Evaluating Muscle Mass Changes in Critically Ill Patients: Rehabilitation Outcomes Measured by Ultrasound and Bioelectrical Impedance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Muscle Mass Measurement
2.3. Patients’ Rehabilitation
2.4. Statistical Analysis
3. Results
3.1. Basic Characteristics of Enrolled Patients
3.2. Measurements of Muscle Mass over Time
3.3. Changes in Muscle Mass Parameters over Time by Rehabilitation Status
3.4. Prognosis of Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jolley, S.E.; Bunnell, A.E.; Hough, C.L. ICU-Acquired Weakness. Chest 2016, 150, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Vanhorebeek, I.; Latronico, N.; Berghe, G.V.D. ICU-acquired weakness. Intensive Care Med. 2020, 46, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Buongiorno, L.; Mele, F.; Solarino, B.; Ferorelli, D.; Zotti, F.; Dell’erba, A.; Carabellese, F.F.; Catanesi, R.; Ferracuti, S.; Mandarelli, G. Falls in the hospital: An Italian clinical risk management perspective. J. Patient Saf. Risk Manag. 2024, 29, 165–172. [Google Scholar] [CrossRef]
- Weijs, P.J.; Looijaard, W.G.; Dekker, I.M.; Stapel, S.N.; Girbes, A.R.; Straaten, H.M.O.-V.; Beishuizen, A. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit. Care 2014, 18, R12. [Google Scholar] [CrossRef] [PubMed]
- Pichard, C.; Kyle, U.G.; Morabia, A.; Perrier, A.; Vermeulen, B.; Unger, P. Nutritional assessment: Lean body mass depletion at hospital admission is associated with an increased length of stay. Am. J. Clin. Nutr. 2004, 79, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Padhke, R.; Dew, T.; Sidhu, P.S.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Wieske, L.; Dettling-Ihnenfeldt, D.S.; Verhamme, C.; Nollet, F.; van Schaik, I.N.; Schultz, M.J.; Horn, J.; van der Schaaf, M. Impact of ICU-acquired weakness on post-ICU physical functioning: A follow-up study. Crit. Care 2015, 19, 196. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, L.; Fan, Y.; Shi, B.; Wang, X.; Chen, T.; Yu, H.; Liu, J.; Wang, X.; Liu, C.; et al. Effect of early mobilization combined with early nutrition on acquired weakness in critically ill patients (EMAS): A dual-center, randomized controlled trial. PLoS ONE 2022, 17, e0268599. [Google Scholar] [CrossRef] [PubMed]
- The TEAM Study Investigators. The ANZICS Clinical Trials Group Early Active Mobilization during Mechanical Ventilation in the ICU. N. Engl. J. Med. 2022, 387, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, A.; Yoshihiro, S.; Shida, H.; Aikawa, G.; Fujinami, Y.; Kawamura, Y.; Nakanishi, N.; Shimizu, M.; Watanabe, S.; Sugimoto, K.; et al. Effects of Mobilization within 72 h of ICU Admission in Critically Ill Patients: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2023, 12, 5888. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.B.; Lang, J.K.B.; Haines, K.J.P.; Skinner, E.H.P.; Haines, T.P.P. Physical Rehabilitation in the ICU: A Systematic Review and Meta-Analysis. Crit. Care Med. 2022, 50, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Karatzanos, E.; Nanas, S.; Patsaki, I.; Stamatakis, G.; Sidiras, G. Effect of Different Neuromuscular Electrical Stimulation Protocols on Muscle Mass in Intensive Care Unit Patients: A Pilot Study. Health Sci. J. 2019, 13, 653. [Google Scholar]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ruiz, A.; Kashani, K. Assessment of muscle mass in critically ill patients: Role of the sarcopenia index and images studies. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Gruther, W.; Benesch, T.; Zorn, C.; Paternostro-Sluga, T.; Quittan, M.; Fialka-Moser, V.; Spiss, C.; Kainberger, F.; Crevenna, R. Muscle wasting in intensive care patients: Ultrasound observation of the M. quadriceps femoris muscle layer. J. Rehabil. Med. 2008, 40, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.-Y.; Ong, S.P.; Ng, C.C.; Yap, C.S.L.; Engkasan, J.P.; Barakatun-Nisak, M.Y.; Heyland, D.K.; Hasan, M.S. Association between ultrasound quadriceps muscle status with premorbid functional status and 60-day mortality in mechanically ventilated critically ill patient: A single-center prospective observational study. Clin. Nutr. 2021, 40, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Tsutsumi, R.; Okayama, Y.; Takashima, T.; Ueno, Y.; Itagaki, T.; Tsutsumi, Y.; Sakaue, H.; Oto, J. Monitoring of muscle mass in critically ill patients: Comparison of ultrasound and two bioelectrical impedance analysis devices. J. Intensive Care 2019, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Deana, C.; Gunst, J.; De Rosa, S.; Umbrello, M.; Danielis, M.; Biasucci, D.G.; Piani, T.; Cotoia, A.; Molfino, A.; Vetrugno, L.; et al. Bioimpedance-assessed muscle wasting and its relation to nutritional intake during the first week of ICU: A pre-planned secondary analysis of Nutriti Study. Ann. Intensive Care 2024, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Hrdy, O.; Vrbica, K.; Kovar, M.; Korbicka, T.; Stepanova, R.; Gal, R. Incidence of muscle wasting in the critically ill: A prospective observational cohort study. Sci. Rep. 2023, 13, 742. [Google Scholar] [CrossRef] [PubMed]
- Fazzini, B.; Märkl, T.; Costas, C.; Blobner, M.; Schaller, S.J.; Prowle, J.; Puthucheary, Z.; Wackerhage, H. The rate and assessment of muscle wasting during critical illness: A systematic review and meta-analysis. Crit. Care 2023, 27, 2. [Google Scholar] [CrossRef] [PubMed]
- Eikermann, M.; Latronico, N. What is new in prevention of muscle weakness in critically ill patients? Intensive Care Med. 2013, 39, 2200–2203. [Google Scholar] [CrossRef] [PubMed]
