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Abstract: Objectives: The aim was to develop and validate the Communities Geriatric Mild Cognitive
Impairment Risk Calculator (CGMCI-Risk), aiding community healthcare workers in the early
identification of individuals at high risk of mild cognitive impairment (MCI). Methods: Based on
nationally representative community survey data, backward stepwise regression was employed
to screen the variables, and logistic regression was utilized to construct the CGMCI-Risk. Internal
validation was conducted using bootstrap resampling, while external validation was performed
using temporal validation. The area under the receiver operating characteristic curve (AUROC),
calibration curve, and decision curve analysis (DCA) were employed to evaluate the CGMCI-Risk
in terms of discrimination, calibration, and net benefit, respectively. Results: The CGMCI-Risk
model included variables such as age, educational level, sex, exercise, garden work, TV watching
or radio listening, Instrumental Activity of Daily Living (IADL), hearing, and masticatory function.
The AUROC was 0.781 (95% CI = 0.766 to 0.796). The calibration curve showed strong agreement,
and the DCA suggested substantial clinical utility. In external validation, the CGMCI-Risk model
maintained a similar performance with an AUROC of 0.782 (95% CI = 0.763 to 0.801). Conclusions:
CGMCI-Risk is an effective tool for assessing cognitive function risk within the community. It uses
readily predictor variables, allowing community healthcare workers to identify the risk of MCI in
older adults over a three-year span.

Keywords: mild cognitive impairment; cognitive disorder; cognitive function; community health;
healthcare; prediction model; risk model

1. Introduction

Mild cognitive impairment (MCI) is an intermediate stage between normal aging and
dementia, often considered a clinical state that precedes Alzheimer’s disease (AD) [1,2].
The global prevalence of MCI among community-dwelling adults aged 50 and older was
over 15% [3]. In China, the prevalence of MCI among individuals aged 60 and above is
15.5%, with the number of affected reaching 38.77 million [4]. It is estimated that over
50% of individuals diagnosed with MCI will develop dementia within five years, with
only a small percentage maintaining stable cognitive function [5]. In the absence of timely
diagnosis, patients may exhibit impairments in two or more cognitive domains, such as
memory, language, executive function, perceptual speed, and visuospatial abilities [6–8].
These impairments can severely affect the patient’s independence in daily life and place a
significant burden on caregivers and families, ultimately increasing the societal burden [9].
Existing MCI detection methods often rely on clinical assessment and neuropsychological
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tests. Although these methods can provide some diagnostic basis, it is difficult to accurately
identify subtle cognitive changes in the early stage of the disease. This leads to the failure
of many potential MCI patients to receive timely identification and intervention. Therefore,
it is crucial to identify individuals at high risk for MCI as early as possible.

Previous studies have illuminated a multitude of risk factors that significantly impact
cognitive function in older adults, spanning demographic, physical health, lifestyle, biolog-
ical, and genetic domains. Demographic characteristics, including age, sex, educational
level, and marital status, have consistently emerged as influential predictors of cognitive
impairment [10,11]. These factors set the foundational context for understanding individual
variability in cognitive trajectories. Physical health conditions have been robustly linked
to cognitive decline. Research has documented associations between reduced cognitive
function and limitations in both basic activities of daily living (BADL) [12] and instrumen-
tal activities of daily living (IADL) [13], highlighting the importance of functional status.
Furthermore, obesity, as measured by body mass index (BMI) [14], hypertension [15], and
sensory impairments such as vision [16] and hearing loss [17] have been identified as risk
factors. Chronic diseases, notably diabetes and stroke [18], exacerbate this risk landscape,
emphasizing the need for holistic health management. Lifestyle factors play a pivotal role
in modulating cognitive function. Regular exercise [19] and healthy dietary habits [20]
have been shown to positively influence cognitive outcomes, while smoking and exces-
sive alcohol consumption [21] exert detrimental effects. These modifiable behaviors offer
promising avenues for intervention to promote cognitive health. At the biological level, sex
hormones [22] and hemoglobin levels [23] have been implicated in cognitive dysfunction,
suggesting intricate physiological mechanisms underlying cognitive decline. Moreover, the
relationship between mental health and cognition is underscored by the strong correlation
between depressive states and cognitive decline reported by Ferri et al. [24]. Genetic factors
also contribute to cognitive risk. Notably, Gui et al. [25] have identified the APOEε4 allele as
a clear risk factor for mild cognitive impairment (MCI), emphasizing the role of individual
genetics in disease susceptibility. Given the myriad of factors influencing cognitive function
in the elderly, developing a prediction model for MCI becomes paramount. Predictive
models play an important role in primary prevention, and their main purpose is to detect
and treat diseases in time to avoid disease progression and deterioration [26].

