Nursing Genetic Research: New Insights Linking Breast Cancer Genetics and Bone Density
Abstract
:1. Introduction
2. Overview
3. GREB1 Polymorphisms and Bone Mineral Density
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Williams, J.K. Advancing genetic nursing research. Biol. Res. Nurs. 2001, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.A.; DeVon, H.A. A nursing theory-guided framework for genetic and epigenetic research. Nurs. Inq. 2018, 25. [Google Scholar] [CrossRef] [PubMed]
- Yucha, C.B. Nurse Researchers’ Unique Contributions to the Field of Genetics. Biol. Res. Nurs. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calzone, K.A.; Cashion, A.; Feetham, S.; Jenkins, J.; Prows, C.A.; Williams, J.K.; Wung, S.-F. Nurses Transforming Health Care Using Genetics and Genomics. Nurs. Outlook 2010, 58, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnby, E.; Alexander, S. Collaborative Research: An Advanced Practice Nurse’s Experience in Genome Research and Treatment. Clin. Nurse Spec. CNS 2017, 31, 191–194. [Google Scholar] [CrossRef]
- Taylor, J.Y.; Wright, M.L.; Hickey, K.T.; Housman, D.E. Genome Sequencing Technologies and Nursing: What Are the Roles of Nurses and Nurse Scientists? Nurs. Res. 2017, 66, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Nagase, T.; Ishikawa, K.; Miyajima, N.; Tanaka, A.; Kotani, H.; Nomura, N.; Ohara, O. Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 1998, 5, 31–39. [Google Scholar] [CrossRef]
- Ghosh, M.G.; Thompson, D.A.; Weigel, R.J. PDZK1 and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer. Cancer Res. 2000, 60, 6367–6375. [Google Scholar]
- Laviolette, L.A.; Hodgkinson, K.M.; Minhas, N.; Perez-Iratxeta, C.; Vanderhyden, B.C. 17β-estradiol upregulates GREB1 and accelerates ovarian tumor progression in vivo. Int. J. Cancer 2014, 135, 1072–1084. [Google Scholar] [CrossRef] [Green Version]
- Rae, J.M.; Johnson, M.D.; Cordero, K.E.; Scheys, J.O.; Larios, J.M.; Gottardis, M.M.; Pienta, K.J.; Lippman, M.E. GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Prostate 2006, 66, 886–894. [Google Scholar] [CrossRef] [Green Version]
- Camden, A.J.; Szwarc, M.M.; Chadchan, S.B.; DeMayo, F.J.; O’Malley, B.W.; Lydon, J.P.; Kommagani, R. Growth regulation by estrogen in breast cancer 1 (GREB1) is a novel progesterone-responsive gene required for human endometrial stromal decidualization. Mol. Hum. Reprod. 2017, 23, 646–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rae, J.M.; Johnson, M.D.; Scheys, J.O.; Cordero, K.E.; Larios, J.M.; Lippman, M.E. GREB 1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res. Treat. 2005, 92, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, K.M.; Vanderhyden, B.C. Consideration of GREB1 as a potential therapeutic target for hormone-responsive or endocrine-resistant cancers. Expert Opin. Ther. Targets 2014, 18, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Deschênes, J.; Bourdeau, V.; White, J.H.; Mader, S. Regulation of GREB1 transcription by estrogen receptor alpha through a multipartite enhancer spread over 20 kb of upstream flanking sequences. J. Biol. Chem. 2007, 282, 17335–17339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegarty, K.G.; Drummond, F.J.; Daly, M.; Shanahan, F.; Molloy, M.G. GREB1 genetic variants are associated with bone mineral density in Caucasians. J. Bone Miner. Metab. 