- Gerovasili, V.; Stefanidis, K.; Vitzilaios, K.; Karatzanos, E.; Politis, P.; Koroneos, A.; Chatzimichail, A.; Routsi, C.; Roussos, C.; Nanas, S. Electrical muscle stimulation preserves the muscle mass of critically ill patients: A randomized study. Crit. Care 2009, 13, R161. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.; Kim, J.; Bin Kim, H.; Hyunwoo, C.; Kim, K.; Lee, D.; Na, S. The Effect of Electrical Muscle Stimulation and In-bed Cycling on Muscle Strength and Mass of Mechanically Ventilated Patients: A Pilot Study. Acute Crit. Care 2018, 33, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Yang, J.; Li, M.; Chen, K.; Ma, Z.; Bai, Y.; Xu, Y. Prevention of muscle atrophy in ICU patients without nerve injury by neuromuscular electrical stimulation: A randomized controlled study. BMC Musculoskelet. Disord. 2022, 23, 780. [Google Scholar] [CrossRef] [PubMed]
- Kayambu, G.; Boots, R.; Paratz, J. Early physical rehabilitation in intensive care patients with sepsis syndromes: A pilot randomised controlled trial. Intensive Care Med. 2015, 41, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Hickmann, C.E.; Castanares-Zapatero, D.; Deldicque, L.; Bergh, P.V.D.; Caty, G.; Robert, A.; Roeseler, J.; Francaux, M.; Laterre, P.-F. Impact of Very Early Physical Therapy During Septic Shock on Skeletal Muscle: A Randomized Controlled Trial. Crit. Care Med. 2018, 46, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Tipping, C.J.; Harrold, M.; Holland, A.; Romero, L.; Nisbet, T.; Hodgson, C.L. The effects of active mobilisation and rehabilitation in ICU on mortality and function: A systematic review. Intensive Care Med. 2016, 43, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Rollinson, T.C.; Connolly, B.; Denehy, L.; Hepworth, G.; Berlowitz, D.J.; Berney, S. Ultrasound-derived rates of muscle wasting in the intensive care unit and in the post-intensive care ward for patients with critical illness: Post hoc analysis of an international, multicentre randomised controlled trial of early rehabilitation. Aust. Crit. Care 2024, 37, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Chapple, L.-A.S.; Parry, S.M.; Schaller, S.J. Attenuating Muscle Mass Loss in Critical Illness: The Role of Nutrition and Exercise. Curr. Osteoporos. Rep. 2022, 20, 290–308. [Google Scholar] [CrossRef] [PubMed]
- Dresen, E.; Weißbrich, C.; Fimmers, R.; Putensen, C.; Stehle, P. Medical high-protein nutrition therapy and loss of muscle mass in adult ICU patients: A randomized controlled trial. Clin. Nutr. 2021, 40, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Dusseaux, M.M.; Antoun, S.; Grigioni, S.; Béduneau, G.; Carpentier, D.; Girault, C.; Grange, S.; Tamion, F. Skeletal muscle mass and adipose tissue alteration in critically ill patients. PLoS ONE 2019, 14, e0216991. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Oto, J.; Tsutsumi, R.; Akimoto, Y.; Nakano, Y.; Nishimura, M. Upper limb muscle atrophy associated with in-hospital mortality and physical function impairments in mechanically ventilated critically ill adults: A two-center prospective observational study. J. Intensive Care 2020, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Rudis, M.I.P.; Guslits, B.J.M.; Peterson, E.L.; Hathaway, S.J.C.; Angus, E.M.; Beis, S.R.; Zarowitz, B.J.P. Economic impact of prolonged motor weakness complicating neuromuscular blockade in the intensive care unit. Crit. Care Med. 1996, 24, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Kamdar, B.B.; Huang, M.; Dinglas, V.D.; Colantuoni, E.; von Wachter, T.M.; Hopkins, R.O.; Needham, D.M. Joblessness and Lost Earnings after Acute Respiratory Distress Syndrome in a 1-Year National Multicenter Study. Am. J. Respir. Crit. Care Med. 2017, 196, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.M.; Tansey, C.M.; Tomlinson, G.; Diaz-Granados, N.; Matté, A.; Barr, A.; Mehta, S.; Mazer, C.D.; Guest, C.B.; Stewart, T.E.; et al. Two-year outcomes, health care use, and costs of survivors of acute respiratory distress syndrome. American journal of respiratory and critical care medicine. Am. J. Respir. Crit. Care Med. 2006, 174, 538–544. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients (n = 53) | Rehabilitation (n = 15) | No Rehabilitation (n = 38) | p-Value |
---|---|---|---|---|
Age (years) | 71.8 ± 11.3 | 71.2 ± 11.7 | 71.9 ± 11.3 | 0.601 |
Male | 35 (66.0) | 11 (73.3) | 24 (63.2) | 0.481 |
Body mass index (kg/m2) | 22.7 ± 4.6 | 22.0 ± 5.0 | 22.9 ± 4.4 | 0.601 |
APACHE II score | 20.7 ± 7.2 | 23.9 ± 8.4 | 19.5 ± 6.4 | 0.296 |
Charlson comorbidity index | 2.2 ± 2.6 | 1.9 ± 1.6 | 2.3 ± 2.9 | 0.614 |
SARC-F score | 3.1 ± 2.9 | 2.3 ± 2.5 | 3.5 ± 3.0 | 0.429 |
Katz ADL score | 3.6 ± 2.4 | 3.7 ± 2.4 | 3.6 ± 2.4 | 0.995 |
Comorbidities | ||||
Hypertension | 31 (58.5) | 6 (40.0) | 25 (65.8) | 0.086 |
Diabetes | 21 (39.6) | 7 (46.7) | 14 (36.8) | 0.510 |
Cerebral infarction | 2 (3.8) | 0 (0) | 2 (5.3) | 0.365 |
Heart failure | 11 (20.8) | 4 (26.7) | 7 (18.4) | 0.505 |
Liver cirrhosis | 5 (9.4) | 2 (13.3) | 3 (7.9) | 0.542 |
Solid tumor | 12 (22.6) | 3 (20.0) | 9 (23.7) | 0.773 |
Hematologic malignancy | 1 (1.9) | 0 (0) | 1 (2.6) | 0.526 |
COPD | 12 (22.6) | 5 (33.3) | 7 (18.4) | 0.243 |
Dementia | 3 (5.7) | 1 (6.7) | 2 (5.3) | 0.842 |
Characteristics | All Patients | Rehabilitation | No Rehabilitation | p-Value |
---|---|---|---|---|
White blood cell, ×103/µL | 12.8 ± 7.5 | 13.5 ± 6.3 | 12.6 ± 8.0 | 0.486 |
Hemoglobin, g/dL | 11.9 (9.7–13.7) | 12.4 (10.4–14.5) | 11.0 (9.5–13.4) | 0.191 |
Platelet, ×103/µL | 206.9 ± 118.6 | 256.9 ± 128.8 | 187.2 ± 109.9 | 0.486 |
Total bilirubin, mg/dL | 0.78 (0.50–1.20) | 0.70 (0.44–1.06) | 1.53 (0.58–1.47) | 0.257 |
Albumin, g/dL | 3.13 ± 0.60 | 3.43 ± 0.57 | 3.01 ± 0.58 | 0.384 |
AST, U/L | 30.0 (23.5–51.5) | 24.0 (18.0–52.0) | 30.5 (26.0–51.3) | 0.725 |
ALT, U/L | 23.0 (15.0–42.0) | 24.0 (13.0–37.0) | 23.0 (15.0–43.8) | 0.931 |
BUN, mg/dL | 21.4 (16.0–40.0) | 21.7 (15.8–26.3) | 20.7 (16.0–46.8) | 0.931 |
Creatinine, mg/dL | 0.82 (0.62–1.56) | 0.84 (0.62–1.32) | 0.82 (0.62–1.81) | 0.931 |