Previous studies have proposed a variety of MCI prediction models, but these models
have certain limitations and challenges. Huang et al. [27] developed an MCI prediction
model using data from 478 community-dwelling middle-aged and older adults (≥45 years
old). The predictors included age, sex, educational level, place of residence, and reading,
with an area under the receiver operating characteristic curve (AUROC) of 0.870. This
model lacks external validation, and its predictive effect may be biased. Ma et al. [28]
developed an MCI risk prediction model for older adults (≥60 years old) using public
datasets. This risk prediction model used different MCI assessment methods during the
development and validation phases, which may impact the stability and accuracy of the
model. Additionally, MCI prediction models have been developed for other specific patient
populations, including those with hypertension [29], diabetes [30], and stroke [31]. While
prediction tools for these populations are available, variations in study populations and
study designs have resulted in a diversity of model variables. MCI prediction models have
also been developed using data from various data sources, including neuro biomarkers like
A-β amyloid [32] and tau protein [33], neuroimaging variables such as brain microstruc-
ture [34], and genetics such as mitochondria-related genes [35]. The predictive accuracy of
these models has significantly improved; however, implementing these biomarker tests
in community settings remains challenging. Consequently, the objective of this study
was to develop and validate a risk prediction model, known as CGMCI-Risk, for MCI in
community-dwelling older adults. CGMCI-Risk can be used by community healthcare
workers to predict MCI risk in community-dwelling older adults as well as time-validated
models (a shortcoming of many models). Most current prediction models are presented as
a nomogram, which can make them difficult and inconvenient to use. The CGMCI-Risk
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automates the calculations and provides fast predictions compared to manual calculations
or the use of traditional tools. This model aims to help community healthcare professionals
identify high-risk MCI groups, thereby facilitating the optimization of prevention and
intervention strategies.

2. Materials and Methods
2.1. Dataset

The data were obtained from the Chinese Longitudinal Healthy Longevity Survey
(CLHLS). The CLHLS is one of the largest national longitudinal studies examining the
health status of older adults in China. It includes eight surveys conducted in 23 provinces,
municipalities, and autonomous regions between 1998 and 2018. The sampling area covered
approximately 85% of China’s total population [36]. The CLHLS dataset includes basic
information, health assessments, personality traits, lifestyle factors, personal backgrounds,
and indicators of physical health. All eligible participants who consented signed an
informed consent form. For older adults unable to sign the form themselves, consent was
provided by a family member on their behalf.

2.2. Design and Participants

In this study, the CLHLS cohort data from 2008 to 2011 were selected as the derivation
set, and the CLHLS cohort data from 2011 to 2014 were used as the temporal validation
set for the model. The study population included community-dwelling older adults aged
60 years and older with healthy cognition. Individuals who were institutionalized or
who self-reported or were diagnosed with dementia were excluded. Figure 1 presents a
flowchart of sample selection in the present study. This study was conducted in accordance
with the TRIPOD reporting specifications [37].
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Figure 1. The flowchart of the participants’ selection process. CMMSE, Chinese Mini-Mental State
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2.3. Assessment of MCI

Cognitive functioning was assessed using the Chinese Mini-Mental State Examination
(CMMSE), which consists of 24 items assessing general cognitive ability, reactivity, attention
and calculation, recall, and language comprehension and coordination. Each correct
response earns one point, while incorrect responses receive zero points. Question 6, “Count
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the number of food groups in one minute”, has a maximum score of 7, making the total
score range from 0 to 30. Based on previous research [38,39], the CMMSE score below 24
was considered as MCI.

