = 15

4 Support Vector Machine
Classification

c = 1 c = 1
gamma = 0.01 gamma = 1

probability = True probability = True

2.4.1. Logistic Regression

Logistic Regression is a widely used machine learning technique that has been em-
ployed in various research areas. It is particularly effective in addressing binary classifi-
cation problems by outputting probabilities between 0 and 1, which can then be used to
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predict the likelihood that a specific condition is true. For instance, in the context of demen-
tia classification, a Logistic Regression model can predict whether a patient has dementia
by providing a yes or no answer based on the calculated probability. Logistic Regression
has traditionally been extensively utilized in the medical field, including applications such
as dementia diagnosis, where it plays a crucial role in predicting patient outcomes. The
primary reason for the widespread use of Logistic Regression lies in its ability to perform
binary classification with a high degree of interpretability and efficiency. There is prior
research demonstrating the effectiveness of Logistic Regression in predicting Alzheimer’s
disease, achieving a high accuracy of 0.873 [22]. Additionally, this technique has been
employed in various studies to predict disease risks, such as colorectal cancer [23] and
diabetes [24]. Based on the results of these studies, it is evident that Logistic Regression
is a commonly used method for disease prediction. Therefore, it was also adopted as the
machine learning technique in this study. The specific formula for the Logistic Regression
model is shown in Equation (2).

− 1
m

m

∑
i=1

[
y(i) log

(
h
(

z(i)
))

+ (1 − y(i))log(1 − h
(

z(i)
)
) (2)

2.4.2. Random Forest

Random Forest is an ensemble method that enhances predictive performance by
combining multiple decision trees. Each tree in the model is trained independently, and the
final prediction is determined through majority voting among the individual trees. Owing
to this structure, Random Forest exhibits high stability and prediction accuracy, and it is
particularly robust against overfitting. A decision tree operates by recursively partitioning
the dataset into subsets based on various criteria. This partitioning process continues until
no further predictions can be made, or until all data within a subset share the same target
variable value. This recursive partitioning method is known as ‘Top-Down Induction of
Decision Trees (TDIDT)’, and ultimately, the dependent variable Y is used as the target for
classification. The vector v can be expressed by the following equation.

(v, Y) = (x1, x2, . . . , xd, Y) (3)

When training a Tree model, the process involves optimizing the parameters for
each terminal and internal node, as well as the parameters of the node split function, to
minimize an objective function defined based on the given data v, training set S0, and
actual labels. Random Forest enhances model accuracy by utilizing an ensemble of these
decision trees through the Bagging (bootstrap aggregation) method. Bagging involves
repeatedly sampling the data (Bootstrap), training each model on these samples, and then
aggregating the results (Aggregation) to produce the final prediction. In Random Forest,
the combination of results from decision trees, each composed of different nodes, yields an
optimized classification outcome.

IG( f ) =
m

∑
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fi(1 − fi) =
m

∑
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(
fi − f 2

i

)
=

m

∑
i=1

fi −
m

∑
i=1

f 2
i = 1 −

m

∑
i=1

f 2
i (4)

The use of the Random Forest technique in the field of dementia diagnosis is justified
by the complex and multidimensional nature of dementia-related data, which can be
effectively handled by the multi-tree structure of this method. Studies have leveraged these
advantages, applying the Random Forest technique to classify neuroimaging data related to
Alzheimer’s disease [25]. Additionally, this method has been employed in various studies,
such as those predicting cardiovascular diseases [26], demonstrating its utility in disease
prediction. Given the results of these studies, it is evident that Random Forest is a widely
used technique for disease prediction, which is why it was chosen as the machine learning
method in this study. The specific formulas for the Random Forest technique are presented
in Equations (3) and (4).
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2.4.3. LightGBM

LightGBM is a boosting framework that prioritizes high performance and speed, mak-
ing it particularly useful for handling large-scale or complex high-dimensional data. Unlike
traditional boosting algorithms that expand trees level by level, LightGBM grows trees
leaf-wise. This approach allows the model to improve accuracy by preferentially splitting
the leaf with the highest loss, thereby reducing overfitting. Additionally, LightGBM is
well-suited for addressing data imbalance issues. This capability is especially valuable
in research focused on disease prediction, such as dementia, where it effectively handles
imbalanced datasets and facilitates early diagnosis and classification. For instance, studies
have utilized LightGBM to develop models predicting the progression from mild cognitive
impairment (MCI) to dementia, demonstrating high accuracy and efficiency [27]. Further-
more, LightGBM has been employed in various studies for disease prediction, including
research on predicting thyroid disorders [28]. Given the outcomes of these prior studies, it is
evident that LightGBM is a commonly used technique for disease prediction. Consequently,
it was also selected as the machine learning method in this study.

