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Abstract: Background: Obstructive sleep apnea (OSA) is a prevalent yet underdiagnosed
condition associated with a major healthcare burden. Current diagnostic tools, such as
full-night polysomnography (PSG), pose a limited accessibility to diagnosis due to their
elevated costs. Recent advances in Artificial Intelligence (AI), including Machine Learning
(ML) and deep learning (DL) algorithms, offer novel potential tools for an accurate OSA
screening and diagnosis. This systematic review evaluates articles employing AI-powered
models for OSA screening and diagnosis in the last decade. Methods: A comprehensive
electronic search was performed on PubMed/MEDLINE, Google Scholar, and SCOPUS
databases. The included studies were original articles written in English, reporting the use
of ML algorithms to diagnose and predict OSA in suspected patients. The last search was
performed in June 2024. This systematic review is registered in PROSPERO (Registration
ID: CRD42024563059). Results: Sixty-five articles, involving data from 109,046 patients, met
the inclusion criteria. Due to the heterogeneity of the algorithms, outcomes were analyzed
into six sections (anthropometric indexes, imaging, electrocardiographic signals, respiratory
signals, and oximetry and miscellaneous signals). AI algorithms demonstrated significant
improvements in OSA detection, with accuracy, sensitivity, and specificity often exceeding
traditional tools. In particular, anthropometric indexes were most widely used, especially
in logistic regression-powered algorithms. Conclusions: The application of AI algorithms
to OSA diagnosis and screening has great potential to improve patient outcomes, increase
early detection, and lessen the load on healthcare systems. However, rigorous validation
and standardization efforts must be made to standardize datasets.

Keywords: OSA; screening; diagnosis; artificial intelligence

1. Introduction
1.1. Obstructive Sleep Apnea: Prevalence and Healthcare Impact

Obstructive Sleep Apnea (OSA) is a common, yet underdiagnosed sleep-related breath-
ing disorder that carries a risk of complications, increases mortality, and causes additional
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healthcare load. It is characterized by intermittent upper airway obstruction causing in-
terruptions of breath (apneas) and reductions in breath amplitude (hypopneas) during
sleep, lasting between 10 s and 60 s or longer [1]. These repetitive episodes of apnea
and hypopnea can lead to blood hypoxemia, hypercapnia, fragmented sleep, recurrent
nocturnal arousals, enhanced respiratory effort, increased sympathetic nerve activity, and
even sudden cardiac death. Indeed, it was shown that OSA has a substantial impact on the
cardiovascular system, and it is associated with an increased risk of hypertension, stroke,
ischemic heart disease, and venous thromboembolism [2,3]. It affects 24% of men and
9% of women between 30 and 60 years old [4]. According to a recent epidemiological
study in Italy, there are 12,329,614 patients affected by moderate to severe OSA (27% of
the population) and an overall prevalence of more than 24 million people aged from 15 to
74 years old (54% of the population). However, only 460,000 patients with moderate to
severe OSA are diagnosed (4% of the estimated prevalence) and 230,000 are treated (2%
of the estimated prevalence), suggesting a substantial gap in the diagnostic and treatment
workflow [5].

1.2. Current Diagnostic Methods and Challenges

The current gold standard for OSA diagnosis is full-night polysomnography (PSG),
which requires the following measurements: electroencephalogram (EEG), electrooculo-
gram (EOG), electrocardiogram (ECG) or heart rate, chin electromyography (EMG), airflow,
arterial oxygen saturation, and respiratory effort [6]. However, the full PSG is highly
costly due to the numerous measurements required, the need for specialized staff, and
the full-time night occupation of the laboratory. Alternatively, unattended tests, called
Home Sleep Apnea Tests (HSATs), were recently proposed [7]. Many insurance companies
agree to the use of HSATs for OSA diagnosis since the Centers for Medicare and Medicaid
Services (CMS) declared in 2008 that the use of home testing is reimbursable [8,9]. These
tests do not require sleep laboratories, are easier to perform, less expensive, and are widely
available. This novel testing strategy has demonstrated cost-effectiveness from healthcare,
societal, and patient perspectives. An Italian study showed that home-based OSA testing
reduced direct medical costs by 44%, personal expenses such as productivity loss and travel
by 37%, and societal costs by 20% [10]. On top of that, a telemedicine approach represents
a patient-friendly solution to those living far away from referral centers, filling the acces-
sibility gap for patients belonging to rural communities [11]. Despite the introduction of
HSAT notably shortening the waiting list, this disorder remains highly underdiagnosed
and undertreated. Therefore, new solutions are needed to increase the sample of the general
population to be diagnosed and treated. In light of these challenges, a clinical prediction
model that can accurately identify patients who are most likely to benefit from PSG has to
be developed. Such a model should aim to exclude a diagnosis of OSA when the probability
is low, establish the likelihood before considering PSG, and prioritize patients requiring
PSG based on the probability of a positive outcome. Also, the American Academy of
Sleep Medicine (AASM) has called for more robust diagnostic methods that move beyond
the Apnea–Hypopnea Index (AHI) alone, incorporating demographic, anthropometric,
comorbidity, and symptom data for better screening accuracy [12].