Na, mEq/L | 137.1 ± 5.9 | 136.7 ± 4.9 | 137.2 ± 6.4 | 0.336 |
K, mEq/L | 4.4 ± 0.9 | 4.7 ± 0.8 | 4.3 ± 0.9 | 0.486 |
Cl, mEq/L | 102.8 ± 7.1 | 100.1 ± 7.0 | 103.9 ± 7.0 | 0.336 |
CRP, ng/mL | 7.25 (1.38–8.00) | 2.15 (0.10–7.63) | 8.00 (3.90–9.05) | 0.115 |
Procalcitonin, ng/mL | 0.32 (0.05–2.36) | 0.05 (0.05–0.28) | 0.69 (0.09–4.33) | 0.035 |
PT, INR | 1.18 (1.08–1.42) | 1.24 (1.04–1.36) | 1.18 (1.10–1.46) | 0.931 |
aPTT. Sec | 31.2 (27.7–37.0) | 31.0 (26.6–31.8) | 31.8 (28.1–38.4) | 0.601 |
Lactic acid, mEq/L | 1.90 (1.30–3.05) | 2.00 (1.20–3.50) | 1.90 (1.38–2.98) | 0.931 |
All Patients | Rehabilitation | No Rehabilitation | p-Value | |
---|---|---|---|---|
Initial (n) | 53 | 15 | 36 | |
Rectus femoris (cm) | 1.11 (0.87–1.44) | 1.22 (0.85–1.51) | 1.03 (0.88–1.35) | 0.481 |
Total anterior thigh muscle thickness (cm) | 2.99 (2.33–3.53) | 3.33 (2.18–4.10) | 2.88 (2.40–3.49) | 0.481 |
Cross-sectional area (rectus femoris, cm2) | 4.93 (3.95–6.19) | 5.26 (4.27–6.46) | 4.92 (3.81–6.07) | 0.928 |
Echogenicity, dB | 45.98 (41.13–49.65) | 48.43 (43.75–50.18) | 44.95 (40.18–48.86) | 0.481 |
In body—skeletal muscle mass (kg) | 24.20 (20.05–28.95) | 24.70 (21.05–27.13) | 24.20 (19.53–29.63) | 0.753 |
7 days (n) | 43 | 14 | 29 | |
Rectus femoris (cm) | 1.03 (0.82–1.31) | 1.03 (0.86–1.35) | 1.03 (0.79–1.20) | 0.826 |
Total anterior thigh muscle thickness (cm) | 2.78 (2.14–3.37) | 2.61 (1.85–3.93) | 2.80 (2.24–3.20) | 0.826 |
Cross-sectional area (rectus femoris, cm2) | 4.36 (3.53–5.04) | 4.54 (4.07–5.46) | 4.05 (3.36–4.96) | 0.326 |
Echogenicity, dB | 44.21 (40.14–48.69) | 45.86 (41.66–50.83) | 44.11 (39.42–46.54) | 0.743 |
In body—skeletal muscle mass (kg) | 23.00 (19.30–25.80) | 23.85 (20.03–25.65) | 20.90 (18.70–26.05) | 0.650 |
14 days (n) | 15 | 5 | 10 | |
Rectus femoris (cm) | 1.01 (0.72–1.32) | 1.42 (1.23–1.63) | 0.81 (0.66–1.08) | 0.007 |
Total anterior thigh muscle thickness (cm) | 2.78 (2.04–3.79) | 3.79 (3.17–5.25) | 2.32 (1.90–2.80) | 0.007 |
Cross-sectional area (rectus femoris, cm2) | 4.48 (3.35–5.60) | 6.74 (5.04–7.23) | 3.72 (2.45–4.61) | 0.119 |
Echogenicity, dB | 44.68 (42.15–47.40) | 44.68 (40.43–48.08) | 44.71 (42.19–49.11) | >0.999 |
In body—skeletal muscle mass (kg) | 23.40 (21.63–28.53) | 23.60 (19.50–35.88) | 23.25 (21.63–25.83) | >0.999 |
Initial | 7 Days | p-Value | %Change (D7–D3) | p-Value | 14 Days | p-Value | %Change (D14–D3) | p-Value | |
---|---|---|---|---|---|---|---|---|---|
Rectus femoris (%) | All patients | 87.9 (82.9–102.7) | 0.828 | −12.1 (−17.0–2.7) | 0.828 | 89.7 (75.3–98.4) | 0.119 | −9.7 (−23.2–−0.5) | 0.266 |
Rehabilitation | 87.2 (84.4–100.0) | −12.8 (−15.6–−0.02) | 95.3 (86.0–109.4) | −4.7 (−14.0–9.4) | |||||
No rehabilitation | 90.3 (81.1–103.5) | −9.7 (−18.8–3.5) | 84.6 (70.6–93.8) | −14.3 (−26.4–−3.3) | |||||