2.4.4. Support Vector Machine Classification

Support Vector Machine (SVM) is a model that establishes a decision boundary to
classify data into two categories. When new data are input, the model analyzes the
features of the data and classifies them into the category that corresponds to the side of
the decision boundary with similar attributes. The performance of SVM improves as the
margin between the decision boundary and the data increases, with this margin being
referred to as the “Margin”. SVM enhances classification accuracy by securing a wider
margin and strengthens the model’s reliability by removing outliers within the margin.
The SVM algorithm can be described using a p-dimensional hyperplane, as expressed in
Equation (5), which represents a line where f (X) = 0:

f (X) = β0 + β1X1 + . . . + βpXp (5)

f (X) = 0 (6)

The function f (X) classifies data points based on their position relative to the hyper-
plane: if f (X_i) is greater than 0, the data point is classified as Class 1; if f (X_i) is less than 0,
it is classified as Class 2. Specifically, when f (X_i) > 0, the data point belongs to Class 1, and
when f (X_i) < 0, it belongs to Class 2. Consequently, each data point is assigned a value of
Y_i, which is either −1 or 1 depending on its class. The condition for determining that all
data points are correctly classified is when the expression in Equation (7) is positive for all
data points.

Yi
(

β0 + β1Xi1 + . . . + βpXip
)
> 0 (7)

When drawing a hyperplane, data can be divided with various slopes; however, to cre-
ate the most accurate classification model, it is essential to find the margin that maximizes
the distance between the two classes. This process defines the optimal hyperplane. There-
fore, it is crucial to find the value that maximizes this margin, as expressed in Equation (10),
to optimize the model’s performance.

Maximize
β0,β1,...,βp ,ϵ1,...,ϵn M M (8)

subject to
p

∑
j=1

β2
j = 1 (9)

Yi
(

β0 + β1Xi1 + . . . + βpXip
)
≥ M(1 − ϵ1) (10)

ϵ1 ≥ 0,
n

∑
i=1

ϵi ≤ C (11)



Healthcare 2024, 12, 1872 8 of 14

The use of SVM in dementia classification is justified for several reasons. First, SVM is
highly effective in handling high-dimensional data, making it well-suited for analyzing
complex medical images such as MRI scans. Second, SVM has demonstrated high accuracy
in predicting early stages of diseases like dementia [29], allowing for the construction of
robust predictive models by integrating various clinical and imaging data. Additionally,
SVM has been employed in a range of studies for disease prediction, including research on
cardiovascular diseases [30]. Based on the outcomes of these previous studies, SVM is a
widely used method for disease prediction, which is why it was also chosen as the machine
learning technique in this study.

2.5. Model Evaluation Method

The performance of the prediction models was evaluated using six metrics: recall,
precision, sensitivity, specificity, accuracy, and AUC. These performance indicators ranged
from 0 to 1, with higher values indicating better model performance. The specific formula
is as follows.

Recall (Sensitivity) =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(12)

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(13)

Speci f icity =
True Negatives (TN)

True Negatives (TN) + False Positives (FP)
(14)

Accuracy =
True Positives (TP) + True Negatives(TN)

Total number o f cases
(15)

2.6. Analysis Procedure

The research procedure was methodically organized into six stages to achieve the
objectives of this study. Initially, wearable lifelog data from a high-risk dementia group was
collected via AI Hub. This dataset included various physiological and behavioral indicators
such as activity patterns, sleep cycles, and heart rate measurements. In the second stage,
data preprocessing was conducted, which involved the removal of extraneous variables,
computation of basic statistics, and standardization of each variable. This standardization
ensured that the data were adjusted to a uniform scale, and basic statistics were employed
to render the data in a format suitable for learning. The third stage involved segregating
the preprocessed data into training and validation sets. Specifically, for the CN group, the
data were divided in an 8:2 ratio for training and validation purposes, while for the MCI +
Dem group, the data were split in a 9:1 ratio. This structured approach ensures a systematic
processing of the data, setting a robust foundation for the subsequent analytical stages of
the research. In the fourth stage, data augmentation was implemented to address issues
of data scarcity and class imbalance. This step was crucial for enhancing the accuracy of
the models and improving their performance across diverse conditions, underscoring the
efforts to optimize data utilization. The fifth stage involved adjusting the hyperparameters
of four predictive models. For this purpose, the GridSearch method was employed to
systematically explore all combinations of hyperparameters to identify the configuration
that yielded the best performance. Utilizing GridSearch significantly reduces the time
researchers spend on manually testing combinations, thereby streamlining the model
optimization process. In the final stage, the performance of the predictive models was
evaluated using various metrics. Precision, recall, accuracy, and the area under the curve
(AUC) were employed to thoroughly assess and analyze the predictive efficacy of each
model. The specific research procedures are depicted in Figure 1.
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Figure 1. Analysis procedure.