2.4. Definition of Candidate Variables

In accordance with previous research on cognitive dysfunction in older adults [10,40,41],
41 candidate variables were selected from the CLHLS survey data for analysis in this study.
The variables were grouped into four categories. (1) Demographic characteristics: These
include age, educational level, sex, ethnic group, place of residence, marital status, and
cohabitant status. (2) Health status and lifestyle: These include BMI, medical expenses,
baseline CMMSE score, sleep duration, BADL, IADL, physical performance test (PPT), chronic
diseases, masticatory function, vision, hearing, frequency of intake of fruits, fresh vegetables,
animal protein, plant protein and tea, house work, field work, garden work, raise domestic
animals or pets, read newspapers or books, TV watching or radio listening, playing cards
or mahjong, social activities, smoke, alcohol use, and exercise. (3) Mental health: It includes
resilience score, life satisfaction, health satisfaction, sleep satisfaction, and financial satisfaction.
(4) Community and family support: This includes child support and community services. See
Supplementary Materials Table S1 for information on candidate variables.

2.5. Sample Size

The study was designed to achieve an AUROC of at least 0.7 [42]. A total of 5470 partic-
ipants and 821 outcome events were calculated using the R package “pmsampsize” (version
1.1.3), in accordance with the methodology outlined by Riley et al. [43].

2.6. Missing Value

Values marked as “missing”, “unclear”, and “unanswerable” were considered as
missing data. Individuals with more than 5% of their variables missing were excluded
from the analysis. Missing values were imputed using the nearest neighbor (KNN) method,
which involves estimating the value of a missing data point based on the mean (for nu-
meric variables) or the most common (for categorical variables) value observed in the K
participants who are most similar to the participant with the missing value [44]. In this
study, the value of K was set to 5.

2.7. Statistical Analysis

The study data were statistically analyzed using R (version 4.3.2). The numeric vari-
ables were analyzed according to the distribution characteristics of the variables. Variables
with approximately normal distributions were described using means and standard de-
viations. Comparisons between groups were performed using the independent samples
t-test. Numeric variables with severely skewed distributions were described using medi-
ans and interquartile ranges (IQR). Comparisons between groups were performed using
non-parametric tests. Categorical variables were described as frequencies and percentages.
Comparisons between groups were performed using the chi-square test. All tests were
performed with two-sided p < 0.05 as statistically significant differences. The R packages
used in this study include “pmsampsize” (version 1.1.3), “VIM” (version 6.2.2),”tableone”
(version 0.13.2), “MASS” (version 7.3-60), “rms” (version 6.7-1), “pROC” (version 1.18.5),
“rmda” (version 1.6), “caret” (version 6.0-94), and “nomogramEx” (version 3.0).

2.8. Model Development and Validation

A backward stepwise regression analysis was employed to screen the variables in
accordance with the Akaike Information Criterion (AIC) minimization principle. The
screened predictor variables were then included in the first multivariate logistic regression
analysis, and subsequently, significant predictor variables were included in the second
logistic regression analysis until all predictor variables in the model were shown to be
significant. The CGMCI-Risk model was developed using logistic regression. Scores for
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each variable were extracted using the R package “nomogramEx” (version 3.0), which
contributed to the formation of the CGMCI-Risk model.

The AUROC [45], calibration curve [46], and DCA [47] were employed to evaluate the
discriminatory power, calibration, and clinical utility of CGMCI-Risk, respectively. The
AUROC ranged from 0 to 1, with a value of 1 indicating 100% correct predictions [45]. The
Hosmer–Lemeshow (H-L) goodness-of-fit (GOF) test was employed to construct calibration
plots, which were utilized to assess the degree of agreement between the predicted risk and
the actual status of MCI. In a calibration plot, the x-axis represents the predicted probability,
the y-axis represents the observed probability, and the diagonal line represents a perfect
prediction [48]. DCA calculates the net benefit through a series of risk-probability thresholds
and analyzes the value and consequences of the decision under consideration [49]. The
robustness of the model was evaluated through the application of bootstrap resampling
and temporal validation. The accuracy, sensitivity, specificity, negative predictive value
(NPV), and positive predictive value (PPV) of CGMCI-Risk were subsequently reported.

