The Effects of Artificial Intelligence Chatbots on Women’s Health: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
- -
- It systematically reviews the impact of AI chatbot interventions on women’s health outcomes, providing a comprehensive analysis of current research.
- -
- It summarizes and synthesizes evidence on the effectiveness of chatbots in addressing key areas such as mental health, reproductive health, and chronic disease management among women.
- -
- It calls for further research into the development of culturally sensitive, user-friendly chatbot interventions to meet diverse health needs.
2. Methods
2.1. Study Design
2.2. Search Strategy
2.3. Literature Extraction
2.4. Quality Appraisal
2.5. Data Analysis
3. Results
3.1. Themes of Chatbot Interventions
3.2. Methods of Chatbot Interventions
3.3. Effects of Chatbot Interventions
3.4. Results of Quality Appraisal
3.5. Effects of Chatbot Interventions on Anxiety
4. Discussion
Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
A1 [19] | Bibault, J.E.; Chaix, B.; Guillemassé, A.; Cousin, S.; Escande, A.; Perrin, M.; Pienkowski, A.; Delamon, G.; Nectoux, P.; Brouard, B. A Chatbot Versus Physicians to Provide Information for Patients with Breast Cancer: Blind, Randomized Controlled Noninferiority Trial. J. Med. Internet Res. 2019, 21, e15787. https://doi.org/10.2196/15787. |
A2 [20] | Greer, S.; Ramo, D.; Chang, Y.J.; Fu, M.; Moskowitz, J.; Haritatos, J. Use of the Chatbot “Vivibot” to Deliver Positive Psychology Skills and Promote Well-Being Among Young People After Cancer Treatment: Randomized Controlled Feasibility Trial. JMIR Mhealth Uhealth 2019, 7, e15018. https://doi.org/10.2196/15018. |
A3 [3] | Maeda, E.; Miyata, A.; Boivin, J.; Nomura, K.; Kumazawa, Y.; Shirasawa, H.; Saito, H.; Terada, Y. Promoting fertility awareness and preconception health using a chatbot: A randomized controlled trial. Reprod. Biomed. Online 2020, 41, 1133–1143. https://doi.org/10.1016/j.rbmo.2020.09.006. |
A4 [21] | Fitzsimmons-Craft, E.E.; Chan, W.W.; Smith, A.C.; Firebaugh, M.L.; Fowler, L.A.; Topooco, N.; DePietro, B.; Wilfley, D.E.; Taylor, C.B.; Jacobson, N.C. Effectiveness of a chatbot for eating disorders prevention: A randomized clinical trial. Int. J. Eat. Disord. 2022, 55, 343–353. https://doi.org/10.1002/eat.23662. |
A5 [4] | Chung, K.; Cho, H.Y.; Park, J.Y. A Chatbot for Perinatal Women’s and Partners’ Obstetric and Mental Health Care: Development and Usability Evaluation Study. JMIR Med. Inform. 2021, 9, e18607. https://doi.org/10.2196/18607. |
A6 [5] | Yam, E.A.; Namukonda, E.; McClair, T.; Souidi, S.; Chelwa, N.; Muntalima, N.; Mbizvo, M.; Bellows, B. Developing and Testing a Chatbot to Integrate HIV Education Into Family Planning Clinic Waiting Areas in Lusaka, Zambia. Glob. Health Sci. Pract. 2022, 10, e2100721. https://doi.org/10.9745/GHSP-D-21-00721. |
A7 [22] | Al-Hilli, Z.; Noss, R.; Dickard, J.; Wei, W.; Chichura, A.; Wu, V.; Renicker, K.; Pederson, H.J.; Eng, C. A Randomized Trial Comparing the Effectiveness of Pre-test Genetic Counseling Using an Artificial Intelligence Automated Chatbot and Traditional In-person Genetic Counseling in Women Newly Diagnosed with Breast Cancer. Ann. Surg. Oncol. 2023, 30, 5990–5996. https://doi.org/10.1245/s10434-023-13888-4. |
A8 [23] | De Filippo, A.; Bellatin, P.; Tietz, N.; Grant, E.; Whitefield, A.; Nkopane, P.; Devereux, C.; Crawford, K.; Vermeulen, B.; Hatcher, A.M. Effects of digital chatbot on gender attitudes and exposure to intimate partner violence among young women in South Africa. PLoS Digit. Health 2023, 2, e0000358. https://doi.org/10.1371/journal.pdig.0000358. |