3. Results
3.1. Results of Prediction Model Training Using Original Data (Gait)

This study aimed to predict high-risk dementia groups using lifelog data. As the
first research outcome, prediction models were trained using the original gait lifelog
data. The performance metrics for each trained model are detailed in Table 5. Although
Logistic Regression, LightGBM, and Support Vector Machine performed well in terms of
accuracy, Random Forest outperformed them all, with an AUC of 0.734 according to the
ROC curve. However, sensitivity, which indicates the model’s ability to correctly identify
actual dementia patients, was relatively low at 0.429. Detailed confusion matrices for each
model are provided in the Supplementary Materials.

Table 5. Results of prediction model training using original data (gait).

Model Recall/Sensitivity Precision Specificity Accuracy AUC

Logistic
Regression 0.429 1.000 1.000 0.879 0.621

Random Forest 0.429 0.429 0.846 0.758 0.734
LightGBM 0.429 1.000 1.000 0.879 0.643

Support Vector
Machine

Classification
0.429 1.000 1.000 0.879 0.681

3.2. Results of Prediction Model Training Using Original Data (Sleep)

As the second research outcome, prediction models were trained using the original
sleep lifelog data. The performance metrics for each trained model are listed in Table 6. Both
the accuracy and AUC scores indicated that the Support Vector Machine model performed
the best. However, sensitivity was relatively low at 0.429. Detailed confusion matrices for
each model are provided in the Supplementary Materials.

Table 6. Results of prediction model training using original data (sleep).

Model Recall/Sensitivity Precision Specificity Accuracy AUC

Logistic
Regression 0.429 1.000 1.000 0.879 0.780
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Table 6. Cont.

Model Recall/Sensitivity Precision Specificity Accuracy AUC

Random Forest 0.429 0.429 0.846 0.758 0.745
LightGBM 0.429 0.750 0.962 0.848 0.769

Support Vector
Machine

Classification
0.429 1.000 1.000 0.879 0.786

3.3. Results of Prediction Model Training Using Augmented Data (Gait)

As the third research outcome, the prediction models were trained using augmented
gait lifelog data. The performance metrics for each trained model are listed in Table 7.
Although the Support Vector Machine model had the highest accuracy, the Random Forest
model demonstrated superior performance when considering the AUC. Notably, per-
formance improved compared to the pre-augmentation AUC of 0.734, with sensitivity
increasing from 0.429 to 0.571. Detailed confusion matrices for each model are provided in
the Supplementary Materials.

Table 7. Results of prediction model training using augmented data (gait).

Model Recall/Sensitivity Precision Specificity Accuracy AUC

Logistic
Regression 0.429 0.375 0.808 0.727 0.604

Random Forest 0.571 0.500 0.846 0.788 0.808
LightGBM 0.429 0.600 0.923 0.818 0.736

Support Vector
Machine

Classification
0.429 1.000 1.000 0.879 0.764

3.4. Results of Prediction Model Training Using Augmented Data (Sleep)

As the fourth research outcome, prediction models were trained using the augmented
sleep lifelog data. The performance metrics for each trained model are listed in Table 8.
Although the Support Vector Machine model had the highest accuracy, the Logistic Regres-
sion model demonstrated better performance when considering the AUC. Sensitivity also
improved from 0.429 to 0.571. Detailed confusion matrices for each model are provided in
the Supplementary Materials.

Table 8. Results of prediction model training using augmented data (sleep).

Model Recall/Sensitivity Precision Specificity Accuracy AUC

Logistic
Regression 0.571 0.571 0.885 0.818 0.802

Random Forest 0.571 0.500 0.846 0.788 0.734
LightGBM 0.000 0.000 1.000 0.788 0.544

Support Vector
Machine

Classification
0.429 1.000 1.000 0.879 0.786

4. Discussion

This study aimed to develop an algorithm for the early diagnosis of high-risk dementia
groups among pre-older adult individuals using AI. By leveraging health lifelog data that
are easily accessible in everyday life, this study suggests a significant potential to reduce
reliance on expensive medical equipment and specialized medical professionals required by
traditional diagnostic methods. This approach could be especially applicable in areas with
limited access to healthcare or in economically disadvantaged environments, offering the
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potential to improve public health quality. The key findings of the study are summarized
as follows.