3. Results
3.1. Participants

Of the 6058 participants in the derivation set (median (IQR) age was 79 (71, 87) years),
933 (16.3%) developed MCI within 3 years, 2963 (48.9%) were female and 3095 (51.1%) were
male. Of the 4448 participants in the temporal validation set (median (IQR) age was 79
(73, 87) years), 635 (14.1%) developed MCI within 3 years, 2205 (49.1%) were female and
2283 (50.9%) were male. More cohort characteristics of the derivation set and temporal
validation set are presented in Supplementary Materials Table S2.

3.2. CGMCI-Risk Development and Validation

The set of variables with a minimum AIC value of 4548 was screened by backward
stepwise regression analysis. The first multivariate logistic regression analysis was per-
formed using the screened variables, the statistically insignificant variables were removed,
and the multivariate logistic regression model was reconstructed using the remaining
significant variables. The eventually multivariate logistic regression model included age,
educational level, sex, exercise, garden work, TV watching or radio listening, IADL, hear-
ing, and masticatory function. The results are shown in Supplementary Materials Table
S3. Based on this model, the CGMCI-Risk tool was developed to calculate disease scores,
with personalized results obtained by inputting the appropriate values or options. The
corresponding scores for each parameter are presented in Supplementary Materials Table
S4. The equation that describes the relationship between the predicted risk value and the
sum of the parameter scores is as follows:

Risk = 0.852405178 − 4.17 × 10−7 × Total Points3 + 0.000194207 × Total Points2 − 0.022360467 × Total Points (1)

We provide this CGMCI-Risk model with a user-friendly web platform that enables
the estimation of normative deviation scores from any sample with minimal technical
and computing requirements: http://g152335m31.imdo.co/Communities%20Geriatric%20
Mild%20Cognitive%20Impairment%20Risk%20Calculator (accessed on 4 October 2024).
The community medical staff can utilize this link to input the corresponding predictor
variables and obtain an individualized three-year risk assessment value for MCI in the
elderly residing within the community. Based on the evaluation results, targeted health
guidance can be provided by the community medical staff to reduce the incidence of MCI.

The CGMCI-Risk model demonstrated robust discriminatory power in identifying
MCI risk in community-dwelling older adults, with an AUROC of 0.781 (Figure 2). This
indicates that in a scenario where one randomly selected high-risk patient and one low-
risk patient are considered, the model has approximately a 78.1% probability of correctly
identifying the high-risk patient. The accuracy, sensitivity, specificity, NPV, and PPV of
CGMCI-Risk in the derivation set were 0.717, 0.710, 0.719, 0.927, and 0.330, respectively. The
study employed the H-L GOF test to assess the consistency between the model’s predicted

http://g152335m31.imdo.co/Communities%20Geriatric%20Mild%20Cognitive%20Impairment%20Risk%20Calculator
http://g152335m31.imdo.co/Communities%20Geriatric%20Mild%20Cognitive%20Impairment%20Risk%20Calculator
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probability and the actual probability (p = 0.146). Calibration plots were also constructed to
facilitate this assessment. The results demonstrated a robust correlation between the actual
and predicted probabilities, with a mean absolute error (MAE) of 0.011 and a mean square
error (MSE) of 0.00023 (Figure 3). It indicates that the prediction result of CGMCI-Risk is
very close to the actual result, and the prediction accuracy is high. The DCA illustrated
that CGMCI-Risk offers a greater net benefit compared to full treatment or no treatment
when the risk threshold ranges from 4% to 57% (Figure 4).
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Internal validation employed bootstrap resampling 1000 times with AUROC, sensitiv-
ity, and specificity of 0.776, 0.977, and 0.125, respectively. The temporal validation set was
conducted using data from the CLHLS cohort from 2011 to 2014. The AUROC, sensitivity,
and specificity were 0.782, 0.765, and 0.666, respectively (Figure 2). The calibration curve
and DCA are similar to the derivation set indicating that the CGMCI-Risk is an effective
tool for identifying older adults at risk for MCI in the community (Figures 4 and 5), thereby
providing a foundation for early cognitive intervention by community healthcare workers.
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4. Discussion
4.1. Main Findings