A9 [24] | Mane, H.Y.; Channell Doig, A.; Marin Gutierrez, F.X.; Jasczynski, M.; Yue, X.; Srikanth, N.P.; Mane, S.; Sun, A.; Moats, R.A.; Patel, P.; et al. Practical Guidance for the Development of Rosie, a Health Education Question-and-Answer Chatbot for New Mothers. J. Public. Health Manag. Pract. 2023, 29, 663–670. https://doi.org/10.1097/PHH.0000000000001781. |
A10 [6] | Tawfik, E.; Ghallab, E.; Moustafa, A. A nurse versus a chatbot—The effect of an empowerment program on chemotherapy-related side effects and the self-care behaviors of women living with breast Cancer: A randomized controlled trial. BMC Nurs. 2023, 22, 102. https://doi.org/10.1186/s12912-023-01243-7. |
References
- Wilson, L.; Marasoiu, M. The Development and Use of Chatbots in Public Health: Scoping Review. JMIR Hum. Factors 2022, 9, e35882. [Google Scholar] [CrossRef]
- Archibald, M.M.; Clark, A.M. ChatGTP: What is it and how can nursing and health science education use it? J. Adv. Nurs. 2023, 79, 3648–3651. [Google Scholar] [CrossRef] [PubMed]
- Maeda, E.; Miyata, A.; Boivin, J.; Nomura, K.; Kumazawa, Y.; Shirasawa, H.; Saito, H.; Terada, Y. Promoting fertility awareness and preconception health using a chatbot: A randomized controlled trial. Reprod. Biomed. Online 2020, 41, 1133–1143. [Google Scholar] [CrossRef]
- Chung, K.; Cho, H.Y.; Park, J.Y. A Chatbot for Perinatal Women’s and Partners’ Obstetric and Mental Health Care: Development and Usability Evaluation Study. JMIR Med. Inform. 2021, 9, e18607. [Google Scholar] [CrossRef] [PubMed]
- Yam, E.A.; Namukonda, E.; McClair, T.; Souidi, S.; Chelwa, N.; Muntalima, N.; Mbizvo, M.; Bellows, B. Developing and Testing a Chatbot to Integrate HIV Education into Family Planning Clinic Waiting Areas in Lusaka, Zambia. Glob. Health Sci. Pract. 2022, 10, e2100721. [Google Scholar] [CrossRef]
- Tawfik, E.; Ghallab, E.; Moustafa, A. A nurse versus a chatbot—The effect of an empowerment program on chemotherapy-related side effects and the self-care behaviors of women living with breast Cancer: A randomized controlled trial. BMC Nurs. 2023, 22, 102. [Google Scholar] [CrossRef] [PubMed]
- Johari, N.M.; Nohuddin, P.N.; Baharin, A.H.A.; Yakob, N.A.; Ebadi, M.J. Features requirement elicitation process for designing a chatbot application. IET Netw. 2022, 1–15. [Google Scholar] [CrossRef]
- Luxton, D.D. Artificial Intelligence in Psychological Practice: Current and Future Applications and Implications. Prof. Psychol. Res. Pract. 2014, 45, 332–339. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.A.; Alajlani, M.; Ali, N.; Denecke, K.; Bewick, B.M.; Househ, M. Perceptions and Opinions of Patients About Mental Health Chatbots: Scoping Review. J. Med. Internet Res. 2021, 23, e17828. [Google Scholar] [CrossRef]
- Oh, Y.J.; Zhang, J.; Fang, M.L.; Fukuoka, Y. A systematic review of artificial intelligence chatbots for promoting physical activity, healthy diet, and weight loss. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 160. [Google Scholar] [CrossRef]
- World Health Organization. A Woman Dies Every Two Minutes Due to Pregnancy or Childbirth: UN Agencies; World Health Organization: Geneva, Switzerland, 23 February 2023; Available online: https://www.who.int/news/item/23-02-2023-a-woman-dies-every-two-minutes-due-to-pregnancy-or-childbirth--un-agencies (accessed on 12 February 2024).