First, participants’ cognitive function in this study was categorized into three groups:
CN (111), MCI (51), and Dem (12). This led to an imbalance in the data between groups.
Although we attempted to address this issue, it did not resolve the imbalance between
MCI and Dem or the gender distribution. Consequently, patients with MCI and Dem
were combined and labeled as the high-risk dementia group. Data imbalance is a common
limitation in dementia prediction studies. For instance, in previous studies, the Synthetic
Minority Over-sampling Technique (SMOTE) was proposed to artificially augment data
for minority groups in machine learning-based research [31]. This technique helps balance
datasets by generating examples of the minority class.

In healthcare-related research, data augmentation has been employed to address the
issue of insufficient sample sizes, such as in studies focused on classifying human body
types using deep learning techniques [32]. Additionally, efforts to build AI systems aimed
at preventing doping among athletes have also utilized data augmentation to compensate
for limited sample sizes [33]. Following these examples from various previous studies, this
research applied data augmentation to tackle the problem of data imbalance. However, in
the long term, future research will need to employ more precise classification techniques
and expand data collection across diverse populations.

Second, this study aimed to develop an algorithm for the early diagnosis of high-risk
dementia groups using original lifelog data. Although the algorithm achieved a maximum
accuracy of 0.879, the sensitivity for correctly classifying actual dementia cases was low
at 0.429. This raises questions about whether this algorithm is optimal for classifying
dementia, which could be a topic for discussion among researchers. However, the accurate
and quick prediction of patients with dementia is crucial for its management and treatment.
Precise and rapid diagnosis plays a decisive role in establishing appropriate treatment
and management plans, which are essential for maintaining a patient’s quality of life and
slowing the progression of dementia.

Using lifelog data collected from daily life for proactive early diagnoses of demen-
tia would considerably aid the initiation of appropriate treatment at an early stage. For
example, in previous studies, a machine learning-based system using lifelog data has
detected abnormal behaviors in dementia patients. This system demonstrated the poten-
tial to monitor patient conditions in real time and identify issues early [34]. This study
underscores the importance of early diagnosis and continuous monitoring in dementia
management and suggests how technological approaches can improve patient care. The
use of lifelog data has expanded in various fields, not only in dementia research. These
data are increasingly being applied in the context of early and proactive diagnosis, where
speed is often prioritized over precision. In this regard, low-cost wearable devices play
a crucial role, serving as important tools for rapid data collection and analysis. The data
collection device used in this study aligns with this approach. For instance, in previous
research, the authors developed a low-cost, autonomous wearable device designed to track
Alzheimer’s patients. The device uses GPS and geofencing technology to monitor the
patient’s location in real time and sends alerts when the patient exits a designated safe
zone [35]. Such low-cost devices help alleviate the burden on patients and their families
and can be effectively utilized in regions with limited access to healthcare.

Third, we addressed the data imbalance issue by performing data augmentation.
Numerous studies have proposed data augmentation as a solution to data imbalance
problems [32]. The results of this study support previous findings, showing improved
performance in sensitivity after data augmentation, indicating that the ability to classify
actual dementia cases as dementia improved. An increase in sensitivity implies a better
identification of actual dementia cases, potentially leading to a more accurate diagnosis.
Therefore, we hope that future studies will continue to explore various techniques to
enhance sensitivity. Furthermore, future studies should investigate how these techniques
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can be applied in clinical settings to contribute to high-quality research capable of early
dementia prediction.

5. Conclusions

This study aimed to develop a predictive algorithm using AI technology for the
early diagnosis of high-risk dementia groups among pre-older adult individuals. Early
diagnostic methods that utilize health lifelog data aim to overcome the limitations of
traditional diagnostic methods. The results suggest that effectively utilizing lifelog data,
which can be easily collected from daily life, not only enhances the accessibility of dementia
diagnosis and enables the efficient use of medical resources but also plays a crucial role in
delaying the progression of dementia.

This study focused on improving model accuracy and sensitivity by applying data
augmentation techniques to overcome the limitations of previous studies, such as data
imbalance issues. The improvement in sensitivity after data augmentation can enhance the
reliability of AI-based diagnostic systems. Nevertheless, future research should address
the issue of data imbalance, as well as efforts to improve sensitivity.

Finally, the approach used in this study suggests the potential for application not only
in dementia diagnosis but also in the early diagnosis of various health conditions. The
integration of AI and healthcare technology could lead to more precise and personalized
medical services, further improving the quality of public health. Future research should aim
to enhance the model’s predictive power using more diverse data and advanced analytical
techniques and explore its applicability in real clinical settings.
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