2018, 36, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, K.D.; Brown, G.R.; Hiatt, S.M.; Thibaud-Nissen, F.; Astashyn, A.; Ermolaeva, O.; Farrell, C.M.; Hart, J.; Landrum, M.J.; McGarvey, K.M.; et al. RefSeq: An update on mammalian reference sequences. Nucleic Acids Res. 2014, 42, D756–D763. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Michalski, S.; Kommagani, R. Role for Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) in Hormone-Dependent Cancers. Int. J. Mol. Sci. 2018, 19, 2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines, C.N.; Braunreiter, K.M.; Mo, X.M.; Burd, C.J. GREB1 isoforms regulate proliferation independent of ERα co-regulator activities in breast cancer. Endocr. Relat. Cancer 2018, 25, 735–746. [Google Scholar] [CrossRef]
- Ray, S.; Johnston, R.; Campbell, D.C.; Nugent, S.; McDade, S.S.; Waugh, D.; Panov, K.I. Androgens and estrogens stimulate ribosome biogenesis in prostate and breast cancer cells in receptor dependent manner. Gene 2013, 526, 46–53. [Google Scholar] [CrossRef]
- Tan, S.; Ding, K.; Li, R.; Zhang, W.; Li, G.; Kong, X.; Qian, P.; Lobie, P.E.; Zhu, T. Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2. Breast Cancer Res. BCR 2014, 16, R40. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, H.; D’Santos, C.; Serandour, A.A.; Ali, H.R.; Brown, G.D.; Atkins, A.; Rueda, O.M.; Holmes, K.A.; Theodorou, V.; Robinson, J.L.L.; et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 2013, 3, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yau, C.; Fedele, V.; Roydasgupta, R.; Fridlyand, J.; Hubbard, A.; Gray, J.W.; Chew, K.; Dairkee, S.H.; Moore, D.H.; Schittulli, F.; et al. Aging impacts transcriptomes but not genomes of hormone-dependent breast cancers. Breast Cancer Res. BCR 2007, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippman, M.E.; Rae, J.M.; Chinnaiyan, A.M. An expression signature of estrogen-regulated genes predicts disease-free survival in tamoxifen-treated patients better than progesterone receptor status. Trans. Am. Clin. Climatol. Assoc. 2008, 119, 77–90; discussion 90–92. [Google Scholar] [PubMed]
- Hodgkinson, K.; Forrest, L.A.; Vuong, N.; Garson, K.; Djordjevic, B.; Vanderhyden, B.C. GREB1 is an estrogen receptor-regulated tumour promoter that is frequently expressed in ovarian cancer. Oncogene 2018, 37, 5873–5886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuong, N.H.; Cook, D.P.; Forrest, L.A.; Carter, L.E.; Robineau-Charette, P.; Kofsky, J.M.; Hodgkinson, K.M.; Vanderhyden, B.C. Single-cell RNA-sequencing reveals transcriptional dynamics of estrogen-induced dysplasia in the ovarian surface epithelium. PLoS Genet. 2018, 14, e1007788. [Google Scholar] [CrossRef]
- Antunes, A.A.; Leite, K.R.; Reis, S.T.; Sousa-Canavez, J.M.; Camara-Lopes, L.H.; Dall’Oglio, M.F.; Srougi, M. GREB1 tissue expression is associated with organ-confined prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2012, 30, 16–20. [Google Scholar] [CrossRef]
- Lee, E.; Wongvipat, J.; Choi, D.; Wang, P.; Lee, Y.S.; Zheng, D.; Watson, P.A.; Gopalan, A.; Sawyers, C.L. GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance. eLife 2019, 8. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.-H.; Aguilera-Barrantes, I.; Shiau, C.-W.; Sheng, X.; Wang, L.-S.; Stoner, G.D.; Huang, Y.-W. Urolithin A suppresses the proliferation of endometrial cancer cells by mediating estrogen receptor-α-dependent gene expression. Mol. Nutr. Food Res. 2016, 60, 2387–2395. [Google Scholar] [CrossRef]