- World Health Organization. WHO Launches Women’s Health Chatbot with Messaging on Breast Cancer; World Health Organization: Geneva, Switzerland, 20 October 2021; Available online: https://www.who.int/news/item/20-10-2021-who-launches-women-s-health-chatbot-with-messaging-on-breast-cancer (accessed on 12 February 2024).
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022); Cochrane: London, UK, 2022; Available online: www.training.cochrane.org/handbook (accessed on 18 February 2023).
- Bidwell, S.; Jensen, M.F. Etext on Health Technology Assessment (HTA) Information Resources. Chapter 3: Using a Search Protocol to Identify Sources of Information: The COSI Model; U.S. National Library of Medicine: Bethesda, MD, USA, 2003; [Updated 14 June 2003]. Available online: https://www.nlm.nih.gov/archive/20060905/nichsr/ehta/chapter3.html#COSI (accessed on 20 August 2019).
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2020, 12, 55–61. [Google Scholar] [CrossRef]
- Bibault, J.E.; Chaix, B.; Guillemassé, A.; Cousin, S.; Escande, A.; Perrin, M.; Pienkowski, A.; Delamon, G.; Nectoux, P.; Brouard, B. A Chatbot Versus Physicians to Provide Information for Patients with Breast Cancer: Blind, Randomized Controlled Noninferiority Trial. J. Med. Internet Res. 2019, 21, e15787. [Google Scholar] [CrossRef]
- Greer, S.; Ramo, D.; Chang, Y.J.; Fu, M.; Moskowitz, J.; Haritatos, J. Use of the Chatbot “Vivibot” to Deliver Positive Psychology Skills and Promote Well-Being among Young People after Cancer Treatment: Randomized Controlled Feasibility Trial. JMIR Mhealth Uhealth 2019, 7, e15018. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimmons-Craft, E.E.; Chan, W.W.; Smith, A.C.; Firebaugh, M.L.; Fowler, L.A.; Topooco, N.; DePietro, B.; Wilfley, D.E.; Taylor, C.B.; Jacobson, N.C. Effectiveness of a chatbot for eating disorders prevention: A randomized clinical trial. Int. J. Eat. Disord. 2022, 55, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilli, Z.; Noss, R.; Dickard, J.; Wei, W.; Chichura, A.; Wu, V.; Renicker, K.; Pederson, H.J.; Eng, C. A Randomized Trial Comparing the Effectiveness of Pre-test Genetic Counseling Using an Artificial Intelligence Automated Chatbot and Traditional In-person Genetic Counseling in Women Newly Diagnosed with Breast Cancer. Ann. Surg. Oncol. 2023, 30, 5990–5996. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, A.; Bellatin, P.; Tietz, N.; Grant, E.; Whitefield, A.; Nkopane, P.; Devereux, C.; Crawford, K.; Vermeulen, B.; Hatcher, A.M. Effects of digital chatbot on gender attitudes and exposure to intimate partner violence among young women in South Africa. PLoS Digit. Health 2023, 2, e0000358. [Google Scholar] [CrossRef] [PubMed]
- Mane, H.Y.; Channell Doig, A.; Marin Gutierrez, F.X.; Jasczynski, M.; Yue, X.; Srikanth, N.P.; Mane, S.; Sun, A.; Moats, R.A.; Patel, P.; et al. Practical Guidance for the Development of Rosie, a Health Education Question-and-Answer Chatbot for New Mothers. J. Public Health Manag. Pract. 2023, 29, 663–670. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Hedges, L.V.; Vevea, J.L. Fixed and random-effects models in meta-analysis. Psychol. Methods 1998, 3, 486–504. [Google Scholar] [CrossRef]