1.3. Artificial Intelligence in OSA Screening and Diagnosis

The healthcare industry has witnessed a rapid advancement of Artificial Intelligence
(AI) models, which apply statistics and algorithms to analyze complex databases, offering
benefits in diagnostics, therapy, and disease prediction in the medical field [13,14]. Among
the possible applications, AI can be used to automatically analyze medical images to detect
anomalies such as tumors, fractures, or infections with high precision or to predict patient
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outcomes, such as disease progression or response to treatment, by analyzing historical
data and identifying patterns [15]. Also, AI is able to process and analyze unstructured
medical records, integrating them with literature research and case reports, enabling the
extraction of relevant information and improving the diagnosis process and treatment
choice [16,17]. Indeed, AI can further enhance telemedicine by providing initial diagnostic
support and automated therapy recommendations, which are then reviewed by physicians.
This would accelerate remote interactions between doctors and patients even further. In
the otolaryngology field, Machine Learning (ML)- and deep learning (DL)-based predictive
models were implemented to refine OSA screening strategies, aiming to enhance sensitivity
and accuracy. These models are particularly effective in diagnosing and screening due to
their ability to process vast amounts of data and identify patterns that may not be apparent
to clinicians. Among the possible models, one of the most used algorithms is Support Vector
Machine (SVM), which is based on the concept of margin: this classifier defines a linear
decision boundary, and for each data point, the distance from this boundary is calculated,
and this distance is referred to as the margin. A larger margin indicates greater confidence
in the classification decision. This algorithm offers the significant advantage of being
extremely fast during testing due to its low computational demand, enabling deployment
across various devices. Another commonly used binary classifier is the logistic regression
(LR), a model that predicts the probability that a given observation belongs to a particular
class, for example, predicting disease risk. The k-nearest neighbor (kNN) algorithm is a
versatile classifier capable of handling both binary and multiclass classification tasks. In
binary classification, kNN predicts the class of a new data point based on the classes of
its nearest neighbors in the feature space, calculating the distances between the new data
point and existing data points in the dataset. For multiclass classification, kNN applies
the same principle, considering the classes of the k nearest neighbors and assigning the
most frequently occurring class. However, kNN is best suited for smaller datasets, where
distance calculations are computationally feasible, and the complexity of the decision
boundary is a key consideration.

Differently, random forest (RF) is an ensemble learning method that constructs multi-
ple decision trees (DTs) during training and outputs the mode of the classes (classification)
or the average prediction (regression) of the individual trees. DTs are just like real trees,
with roots, branches, and nodes. The nodes can either be intermediate nodes, which can be
seen as roots for subtrees, or terminal nodes, also known as leaves. A DT is essentially a
step-by-step questioning process about the objects being analyzed, where each leaf corre-
sponds to a possible class. At each node, a question is asked about a different feature until
reaching a leaf node, which represents the final answer. This is suitable for larger datasets,
noisy data, and when interpretability of feature importance is desired. Similarly, Extra Trees
construct n trees from the entire training set, with each tree featuring randomly selected
attributes in internal nodes. This inherent randomness facilitates diverse tree classifications
within the same dataset, contributing to enhanced ensemble performance. DL is a subset
of ML that uses neural networks. These networks are composed of interconnected nodes,
called neurons, organized into layers that can automatically learn features from raw data.
Neural networks are computational models inspired by how biological neural networks in
the human brain process information. Among the DL models, the Convolutional Neural
Network (CNN) is a specialized neural network that processes structured grid-like data,
such as images and videos. In the literature, several studies were found that apply these
types of models to a great variety of data, such as anthropometric data, medical images,
and respiratory sounds. For instance, ML algorithms were used to analyze anthropomet-
ric measurements to predict the likelihood of OSA, while DL models like CNNs were
extensively applied to interpret medical imaging, including radiographs and CT scans,
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for detecting abnormalities and disease markers. Furthermore, the analysis of respiratory
sounds using ML and DL techniques has shown promising results in diagnosing respiratory
conditions, demonstrating the versatility and potential of these algorithms in enhancing
early detection and accurate diagnosis across various medical conditions. These AI-driven
diagnostic tools not only improve the efficiency and accuracy of disease detection but also
facilitate personalized treatment plans by providing insights into patient-specific risk fac-
tors and disease progression. As a result, AI models are becoming indispensable in modern
healthcare, driving forward the capabilities of precision medicine and improving overall
patient outcomes. This work aims to systematically review all the original articles that have
employed ML and DL algorithms to diagnose and screen patients affected by OSA in the
last ten years. The study is divided based on the input data considered into six sections:
(1) anthropometric indexes, (2) imaging, (3) electrocardiogram (ECG), (4) respiratory sound,
(5) oximetry, and (6) other signals.

2. Materials and Methods
2.1. General Study Design

The review was conducted in accordance with the guidelines of the Center for Re-
view and Dissemination’s Guidance for Undertaking Review in Health Care. Report-
ing was aligned with the Preferred Reporting Items for Systematic Review and Meta-
Analyses (PRISMA) statement [18]. This study is registered in PROSPERO (Registration ID:
CRD42024563059).

2.2. Data Sources and Search Strategy

A comprehensive electronic search was carried out on PubMed/MEDLINE, Google
Scholar, and SCOPUS databases. An example of a search strategy is the one used for
PubMed/MEDLINE: “Artificial intelligence” and “OSA screening”; “Machine learning”
and “OSA screening”; “Artificial intelligence” and “OSA diagnosis”; “Machine learning”
and “OSA diagnosis”; “Automatic prediction” and “OSA”; “Artificial intelligence” and
“OSA classification”. The searching strategies were designed to meet the specific criteria
of each database, and cross-referencing was performed to minimize the risk of missing
relevant data. The final search was run in June 2024.

2.3. Inclusion/Exclusion Criteria

Eligibility criteria were met for articles that presented original data on the use of ML
algorithms for diagnosis and predicting OSA in suspected patients. Exclusion criteria
included the following: (1) publications in languages other than English; (2) case reports,
reviews, conference abstracts, and letters; (3) studies with unclear and/or incomplete data;
(4) studies which failed to report the AI algorithm applied to diagnose or screen patients
with OSA; (5) articles published before 2014.