In this study, CGMCI-Risk was developed based on a dataset comprising 6058 sam-
ples, and its external validity was subsequently temporal validated with an additional
4488 samples. The AUROC values demonstrated consistent performance, with a mean of
approximately 0.8, indicating a good discriminative ability. The results of AUROC differ-
ence detection between the derived set and the temporal validation set show that the slight
difference between the two may be just random fluctuation (p = 0.988). The calibration
curve demonstrated excellent consistency, and DCA validated its utility, establishing a
robust tool for MCI risk assessment in community-dwelling older adults. The CGMCI-Risk
incorporates age, educational level, sex, exercise, garden work, TV watching or radio
listening, IADL, hearing, and masticatory function.

Age and sex are significant non-intervention factors in cognitive impairment. The
prevalence of MCI increases with age. As a consequence of the aging process, the volume
of the cerebral cortex and hippocampus diminishes [50]. This results in a blockage of
information delivery, which in turn impairs cognitive function [50]. Yesavage et al. [51]
modeled the prevalence and incidence of AD and MCI. The primary findings of the model
include that the conversion rate from a normal cognitive state to MCI increased from
1% per year at age 60 to 11% at age 85. This suggests that age is a significant risk factor
for the development of MCI. A meta-analysis of the association between sex and MCI
revealed that women are a risk factor for MCI [52]. The role of estrogen in neurogenesis
in the hippocampus is significant, and fluctuations in its levels may be associated with
an increased risk of MCI in females [53]. Furthermore, women are more prone to the
formation of ApoEε4-associated neurogenic fiber tangles, which may contribute to an
elevated risk of cognitive impairment [54]. A review of the literature reveals a correlation
between educational attainment and a number of factors related to cognitive functioning,
including the thickness of the cerebral cortex, gray matter volume, and neural network
connectivity [55]. Individuals with higher levels of education tend to demonstrate superior
cognitive functioning [56], whereas illiteracy or lower educational attainment represents a
substantial risk factor for MCI [57].

There is a strong correlation between IADL and cognitive function. As IADL declines,
older adults may also experience a decline in cognitive abilities [13]. This association
may be attributed to the fact that sustained stimulation of cerebral function through IADL
preserves the activity and plasticity of the brain’s neural networks, thereby assisting in the
mitigation of cognitive decline [58]. A reduction in IADL may also result in a decline in
socialization among older adults, which may further impact their cognitive function [59].
Hearing impairment represents a significant risk factor for the onset of MCI. A study
investigating the impact of hearing on cognitive function demonstrated that individuals
with normal hearing exhibited superior performance on cognitive assessments [60]. This
may be attributed to the fact that hearing impairment can result in alterations to brain
structure and function [17]. Examples of these changes include a decline in brain signals,
degeneration of the auditory cortex, loss of neurons and neuron branches, and a reduction
in overall brain volume [61]. Such alterations may impact the brain’s capacity to process
and perceive sound, potentially contributing to cognitive decline. Tooth loss can result
in difficulty chewing, which may affect nutrient absorption and cognitive function in
the brain [62]. Momose et al. [63] and Onozuka et al. [64] have demonstrated increased
hemodynamic responses in the prefrontal cortex and hippocampus during chewing, which
plays a crucial role in cognitive function. Research has indicated a correlation between
tooth loss, chewing difficulties, and cognitive decline [65], while effective mastication has
been shown to have a beneficial impact on the prevention of MCI [66].

Regular exercise has been demonstrated to exert a beneficial influence on the brain [67].
A research study demonstrated that sustained exercise can delay the onset of cognitive im-
pairment in older adults [68]. An intervention study by Kim and colleagues also confirmed
that exercise may improve cognitive function in older adults aged 65 and above [19]. Regu-
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lar exercise has been demonstrated to facilitate the formation of neural connections between
regions of the brain that are essential for optimal cognitive function [69]. Furthermore,
it facilitates the release of brain-derived neurotrophic factor (BDNF) in the brain, which
is instrumental in promoting neuronal growth, connectivity, and maintenance [70,71]. It
is hypothesized that gardening may confer benefits with respect to cognitive function in
older adults. Findings from a four-year longitudinal study indicate that gardening may
be a significant factor in the reversal of MCI in older adults [72]. In addition to providing
enriching stimulation [73], gardening has been shown to result in significantly higher levels
of BDNF, which can lead to improvements in both physical and cognitive functioning [74].
Furthermore, the role of passive activities such as watching television or listening to the
radio in cognitive impairment has been demonstrated. Lin et al. [75] and Major et al. [76]
have shown that these activities can significantly improve cognitive performance in older
adults. However, Jung et al. [77] posited that television viewing may be associated with an
increased risk of cognitive impairment in later life. This may be attributed to the fact that
prolonged television viewing is frequently linked to sedentary behavior, which can result
in inadequate physical activity or reduced time spent gardening. Consequently, watching
television or listening to the radio may become a risk factor [76].