- Patil, S.S.; Shelke, S.; Velankar, M.; Koul, T.; Rani, V. A systematic survey of approaches used in computer music generation. J. Intell. Data Syst. Bus. Data Manag. 2023, 2, 6–23. [Google Scholar] [CrossRef]
- Xu, L.; Sanders, L.; Li, K.; Chow, J.C.L. Chatbot for Health Care and Oncology Applications Using Artificial Intelligence and Machine Learning: Systematic Review. JMIR Cancer 2021, 7, e27850. [Google Scholar] [CrossRef]
- Ariga, R.A.; Amelia, R.; Astuti, S.B.; Fajar, F.A.A.; Ariga, S.; Ariga, H.P.S.; Pane, N.K. Self Care Nursing: Teleassessment Nursing with Chatbot Application the Coronavirus Disease-19 Pandemic Period in North Sumatra. Open Access Maced. J. Med. Sci. 2021, 9, 306–310. [Google Scholar] [CrossRef]
- Lim, S.M.; Shiau, C.W.C.; Cheng, L.J.; Lau, Y. Chatbot-Delivered Psychotherapy for Adults with Depressive and Anxiety Symptoms: A Systematic Review and Meta-Regression. Behav. Ther. 2022, 53, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Tam, C.C.; Wu, D.; Li, X.; Qiao, S. Artificial Intelligence-Based Chatbots for Promoting Health Behavioral Changes: Systematic Review. J. Med. Internet Res. 2023, 25, e40789. [Google Scholar] [CrossRef]
- Thomas-Tran, E.P.; Thomas-Tran, J.; Tran, I.P.; Hu, R.J. Exploring the Boundaries of Reality: Investigating the Phenomenon of Artificial Intelligence Hallucination in Scientific Writing through ChatGPT References. Cureus 2023, 15, e37432. [Google Scholar] [CrossRef]
- Deng, X.; Yu, Z. A Meta-Analysis and Systematic Review of the Effect of Chatbot Technology Use in Sustainable Education. Sustainability 2023, 15, 2940. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Schlögl, S.; Ploder, C. Cognitive Load and Productivity Implications in Human-Chatbot Interaction. In Proceedings of the 2021 IEEE International Conference on Human-Machine Systems (ICHMS), Magdeburg, Germany, 8–10 September 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Pauley, D.; Cuijpers, P.; Papola, D.; Miguel, C.; Karyotaki, E. Two decades of digital interventions for anxiety disorders: A systematic review and meta-analysis of treatment effectiveness. Psychol. Med. 2021, 53, 567–579. [Google Scholar] [CrossRef]
- Klos, M.C.; Escoredo, M.; Joerin, A.; Lemos, V.; Rauws, M.; Bunge, E. Artificial Intelligence–Based Chatbot for Anxiety and Depression in University Students: Pilot Randomized Controlled Trial. JMIR Form. Res. 2021, 5, e20678. [Google Scholar] [CrossRef]
- Gabrielli, S.; Rizzi, S.; Bassi, G.; Carbone, S.; Maimone, R.; Marchesoni, M.; Forti, S. Engagement and Effectiveness of a Healthy-Coping Intervention via Chatbot for University Students during the COVID-19 Pandemic: Mixed Methods Proof-of-Concept Study. JMIR Mhealth Uhealth 2021, 9, e27965. [Google Scholar] [CrossRef] [PubMed]
- Easton, K.; Potter, S.; Bec, R.; Bennion, M.; Christensen, H.; Grindell, C.; Mirheidari, B.; Weich, S.; de Witte, L.D.; Wolstenholme, D.; et al. A virtual agent to support individuals living with physical and mental comorbidities: Co-design and acceptability testing. J. Med. Internet Res. 2019, 21, e12996. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, Y.H. AI in healthcare: Navigating opportunities and challenges in digital communication. Front. Digit. Health 2023, 5, 1291132. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.H.; Lange, P.; Oh, Y.; Zhang, J.; Fukuoka, Y.; Yu, Z. Evaluation of in-Person Counseling Strategies to Develop Physical Activity Chatbot for Women. In Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, Singapore, 29–31 July 2021; Association for Computational Linguistics: Kerrville, TX, USA, 2021; pp. 38–47. [Google Scholar] [CrossRef]