2.4. Data Extraction and Data Analysis

Initially, all the articles were screened by title and abstract. Full-text versions of each
publication were subsequently evaluated, and the studies deemed irrelevant to the subject
of this review were excluded. Data extraction from the included articles was carried out
systematically using a structured form. A qualitative synthesis analysis was performed
on selected studies, focusing on the employment and performance of AI models for the
prediction and diagnosis of OSA.
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The performance evaluation metrics extracted from the studies included in this review
were as follows: area under the curve (AUC), which measures the ability of a model
to distinguish between classes, with values closer to 1 indicating better discrimination;
accuracy, as the proportion of correctly classified samples; sensitivity, which represents the
ability of a model to correctly identify positive cases; specificity, which indicates the ability
of a model to correctly identify negative cases; and Interclass Correlation Coefficient (ICC),
assessing the reliability or agreement between predicted and actual values, with higher
values indicating better reliability.

2.5. Statistical Analysis and Summary of Findings

Due to variations in reporting styles and the lack of consistent data across the in-
cluded studies, a statistical or quantitative analysis of the findings could not be performed.
As a result, the effects on the individual outcomes and the overall quality assessments
were described narratively. The authors of the included studies were not contacted for
additional information.

3. Results
The search criteria returned 502 articles, among which 361 papers were removed as

they were considered irrelevant or duplicates. As further screening occurred, 31 more
papers were excluded, resulting in 66 articles that fulfilled the inclusion criteria. A flow
diagram of the selection process is shown in Figure 1 (PRISMA flow diagram). The data of
131,823 patients were analyzed in all the studies included. We observed an overlapping of
data across the different databases therefore they were considered singularly. In particular,
10,577 patients’ data were taken from the Wisconsin Sleep Cohort (WSC) database [19,20],
10,862 from the Sleep Heart Health Study Visit 1 (SHHS1) [19,21], 621 from SHHS2 [21], 1154
from the Taipei Medical University Hospital (TMUH, Taipei, Taiwan) [22], 5245 from the
Shuang-Ho Hospital (SHH, New Taipei City, Taiwan) [22], 369 from Río Hortega University
Hospital of Valladolid (UHV) [21], 1463 from the Cleveland Family Study (CFS) [21], 3937
from Osteoporotic Fractures in Men Study (MROS) [21], 2056 from the Multi-Ethnic Study of
Atherosclerosis (MESA) [21], 32 from the MIT PhysioNet Apnea–ECG database [23–28], and
25 from the University College Dublin Sleep Apnea Database (UCDDB) [27,29]. Figure 2
shows the number of studies for each type of data and the algorithms used by the authors.
Detailed tables reporting the characteristics and the outcomes of the included studies can
be found in the Supplementary Materials (Tables S1 and S2).
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3.1. Anthropometric Indexes