4.2. Significance and Application Prospects

Currently, more than 55 million individuals worldwide are affected by dementia,
with AD representing approximately 60% to 70% of dementia cases [78]. MCI progresses
to AD at a rate of 10% to 15% per year, whereas the rate of transition to AD in normal
older adults is only 1% to 2% per year [79]. Although current clinical interventions may
not be capable of curing these diseases, timely recognition and diagnosis are essential for
improving patient prognosis and reducing the burden on caregivers [80]. According to the
2019–2030 Healthy China Action Plan of the Chinese government, effective measures can
be taken to prevent and slow down the occurrence of dementia and reduce the burden on
families and society [81]. MCI patients are the key population for the primary prevention of
dementia. If CGMCI-Risk is integrated into the existing community healthcare information
system, it can be easily accessed and used by the community. This may involve software
development, interface docking, and data exchange.

CGMCI-Risk enhances accessibility and feasibility of assessment and optimizes health-
care worker engagement. It is particularly suited to community settings, providing com-
munity healthcare workers with a foundational resource for conducting early cognitive
interventions. The CGMCI-Risk informs the allocation of healthcare resources based on
a patient’s risk score, potentially leading to enhanced resource accessibility for high-risk
patients while comparatively neglecting low-risk patients. This “risk-oriented” approach to
resource allocation may give rise to equity concerns. Therefore, besides considering the risk
score as a crucial factor, it is imperative to comprehensively evaluate the multi-dimensional
factors of patients, including but not limited to their socioeconomic background, personal
health needs, and preferences, in order to ensure comprehensive and equitable resource
allocation. Conversely, older adults identified as high risk by CGMCI-Risk may encounter
issues related to stigmatization and be labeled as “high risk” or “susceptible to disease”.
To avoid such labeling, it is essential to deepen public understanding of CGMCI-Risk and
clarify its role as an auxiliary decision-making tool rather than an absolute standard.

4.3. Limitations

The CGMCI-Risk model was developed to identify high-risk groups for MCI in
community-dwelling older adults. Although laboratory parameters, imaging features,
biomarkers, and genetic indicators have significant potential for MCI prediction, they were
excluded from this study due to logistical and operational feasibility in a real-world com-
munity setting. In addition, the three-year interval for MCI assessment may introduce bias
and fail to capture subtle disease changes. The elevated mortality rate among older adults
may also lead to increased data loss and impact assessment precision. The CGMCI-Risk



Healthcare 2024, 12, 2015 10 of 14

model was developed based on Chinese community-dwelling older adults and, while
promising for use in community settings, requires further validation for its applicability in
different care facilities and cultural backgrounds.

5. Conclusions

The CGMCI-Risk model incorporates factors such as age, educational level, sex, ex-
ercise, garden work, TV watching or radio listening, IADL, hearing, and masticatory
function. This tool can be used in community settings to help healthcare providers identify
older adults in the community at elevated risk for MCI within three years. The role of
CGMCI-Risk in facilitating early identification and intervention of MCI among elderly
individuals in the Chinese community is crucial. Further validation is required to assess the
predictive efficacy of CGMCI-Risk for MCI in elderly populations outside China. Moreover,
as healthcare practices advance, longitudinal studies should be conducted to ensure the
continued reliability of CGMCI-Risk as a tool. In future research, self-reported data could be
cross-validated with objective measurements such as medical records or wearable devices
whenever feasible.

Supplementary Materials: The following supporting information can be downloaded at https://www.
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