- Afaq, M.; Abraham, D.E.; Patel, S.H.; Al-Dhoon, A.D.; Arshad, Z.; Abraham, D.E. Empowering Women’s Health: A Global Perspective on Artificial Intelligence and Robotics. Cureus 2023, 15, e49611. [Google Scholar] [CrossRef] [PubMed]
- Miner, A.; Laranjo, L.; Kocaballi, A.B. Chatbots in the Fight Against the COVID-19 Pandemic. npj Digit. Med. 2020, 3, 65. [Google Scholar] [CrossRef]
- Zhang, J.; Oh, Y.J.; Lange, P.; Yu, Z.; Fukuoka, Y. Artificial Intelligence Chatbot Behavior Change Model for Designing Artificial Intelligence Chatbots to Promote Physical Activity and a Healthy Diet: Viewpoint. J. Med. Internet Res. 2020, 22, e22845. [Google Scholar] [CrossRef]
No | First Author | Publication Year | Country | Name of Chatbot | Theme | Intervention Time | Setting | Study Design | Participants | Number of Participants (Exp.–Cont.) | Inclusion Criteria |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | Bibault [19] | 2019 | France | Vik | Breast cancer information | Four weeks | Hospital | Randomized controlled trial | Patients | 142 (71–71) | Breast cancer patients |
A2 | Greer [20] | 2019 | USA | Vivibot | Psychological skill | Four weeks | Hospital | Randomized controlled trial | Patients | 45 (25–20) | Young women aged 18–29 after cancer |
A3 | Maeda [3] | 2020 | Japan | Education Chatbot | Preconception health | Ten days, 574 sessions | Community | Three-armed randomized controlled trial | Young women | 927 (309–309–309) | Young women aged 20–34 |
A4 | Fitzsimmons-Craft [21] | 2021 | Zambia | Student Bodies | Eating disorder prevention | One month | Community | Randomized controlled trial | Young women | 439 (207–232) | Young women aged 18–30 |
A5 | Chung [4] | 2021 | South Korea | Dr. Joy | Prenatal mental health | 13 days | Hospital | Single-group pre-post-test design | Pregnant women | 15 | Pregnant women with spouses |
A6 | Yam [5] | 2022 | USA | HIV Chatbot | HIV education and family planning | 20–30 min | Community | Single-group pre-post-test design | Reproductive-age women | 30 | Women aged 15–49 in Zambia |
A7 | Al-Hilli [22] | 2023 | USA | Gia | Cancer genetic counseling | No information | Hospital | Randomized controlled trial | Patients | 37 (19–18) | Breast cancer patients who received genetic counseling |
A8 | De Filippo [23] | 2023 | South Africa | Chatty Cuz | Intimate partner violence attitude | 31 days | Community | Four-armed randomized controlled trial | Young women | 19,643 (5891–5893–3930–3929) | Women aged 18–24 suffering intimate partner violence in South Africa |
A9 | Mane [24] | 2023 | USA | Rosie | Prenatal health education | No information | Hospital | Single-group pre-post-test design | Pregnant women | 109 | Primi-pregnant women aged over 14 |
A10 | Tawfik [6] | 2023 | Egypt | Chemofree Bot | Chemotherapy self-care | 45 min, 7–10 sessions | Hospital | Three-armed randomized controlled trial | Patients | 150 (50–50–50) | Breast cancer patients undergoing chemotherapy |