Several authors used the anthropometric parameters of the patients, such as age,
sex [30], body mass index (BMI) [31], ethnicity [32], and snoring status [33], to build predic-
tive models for OSA. Artificial Neural Network (ANN), LR, and SVM models displayed
the AUCs ranging from 0.81 [31] to 0.82 [30], while Kernel SVM (KSVM) displayed an AUC
of 0.66 [32]. All models were comparable in terms of efficacy as OSA prediction tools and
according to the STOP-BANG questionnaire [30–32], which is considered the gold standard
screening questionnaire. Application of classifiers, such as Multilayer Perceptron Networks
(MLPs), showed an accuracy of 86% in classifying a patient as healthy or being affected
by OSA [33]. Likewise, age and sex were analyzed in relation to average systolic blood
pressure using a Microsoft decision tree algorithm developed in Microsoft SQL server
2008 business intelligence, obtaining an AUC of 0.99 and an overall accuracy of 96.9% [34].
Moreover, other authors [20,35–44] implemented their models with further anthropometric
variables, such as waist and neck circumference, lifestyle habits and comorbidities, OSA-
related symptoms, and sleep questionnaires as input to LR, ANN, SVM, DT, RF, k-NN,
neural networks (NNs), Ridge regression (RR), Gradient Boosting Machine (GBM), Light
Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGB), Adaptive boost-
ing (AdaBoost), Bootstrapped aggregating (Bagging), Gradient Boost DT, Least Absolute
Shrinkage and Selection Operator (LASSO) regression, Naïve Bayes (NB), tree-augmented
Naïve Bayes (TAN), CatBoost, and MLP. Among all the algorithms, the best performances
were obtained for GBM with a maximum AUC of 0.892 in one study [44] and 0.857 [35] in
another, and for RF with a partial area under the precision–recall curve of 0.862 [36]. Among
these studies, the application of an alternative ensemble technique, the Extra Tree algorithm,
is worth noting as its Area Under the Receiver Operating Characteristic curve (AUROC)
(0.896), accuracy (90%), and specificity (90%) exceed those of the above-mentioned algo-
rithms [44]. Ferreira-Santos et al. discussed a series of NB and TAN models designed for
pre-PSG OSA evaluation [40,41]. Among them, both the TAN algorithm using a set of
38 anthropometric features identified from the literature review obtained the best overall
performance, with an AUROC of 0.79 and an accuracy of 72.6%. However, this result was
comparable to that obtained using a restricted set of six features to an NB model (AUROC
0.79; 70% accuracy), which is also less cumbersome and lengthy to apply in primary care
settings. Also, Manoochehri et al. demonstrated the comparability of an LR model over a
DT model in terms of accuracy (74% vs. 76%), specificity (78% vs. 80%), and sensitivity
(70% vs. 67%) [37]. In that year, the same group also compared the performance of an LR
model built using the best anthropometric variables using Akaike’s information criteria to
an SVM model designed with the radial basis function kernel. This time, they showed that
the implemented SVM model displayed higher accuracy (80% vs. 73%) and specificity (85%
vs. 70%) [38]. Interestingly, two articles utilized the LASSO regression analysis to develop a
normogram for OSA prediction [40,43]. Xu and colleagues combined both anthropometric
and biochemical features (glucose, insulin, and apolipoprotein B levels), displaying an AUC
of 0.84 [39], while Hsu and colleagues opted for anthropometric features alone, displaying
an AUC of 0.88 for moderate–severe OSA detection [42]. Likewise, Ge et al. implemented
their set of variables with a panel of laboratory indexes, such as glycated hemoglobin,
hematocrit, total cholesterol, and triglycerides, together with the presence or absence of
common carotid plaques [45]. Across the seven algorithms tested, MLP demonstrated
the best performance in terms of AUC (0.94). Bozkurt and colleagues tested five state-of-
the-art ML models (Bayesian Network; LR; DT; RF; and NN) using a set of 14 non-PSG
variables extracted from the patients’ medical histories, symptoms (ESS), and physical
examinations [46]. Performance was stratified in three main settings based on OSA severity
(normal/present; normal–mild–moderate–severe; mild–moderate–severe). Overall, the
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RF algorithm yielded the greatest accuracy (60.9%) across all severity classes. Yet, the
greatest AUC (0.85–0.91) was obtained by applying the Bayesian Network to all classes,
closely followed by RF (0.82–0.84). Tsai et al. [47] implemented their model with specific
indicators of body composition, such as whole body, limbs and trunk fat mass, fat-free
mass, muscle mass, fat percentage, basal metabolic rate, and body water information (total
body/intracellular/extracellular water), together with an analysis of sleep efficiency, sleep
architecture, and sleep quality indexes, to predict the risk of moderate–severe and severe
OSA. Several machine learning models were utilized, with the RF-based prediction model
demonstrating the highest accuracy and AUC (0.90 for moderate–severe OSA and 0.81 for
severe OSA). One year later, the same research group [48] implemented the aforementioned
features with snoring events obtained through a piezoelectric vibration sensor placed on
the triangle of the neck. It emerged that all the above-mentioned features entertain a statis-
tically significant correlation with AHI and ODI (all p < 0.01), except for the extracellular
to intracellular water ratio (p < 0.05). Also, in this study, RF demonstrated the highest
accuracy in classifying moderate–severe and severe OSA, being, respectively, 79.32% and
74.37%, respectively. Awakening due to the sound of snoring, witnessing snore, nocturia,
restless sleep, and back pain were other informative self-reported factors that demonstrated
good efficiency in predicting OSA [49]. SVM, with a 93.4% sensitivity, better predicted the
majority of OSA patients, while NB, with 59.5% specificity, predicted healthy people better
than the other models. The NB and LR classifiers had the highest AUCs with 0.768 and
0.761, respectively. According to the results, the neural network had a better classification
accuracy in the assessed models. Conversely, a set of four questions was added to basic
features (age, BMI, neck circumference, history of diabetes mellitus, or hypertension) to
develop an ANN-based prediction tool named OsuNet [50]. The four questions concerned
witnessed snoring, witnessed apnea, restless leg syndrome, and loss of libido. The OsuNet
model displayed a positive likelihood ratio exceeding that of well-known prediction tools,
like the STOP-BANG questionnaire (3.4 vs. 1.4). Similarly, age, sex, BMI, comorbidities, and
smoking were fed to a Supersparse Linear Integer Model to build a clinical OSA prediction
model based on features retrievable in the patient’s clinical history [51]. This model also ob-
tained a positive likelihood ratio exceeding that of the STOP-BANG questionnaire. Machine
learning approaches were also applied to identify individuals at severe risk of OSA based
on clinical suspicion. Age, sex, BMI, diabetes, anxiety/depression, choking, and septal de-
viation were selected as features to be fed to several algorithms, using two thresholds: one
to identify moderate–severe OSA and one for severe OSA. The SVM model showed a sensi-
tivity of 93% and a specificity of 80%, while reduced LR demonstrated a sensitivity of 79%
and a specificity of 56% [52]. Other authors employed ML to implement questionnaires for
OSA screening. One example is the BASH-GN questionnaire, which takes into account age,
sex, BMI, neck circumference, hypertension, and snoring loudness into six questions [19],
while another one is the Digital Sleep Questionnaire, an ML-powered questionnaire built
to identify common sleep disorders (OSA, insomnia, delayed sleep phase, and insufficient
sleep syndrome) on the basis of 34 questions concerning sleep quality [53]. Both have
outperformed well-known questionnaires (STOP-BANG, Epworth Sleepiness Scale-ESS,
Berlin, and Functional Outcomes of Sleep Questionnaire—FOSQ), showing an AUC of
0.77 and 0.85, respectively. Zhang and colleagues [54] developed a model integrating sex,
age, BMI, neck circumference, and waist circumference to two faciocervical measurements,
being the maximum interincisal distance and ratio of height to thyrosternum distance
(SABIHC2 model). This set of data, when powered by a multiview CNN, yielded an AUC
of 0.83. Yet, when neck circumference, waist circumference, and BMI were present alone
in an SVM-powered model, an AUC of 0.88 in women and an AUC of 0.85 in men were
obtained [22]. Faciocervical measurements were also employed by Sutherland et al. to
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predict OSA in a Chinese population. When using an LR-powered model computing
face width, cervicomental angle, and BMI, an AUROC of 0.77 was obtained, while an
AUROC of 0.81 was obtained by computing cricomental space area, mandibular width,
and mandibular plane angle in a classification and regression tree model [55]. Age, sex,
BMI, neck circumference, waist circumference, and question eight in the Snore Outcome
Survey questionnaire (“Please describe when you snore”) were integrated into an OSA
prediction model powered by SVM, NN, and multiple logistic regression (MLR), displaying
an AUC of 0.84, 0.83, and 0.83, respectively [56]. The integration of updated Friedman
tongue position and tonsil size grading scored an AUROC of 0.80 in predicting the presence
of OSA and an AUROC of 0.82 in predicting moderate–severe OSA in a multiple linear
regression model enquired by Lin and colleagues [57], and an AUC of 0.84 in a linear
regression model applied by Park et al. [58]. When adding height, body weight, neck
circumference, waist circumference, hip circumference, ESS, snoring status, and daytime
sleepiness to the above-mentioned indexes, in a LR- and SVM-powered smartphone app,
AUCs of 60.8% and 62.2% were achieved, respectively [59]. Other surrogates of well-known
OSA biomarkers, such as neck grasp in place of neck circumference, proved not to be valid
independent predictors of OSA, with an AUC of 0.62 and a specificity of 39.6% in an LR
model [60].