Total anterior thigh muscle thickness (%) | All patients | 91.9 (85.4–102.1) | 0.925 | −8.1 (−14.6–2.1) | 0.828 | 89.2 (80.9–100.3) | 0.119 | −11.4 (−20.6–0.6) | 0.266 |
Rehabilitation | 89.0 (85.5–123.1) | −9.2 (−18.3–0.6) | 96.9 (81.0–101.8) | −3.1 (−19.0–1.8) | |||||
No rehabilitation | 92.1 (84.8–98.6) | −8.1 (−14.5–2.8) | 88.4 (79.4–92.9) | −12.2 (−22.2–−4.2) | |||||
Cross-sectional area (rectus femoris, %) | All patients | 90.1 (82.7–98.5) | 0.925 | −9.9 (−17.3–−1.5) | 0.828 | 85.2 (75.2–95.4) | 0.119 | −15.3 (−24.9–−6.3) | 0.021 |
Rehabilitation | 94.1 (81.7–101.8) | −7.9 (−18.3–3.4) | 95.4 (89.1–106.1) | −4.6 (−10.9–6.1) | |||||
No rehabilitation | 89.7 (83.3–95.6) | −10.7 (−16.5–−4.74) | 79.3 (74.1–88.8) | −22.8 (−26.6–−14.9) | |||||
Echogenicity (%) | All patients | 98.9 (95.2–101.6) | 0.381 | −1.1 (−4.8–1.6) | 0.381 | 102.0 (99.1–103.8) | 0.282 | 2.3 (−1.2–4.8) | 0.266 |
Rehabilitation | 98.1 (94.7–100.6) | −1.9 (−5.2–0.6) | 102.9 (100.4–110.4) | 3.1 (1.3–13.1) | |||||
No rehabilitation | 99.8 (96.0–104.4) | −0.2 (−4.0–4.4) | 98.0 (93.7–101.5) | −2.0 (−6.3–1.5) | |||||
In body—skeletal muscle mass (%) | All patients | 96.2 (93.8–102.2) | 0.831 | −3.8 (−6.3–2.4) | 0.833 | 91.8 (85.9–97.9) | >0.999 | −8.2 (−14.0–−2.1) | >0.999 |
Rehabilitation | 96.2 (93.2–101.3) | −3.8 (−6.8–1.3) | 90.7 (87.8–126.7) | −9.3 (−12.2–26.7) | |||||
No rehabilitation | 97.7 (93.8–102.4) | −2.3 (−6.2–2.5) | 92. 8 (83.1–97.9) | −7.2 (−16.9–−2.1) |
Characteristics | All Patients | Rehabilitation | No Rehabilitation | p-Value |
---|---|---|---|---|
ICU LOS | 10.0 (7.0–15.0) | 11.0 (8.0–14.0) | 9.5 (6.0–18.0) | 0.542 |
In-hospital LOS | 18.0 (11.5–32.5) | 17.0 (13.0–28.0) | 18.5 (10.8–36.0) | 0.931 |
State of discharge | 0.096 | |||
Survival | 31 (58.5) | 11 (73.3) | 20 (52.6) | |
Nursing care center | 7 (13.2) | 2 (13.3) | 5 (13.2) | |
Death | 15 (28.3) | 2 (13.3) | 13 (34.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, S.; Ju, Y.; Ahn, S.; Lee, S.I. Evaluating Muscle Mass Changes in Critically Ill Patients: Rehabilitation Outcomes Measured by Ultrasound and Bioelectrical Impedance. Healthcare 2024, 12, 2128. https://doi.org/10.3390/healthcare12212128
Kim M, Kim S, Ju Y, Ahn S, Lee SI. Evaluating Muscle Mass Changes in Critically Ill Patients: Rehabilitation Outcomes Measured by Ultrasound and Bioelectrical Impedance. Healthcare. 2024; 12(21):2128. https://doi.org/10.3390/healthcare12212128
Chicago/Turabian StyleKim, Mijoo, Soyun Kim, Yerin Ju, Soyoung Ahn, and Song I Lee. 2024. "Evaluating Muscle Mass Changes in Critically Ill Patients: Rehabilitation Outcomes Measured by Ultrasound and Bioelectrical Impedance" Healthcare 12, no. 21: 2128. https://doi.org/10.3390/healthcare12212128
APA StyleKim, M., Kim, S., Ju, Y., Ahn, S., & Lee, S. I. (2024). Evaluating Muscle Mass Changes in Critically Ill Patients: Rehabilitation Outcomes Measured by Ultrasound and Bioelectrical Impedance. Healthcare, 12(21), 2128. https://doi.org/10.3390/healthcare12212128