No | Author | Primary Outcomes | Secondary Outcomes | Measurement Scales | Exp. Group M (SD) or n (%) | Con. Group M (SD) or n (%) | t or F or r | p |
---|---|---|---|---|---|---|---|---|
A1 | Bibault [19] | ① Quality of information | ② Answer rate | ① EORTCQLQ ② n (%) | ① 2.89 ② 49 (69%) | ① 2.82 ② 46 (64%) | ① - ② - | ① <0.001 ② - |
A2 | Greer [20] | ① Anxiety ② Depression | ③ Negative emotion ④ Positive emotion ⑤ Usage time | ①–④ PROMIS ⑤ Minute | ① 61.9 ± 7.7 ② 59.1 ± 9.2 ③ 1.5 ± 0.9 ④ 2.5 ± 1.0 ⑤ 12.1 ± 7.1 | ① 63.3 ± 5.5 ② 57.7 ± 6.1 ③ 1.6 ± 0.6 ④ 2.3 ± 0.8 ⑤ 18.1 ± 8.6 | ① 0.41 ② 0.09 ③ 0.01 ④ 0.07 ⑤ - | ① 0.09 ② 0.77 ③ 0.97 ④ 0.82 ⑤ - |
A3 | Maeda [3] | ① Anxiety | ② Fertility knowledge ③ Intention of preconception | ① STAI ② CFKS-J ③ Survey | ① 43.2 ± 9.5 ② - ③ 68.7 ± 23.0 | ① 47.5 ± 9.5 ② - ③ 76.4 ± 18.4 | ① - ② - ③ - | ① <0.001 ② 0.001~0.005 ③ <0.001 |
A4 | Fitzsimmons-Craft [21] | ① Eating disorder risk | ② Internalization ③ Eating disorder ④ Depression ⑤ Anxiety | ① WCS ② SATAQ-4R ③ EDE-Q ④ PHQ-8 ⑤ GAD-7 | ① 60.80 ± 20.55 ② 15.35 ± 3.94 ③ 2.77 ± 1.34 ④ 11.09 ± 6.42 ⑤ 10.40 ± 6.14 | ① 63.99 ± 17.30 ② 16.11 ± 3.84 ③ 3.03 ± 1.24 ④ 11.67 ± 5.55 ⑤ 10.96 ± 5.51 | ① −0.45 ② −0.21 ③ −0.38 ④ −0.26 ⑤ −0.11 | ① <0.001 ② 0.001 ③ <0.001 ④ <0.001 ⑤ 0.09 |
A5 | Chung [4] | ① Satisfaction | ② Usability ③ Ese of use ④ Ease of learning | ① SAT ② USE ③ EOU ④ EOL | ① - ② - ③ - ④ - | ① - ② - ③ - ④ - | ① r = 0.97 ② r = 0.89 ③ r = 0.32 ④ r = 0.95 | ① <0.001 ② <0.001 ③ 0.24 ④ <0.001 |
A6 | Yam [5] | ① Acceptability | ② Feasibility ③ Knowledge ④ Interaction | ① - ② - ③ - | ① 100% ② 97% ③ 83% ④ 96% | ① - ② - ③ - ④ - | ① - ② - ③ - ④ - | ① - ② - ③ - ④ - |
A7 | Al-Hilli [22] | ① Satisfaction | ② Knowledge | ① Median ② Median | ① 30 (6–30) ② 11 (8–13) | ① 30 (24–30) ② 12 (8–14) | ① - ② - | ① 0.19 ② 0.09 |
A8 | De Filippo [23] | ① Depression | ② Gender attitudes ③ IPV exposure ④ Unhealthy relationships | ① PHQ-2 ② GRS ③ WHO ④ VAS | ① 17% ② 20.06 ③ 62% ④ 0.62 | ① 6.9% ② 19.56 ③ 55% ④ 0.55 | ① - ② - ③ - ④ - | ① <0.01 ② <0.01 ③ >0.05 ④ <0.001 |
A9 | Mane [24] | ① Usability | ② Use rate | ① % ② % | ① 61.76% ② 24.27% | ① - ② - | ① - ② - | ① - ② - |
A10 | Tawfik [6] | ① Physical effect ② Psychological effect ③ Distress | ④ Effectiveness of self-care behavior ⑤ Usability | ①–③ MSAS ④ SCBD ⑤ CUQ | ① 1.37 ± 0.30 ② 1.42 ± 0.30 ③ 1.80 ± 0.93 ④ 2.42 ± 0.49 ⑤ 49.94 ± 5.64 | ① 2.77 ± 0.21 ② 2.79 ± 0.21 ③ 3.00 ± 0.30 ④ 1.81 ± 0.44 ⑤ - | ① 97.0 ② 62.13 ③ 80.26 ④ 20.03 ⑤ - | ① <0.001 ② <0.001 ③ <0.001 ④ <0.001 ⑤ - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-K. The Effects of Artificial Intelligence Chatbots on Women’s Health: A Systematic Review and Meta-Analysis. Healthcare 2024, 12, 534. https://doi.org/10.3390/healthcare12050534
Kim H-K. The Effects of Artificial Intelligence Chatbots on Women’s Health: A Systematic Review and Meta-Analysis. Healthcare. 2024; 12(5):534. https://doi.org/10.3390/healthcare12050534
Chicago/Turabian StyleKim, Hyun-Kyoung. 2024. "The Effects of Artificial Intelligence Chatbots on Women’s Health: A Systematic Review and Meta-Analysis" Healthcare 12, no. 5: 534. https://doi.org/10.3390/healthcare12050534
APA StyleKim, H. -K. (2024). The Effects of Artificial Intelligence Chatbots on Women’s Health: A Systematic Review and Meta-Analysis. Healthcare, 12(5), 534. https://doi.org/10.3390/healthcare12050534