3.2. Imaging

Lateral cephalograms are a readily available and inexpensive radiographic tool that re-
veals the characteristics of upper airway configuration, which confers an informative value
in OSA detection. When applied to lateral cephalogram interpretation in OSA screening,
deep CNN displayed an AUROC ranging from 0.82 up to 0.99 in severe forms [61,62]. Inter-
estingly, Tsuiki et al. [63] have demonstrated that different cephalometric regions correlated
with different performance results, reporting an AUROC of 0.92 for the main region, 0.89
for the full image, 0.70 for the head only, and 0.75 for manual cephalometric analysis. ML
models were also applied to diffusor tensor imaging for screening purposes, resulting in an
AUROC of 0.85 for RF and 0.84 when using SVM [64]. The combination of 3D geometric
morphometrics using different ML algorithms has proved to be a rapid, effective, and
inexpensive screening tool in two studies. It demonstrated an AUROC ranging from 0.69
when using a multiview CNN-powered algorithm [65], and then to 0.70 when using LR,
SVM, AdaBoost Extra Trees, or Linear Discriminant Analysis [66], which further increased
to 0.75 by adding the patient’s anthropometric information (age, BMI, neck circumference,
waist circumference, hip circumference, hypertension, Mallampati class, and witnessed
apnea and sleepiness while driving), regardless of the algorithm employed [66].

3.3. Electrocardiographic Signals

Short-term heart rate variability (HRV) signal is able to reveal physiological changes
correlated with apnea events in OSA and is readily extracted from electrocardiograms
(ECGs). HRV fluctuations in the public MIT PhysioNet dataset were studied by several
authors [23–28]. A sequence of one-dimensional HRV signals with their features (time–
frequency domains, sample entropy, detrended fluctuation analysis) and a two-dimensional
HRV time–frequency spectrum image served as the inputs of one model, powered by par-
allel hybrid deep learning algorithms, namely Bidirectional Long Short-Term Memory
(Bi-LSTM) and the SqueezeNet model, which showed a sensitivity of 95.7% by using Bi-
LSTM or SqueezeNet alone, and of 100% when using a combination of the two, which was
also achieved in terms of accuracy and sensitivity [26]. Conversely, a CNN model consisting
of 10 identical CNN-based feature extraction layers, a flattened layer, four identical classifi-
cation layers mainly composed of fully connected networks, and a Softmax classification
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layer was used in a further study, showing a 97.1% per-recording accuracy and an 87.9%
per-minute accuracy [23]. The same research group applied this algorithm on 15 sub-band
signals, achieving a 100% per-recording accuracy and an 85.5% per-minute accuracy in
the mid–high frequency band of 31.25–37.5 Hz [24]. Once more, a fast approximation
method for principal component analysis (PCA) applied to ECG-derived respiration for
OSA detection was presented by Sadr et al., who employed Extreme Learning Machine
(ELM) and Linear Discriminant (LD) as classifiers. Their model showed an accuracy of
76.4% by the ELM classifier and an accuracy of 78.4% by LD [25]. HRV was also extracted
from a single-channel piezo-electric sensor and combined with the Snoring Index to identify
suspected regions of OSA in an SVM model, displaying accuracy of 71.5%, 80.0%, and
71.9% in mild, moderate, and severe OSA detection, respectively [67]. Lastly, nine ECG-
extracted features were fed to six classifiers optimized using hyper-parameter models (DT,
discriminate analysis (DA), NB, kNN, ensemble DT, and SVM) to perform an automated
OSA diagnosis using the PhysioNet dataset [28]. The highest performances were obtained
using optimized classifiers, especially kNN and ensemble DT, which scored an AUC of
68.2% [28]. The UCDDB public dataset was employed by Prucnal et al. [29], who operated a
Feedforward Neural Network (FFNN) to analyze statistical features extracted from the EEG
epochs by combined discrete wavelet transform (DWT) and Hilbert transform (HT), with
an accuracy of 77.3%. Lastly, Hu and colleagues [27] applied a CNN-based auto-encoder
with a modified training objective to detect OSA in a single-lead ECG in both the PhysioNet
and UCDDB datasets, obtaining an AUC of 0.881. HRV was combined with signals from
thoracic triaxial accelerometers and pulse oximetry (SpO2) in an LSTM-RNN-based model
developed for OSA screening and event detection, which demonstrated an overall accuracy
of 92.3% in detecting OSA events and 83.9% in AHI severity classification [68].

3.4. Respiratory Sounds

Microphones are widely used to detect breathing sounds, snoring sounds, and breath-
ing pauses and analyze breathing cessation (quiet time) or breath reduction between
breaths and/or snores, recovery breath gasp after apnea, and modulated breathing patterns.
Two public and one self-recorded datasets were fed to a deep CNN algorithm, which was
trained to recognize respiration sounds in sleep sound signals and to detect them using an
LR classifier to identify OSA patients from potential patients. Using PSG as a reference, the
authors obtained an AUC ranging from 0.79 to 0.82 [69]. Similarly, the deep CNN model
built by Le et al. [70] on the basis of PSG audio datasets, smartphone audio datasets synced
with PSG, and a home noise dataset to train the model to detect OSA reached an accuracy
of 86%. The same model was used to classify OSA severity with a sensitivity and specificity
of 85% and 84%. Using the same algorithm, the authors tested the performance of the
model with sound recording using an Android phone and an iOS one. They demonstrated
comparable sensitivity, specificity, and accuracy for OSA screening, being 93.3%, 94.4%,
and 94.3% in severe OSA screening using the iOS phone and 92.9%, 94.3%, and 94.1% using
the Android phone [71]. Especially in post-pandemic settings, several apps designed for at-
home acoustic OSA screening were developed, with the advantage of requiring no further
hardware than a smartphone. Among them, the DNN-powered Firefly and Sleep Study
apps showed an AUROC of 0.84 to 0.92 in screening moderate–severe OSA [72,73]. Both
of these apps are supported by Android and Apple smartphones. Bahr-Hamm et al. [74]
combined the entropy of snoring sound, low-frequency ECG-VLF, and thoraco-abdominal
effort–PSG signal entropy values as surrogate markers for OSA detection and OSA severity
classification using an SVM algorithm. The best performances were obtained using snor-
ing signal entropy and the second night’s data. Lastly, Hajipour et al. [75] compared the
performance of RF against LR as feature selection tools and classification approaches for



Healthcare 2025, 13, 181 11 of 20

wakefulness OSA screening using daytime tracheal breathing sounds. RF outperformed
LR in terms of blind-testing accuracy, specificity, and sensitivity, showing 3.5%, 2.4%, and
3.7% improvements, respectively. However, the regularized LR appeared to be faster than
the RF and resulted in a more efficient model.

3.5. Oximetry

Oxygen desaturation index (ODI) is historically a robust single oximetry-based feature
for OSA screening. One study evaluated a deep learning algorithm, called OxiNet, for AHI
estimation from the oximetry signal and evaluated its performance across ethnicity, age,
sex, and comorbidities, demonstrating an ICC ranging from 0.92 to 0.94 when tested on
several public datasets [21]. Likewise, Hang and colleagues demonstrated an accuracy
of 90% and of 87% in an SVM model based on ODI features alone for the diagnosis of
severe and moderate–severe OSA, respectively [76]. Conversely, the joint input of dual-
channel simultaneous SpO2 and airflow recordings were applied to a further SVM model
built for at-home OSA screening, with an AUC of 0.98 for moderate–severe AHI detection,
outperforming both single-channel SpO2 and airflow (AUC of 0.91–0.92) [77]. SpO2 was also
employed in a different ANN-powered algorithm to estimate AHI and ODI, demonstrating
an ability to correctly classify OSA patients on the basis of AHI and ODI, with an accuracy
of 90.0% and 94.4%, respectively [78]. Notably, even an XGBoost model combining basic
peripheral oxygen saturimetry with simple anthropometric variables (age, sex, height,
weight) and respiratory and heart rates yielded an accuracy of 60–77% across both internal
and public datasets in a recent study by Talukder and colleagues [79].

3.6. Other Signals

Differently from the other included studies, Kang and colleagues [80] developed an
algorithm that enables automatic sleep stage classification utilizing frequency–domain
features of the sleep EEG, testing three different algorithms: SVM, k-NN, and MLP. MLP
yielded the best performance out of the three, with an accuracy of 73% both in sleep stage
classification and OSA screening. Differently, Shafiee et al. [81] carried out a feasibility
study in three patients, testing a multi-channel ultrasonic OSA detection system based
on wavelet-based, temporal, and spectral features extracted from multiple ultrasound
waves transmitted through the patient’s neck during sleep. When powered by SVM and
Finite State Machine temporary labels, an accuracy ranging from 73.4% to 79.1% was
noted across the patients. Lastly, Mosquera-Lopez and colleagues utilized a contactless
custom-built device located underneath the patient’s mattress to capture breathing and
movement signals (sampling rate of 250 Hz). The system was endowed with DT and
LR models to perform an automatic at-home detection of OSA and severity classification,
revealing a correct OSA detection rate of 82.9% and a severity classification accuracy
of 74.3%. Importantly, most of the participants found the system easy to install and
found that the bed felt stable and comfortable while the device was installed [82]. In
a further study, data from spirometry (forced expiratory volume/forced vital capacity)
and blood gas analyses (partial pressure of oxygen and carbon dioxide) were integrated
into anthropometric indexes, comorbidity status, and indicators of snoring and daytime
sleepiness to develop a model for OSA severity prediction. When using an eight-feature
SVM model, an AUC of 0.65 was observed, which decreased to 0.62 when using only
three features. Likewise, RF obtained an AUC of 0.64 [83]. Lastly, one study explored the
possibility of using awake negative pressure testing as a tool to screen healthy subjects from
OSA patients. Negative pressure was generated using an air amplifier attached to a nasal
mask or mouthpiece. Features were extracted from the waveform. The best performance
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was obtained using RF, reaching an AUC of 0.80 when considering an AHI cut-off of 10
and a nose-negative pressure of −5 cmH2O [84].

4. Discussion
This systematic review highlights the promising results of AI algorithms in diagnosing

and screening OSA. We analyzed 66 original articles published in the last ten years, showing
a significant variety in the types of input data used, the algorithms applied, and the resultant
diagnostic performance metrics. The use of different ML and DL algorithms for diagnosing
and screening sleep apnea varies depending on the type of signal analyzed due to the data’s
intrinsic characteristics and the algorithms’ specific capabilities. Among the DL algorithms,
CNNs were the most commonly used when employing more computationally onerous
data, such as clinical images (4/6), ECG signals (3/9), and respiratory sounds (3/7). Indeed,
CNNs can automatically extract relevant features from raw data, reducing the need for
manual pre-processing.

4.1. Performances and Advantages of Employing ML and DL Algorithms
4.1.1. Anthropometric Indexes

Of the included studies, 31 used anthropometric indexes as features, such as BMI,
neck circumference, age, weight, and height. These are numerical data that often exhibit
a linear or quasi-linear relationship with the risk of OSA. Also, these types of data are
easy to collect, so it was possible to include a large number of patients, ranging from
167 [60] to 17,731 [32]. The most commonly employed algorithm is LR (20/31) since this
algorithm is well suited when there is a linear relationship between the independent
(anthropometric indexes) and the dependent (risk of apnea) variables. With this type
of data, SVM (13/31) algorithms are powerful for classification, especially with limited
features. Additionally, SVMs are robust against overfitting, particularly in contexts with
high-dimensional data and few samples. Overall, using anthropometric indexes in ML and
DL models for OSA screening has shown considerable results. The collection of data such
as age, sex, BMI, daily habits such as smoking or alcohol, and comorbidities is common
in clinical practice. Because of this, several authors [21,22,30–34,42,43,49–51] decided to
predict OSA using these variables. The outcomes demonstrated strong performance in
terms of sensitivity (68–98%), specificity (66–93%), and accuracy (67–97%). Comparable
results were obtained from other studies [36–39,41,45,47,53,55,56,58–60] that have included
additional, more OSA-specific tests, like the Friedman tonsils score, the Mallampati score,
the endoscopic lingual tonsils score, and symptom questionnaires, to these data (accuracy:
66–89%; sensitivity: 71–94%; specificity: 63–89%). Lastly, some research [20,39,45,47,48]
includes body composition measurements and blood analyses, but they did not improve
the results of earlier studies (accuracy: 66–90%; sensitivity: 67–92%; specificity: 50–77%).

However, the studies present highly heterogeneous analyses, using combinations
of data that vary significantly and often testing different algorithms or combinations of
algorithms to achieve the reported results. For this reason, it was not possible to identify the
best-performing algorithm, the optimal subset of data, or which factors have the greatest
influence on the outcomes.

4.1.2. Imaging

The studies that employed imaging for detecting and screening OSA managed to
include a large set of data, ranging from 155 [64] to 5591 [62]. The application of CNNs to
imaging data, including lateral cephalograms and 3D geometric morphometrics, revealed
high diagnostic accuracy, ranging from 67% to 93% [61–63,65]. Also, good results were
found using ML algorithms showing an accuracy higher than 73% [64,66]. The results
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highlight the value of integrating advanced imaging techniques with ML algorithms to
enhance diagnostic accuracy. However, the dependency on specialized imaging equipment
and expertise may restrict the widespread adoption of these approaches.

4.1.3. Cardiac-Related Parameters

The rationale for using cardiac-related parameters for OSA screening and diagnosis
lies in the close correlation between OSA and cardiovascular diseases (CVDs). Repeated
apnea and hypopnea episodes result in hypoxemia, hypercapnia, increased respiratory
effort, sleep fragmentation, frequent nocturnal awakenings, and, importantly, increased
sympathetic activity. Indeed, OSA prevalence ranges from 40 to 80% in subjects affected
by heart failure, coronary heart disease, pulmonary hypertension, atrial fibrillation, and
stroke [85]. Moreover, OSA prevalence nears 30% in hypertensive subjects and 80% in
patients affected by resistant hypertension [86]. Most often, patients are unaware of the
long- and short-term cardiovascular correlations of OSA and tend to underestimate the
severity of their condition. Therefore, they are largely understudied. Conversely, subjects
suffering from CVDs are seldom screened for sleep-related breathing disorders. ECG sig-
nals, particularly heart rate variability, were effectively used as input in ML and DL models
for OSA detection. In these studies, a smaller amount of data was used, ranging from
25 [29] to a maximum of 115 [23] samples. The best performance was found using CNN and
hybrid deep learning algorithms, such as LSTM-RNN, Bi-LSTM, and SqueezeNet, reach-
ing an accuracy higher than 84% [23,24,26,27,68]. Also, good performance was achieved
by ML algorithms such as SVM, LR, LDA, KNN, and NB, with an accuracy ranging be-
tween 70% and 80% [28,67]. Additionally, six studies employed the public MIT PhysioNet
dataset [23–28], applying different algorithms to these data. Considering this subgroup of
studies, the best performance was achieved by Sheta et al. [28], reaching an accuracy of
91.50%, sensitivity of 91.04%, and specificity of 91.96% in OSA segment detection when
combining the Bi-LSTM and SqueezeNet. Also, this combination showed the best OSA
recognition accuracy with each record correctly distinguished. The efficacy of these models
highlights the potential of features derived from ECGs as easily accessible and noninvasive
biomarkers for OSA screening.

Like ECG, oximetry-based features are also widely used for OSA screening. Two stud-
ies chose SVM, reaching an accuracy of 90% and 87% based on ODI features alone for the
diagnosis of severe and moderate–severe OSA, respectively [76], and of 90.6% to 95.8%
when combining SpO2 and airflow [77]. The other included studies using deep learning
algorithms, OxiNet, and ANN, obtaining, respectively, an ICC ranging from 0.92 to 0.94
when tested on several public datasets [21] and an accuracy of 94.4% [78]. Lastly, an XG-
Boost model combined oxygen saturimetry features with anthropometric variables and
respiratory and heart rates, showing an accuracy of 60–77% [79].

4.1.4. Respiratory Sounds

Among the possible contactless measurements related to this disease, OSA is a con-
dition characterized by distinct acoustic features such as snores, gasps, chokes, and even
periods of silence (cessation of breathing). Since these breathing sounds reflect variations in
airway patency, they represent valid indicators of respiratory events. Compared to wake-
fulness, breathing sounds become louder during sleep due to increased collapsibility of
the upper airways, resulting from the reduced activity of the upper airway dilator muscles.
However, when an apnea event occurs, no breathing sound is audible due to the complete
cessation of airflow. Yet, when breathing resumes after an apnea event, the reopening of
the airways causes a loud breathing noise. In contrast, hypopneas entail a narrowing of the
airway caliber without the characteristic vibratory component of apneas and are therefore
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identifiable by narrower and irregular breathing sounds [87]. To detect the snoring sound
of the patients, most of the authors used audio recordings using a smartphone positioned
next to the bed [71–73]. Differently, one study [70] used audio from the in-laboratory PSG
microphone installed on the ceiling, and part of the recording was taken from the smart-
phone microphone beside the bed. All these studies analyzed respiratory sounds using DL
models and demonstrated high accuracy (> 70%) [69–72] in OSA detection, especially in the
case of severe OSA when the accuracy reached 94% [71]. Lastly, one study [75] used a small
Sony ECM-77B microphone embedded in a chamber of 2 mm diameter and placed it over
the suprasternal notch of the patient’s trachea to detect daytime tracheal breathing sounds.
Interestingly, this study analyzed daytime breathing by asking the participants to breathe
five times through their mouth followed by five breaths through their nose with their mouth
closed. The participants then underwent an overnight PSG assessment and, based on AHI,
were divided into three groups: non-OSA, mild OSA, and moderate/severe OSA. The
two algorithms tested, RF and LR, showed, respectively, a specificity of 79.5% and 75.8%,
a sensitivity of 84.2% and 82.2%, and an accuracy of 82.1% and 79.3% on the testing set.
The results are very promising considering that the tests performed are noninvasive, rapid,
and can be carried out in daily clinical routines. However, the variability in ambient noise
and recording quality can challenge the robustness and reliability of these models during
the daytime and night. Continued refinement of noise reduction and sound processing
techniques will be crucial to enhancing the accuracy and reliability of smartphone-based
respiratory sound analyses.

4.2. Limitations

High-dimensional databases produce sparse data overall, which makes it difficult
to identify meaningful patterns and models that might fit noise rather than signal and
learn from the peculiarities of training data that do not generalize well. Furthermore, as
dimensions grow, processing and analysis become exponentially harder. For example, from
a computational point of view, kNN is a very onerous algorithm because it is based on the
calculation of the distances between the samples in the feature space and the comparison
of all the possible distances to find the most accurate class. Indeed, the computational
time increases with the number of samples analyzed. For this reason, this method is not
used on datasets with more than 1000–2000 samples. Differently, when implementing a
decision tree, during the training phase, it is important to consider the time complexity,
which depends on the number of samples, the number of features, the time required
for sorting and splitting the nodes, and the space complexity, which is proportional to
the number of samples. On the other hand, the computational complexity during the
testing phase is significantly lower. Therefore, once the decision tree is trained, it can run
efficiently on a mobile device. Likewise, SVMs have the advantage of being extremely fast
in the testing phase as they have a computational demand on the order of the number of
features. Lastly, the computational complexity of CNNs depends strongly on the depth
of the network, the number of input samples, and the parameters of the filters. So, it is
important to remember that the burden of the algorithm also affects power consumption,
which cannot be neglected if the algorithm is run on a mobile phone, for example, as in
the case of automatic recognition applications. This review underscores the diverse and
innovative approaches being explored in the application of ML and DL for OSA diagnosis
and screening. The strengths of these approaches lie in their ability to handle large datasets,
identify complex patterns, and improve diagnostic accuracy beyond traditional methods.
However, the heterogeneity in study designs, datasets, and evaluation metrics complicates
direct comparisons across studies.
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5. Conclusions
The application of AI algorithms to OSA diagnosis and screening has great potential

to improve patient outcomes, increase early detection, and lessen the load on healthcare
systems. To fully utilize these cutting-edge diagnostic tools, this field must continue to
progress, and rigorous validation and standardization efforts must be made. A limit of
this study is the heterogeneity of the yielded data, as well as the lack of an internationally
validated dataset to track a conspicuous number of records to help the development of this
interesting research field.
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ANN Artificial Neural Network
AUC area under the curve
AUROC Area Under the Receiver Operating Curve
Bagging Bootstrapped aggregating
Bi-LSTM Bidirectional Long Short-Term Memory
BMI body mass index
CC Correlation Coefficient
CNN Convolutional Neural Network
DWT discrete wavelet transform
ELM Extreme Learning Machine
FFNN Feedforward Neural Network
GBM Gradient Boosting Machine
HRV heart rate variability
HT Hilbert transform
ICC Interclass Correlation Coefficient
kNN k-nearest neighbor
KSVM Kernel SVM
LASSO Least Absolute Shrinkage and Selection Operator
LD Linear Discriminant
LGBM Light Gradient Boosting Machine
LR Logistic regression
ML Machine Learning
MLPs Multilayer Perceptron Networks
NB Naïve Bayes
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OSA Obstructive Sleep Apnea
PCA principal component analysis
QD Quadratic Discriminant
RF random forest
RR Ridge regression
SVM Support Vector Machine
TAN tree-augmented Naïve Bayes
XGB Extreme Gradient Boosting
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