- Cronin, K.A.; Lake, A.J.; Scott, S.; Sherman, R.L.; Noone, A.-M.; Howlader, N.; Henley, S.J.; Anderson, R.N.; Firth, A.U.; Ma, J.; et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer 2018, 124, 2785–2800. [Google Scholar] [CrossRef] [Green Version]
- Chern, J.-Y.; Boyd, L.R.; Blank, S.V. Uterine sarcomas: The latest approaches for these rare but potentially deadly tumors. Oncology 2017, 31, 229–236. [Google Scholar]
- Lin, J.; Lei, Z. Chromatin Immunoprecipitation with estrogen receptor 1 and the promoter of greb1 in tm4 sertoli cells. Methods Mol. Biol. Clifton NJ 2016, 1366, 67–77. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, J.; Li, X.; Li, S.; Lan, Z.; Ko, J.; Lei, Z. Expression of genomic functional estrogen receptor 1 in mouse sertoli cells. Reprod. Sci. Thousand Oaks Calif. 2014, 21, 1411–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, C.; Gori, I.; Achtari, C.; Hornung, D.; Chardonnens, E.; Wunder, D.; Fiche, M.; Canny, G.O. The expression of estrogen receptors as well as GREB1, c-MYC, and cyclin D1, estrogen-regulated genes implicated in proliferation, is increased in peritoneal endometriosis. Fertil. Steril. 2012, 98, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Nyholt, D.R.; Low, S.-K.; Anderson, C.A.; Painter, J.N.; Uno, S.; Morris, A.P.; MacGregor, S.; Gordon, S.D.; Henders, A.K.; Martin, N.G.; et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat. Genet. 2012, 44, 1355–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmioglu, N.; Nyholt, D.R.; Morris, A.P.; Missmer, S.A.; Montgomery, G.W.; Zondervan, K.T. Genetic variants underlying risk of endometriosis: Insights from meta-analysis of eight genome-wide association and replication datasets. Hum. Reprod. Update 2014, 20, 702–716. [Google Scholar] [CrossRef]
- Fung, J.N.; Holdsworth-Carson, S.J.; Sapkota, Y.; Zhao, Z.Z.; Jones, L.; Girling, J.E.; Paiva, P.; Healey, M.; Nyholt, D.R.; Rogers, P.A.W.; et al. Functional evaluation of genetic variants associated with endometriosis near GREB1. Hum. Reprod. Oxf. Engl. 2015, 30, 1263–1275. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, Y.; Fassbender, A.; Bowdler, L.; Fung, J.N.; Peterse, D.; O, D.; Montgomery, G.W.; Nyholt, D.R.; D’Hooghe, T.M. Independent replication and meta-analysis for endometriosis risk loci. Twin Res. Hum. Genet. Off. J. Int. Soc. Twin Stud. 2015, 18, 518–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapkota, Y.; Vivo, I.D.; Steinthorsdottir, V.; Fassbender, A.; Bowdler, L.; Buring, J.E.; Edwards, T.L.; Jones, S.; Dorien, O.; Peterse, D.; et al. Analysis of potential protein-modifying variants in 9000 endometriosis patients and 150000 controls of European ancestry. Sci. Rep. 2017, 7, 11380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osiński, M.; Mostowska, A.; Wirstlein, P.; Wender-Ożegowska, E.; Jagodziński, P.P.; Szczepańska, M. The assessment of GWAS—Identified polymorphisms associated with infertility risk in Polish women with endometriosis. Ginekol. Pol. 2018, 89, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Matalliotaki, C.; Matalliotakis, M.; Rahmioglu, N.; Mavromatidis, G.; Matalliotakis, I.; Koumantakis, G.; Zondervan, K.; Spandidos, D.A.; Goulielmos, G.N.; Zervou, M.I. Role of FN1 and GREB1 gene polymorphisms in endometriosis. Mol. Med. Rep. 2019, 20, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Zi, H.; Li, Y.; Gao, Y.; Ge, C.; Sun, Z.; Zhang, Y. Combined use of salivary biomarkers and carcinoembryonic antigen for lung cancer detection in a Chinese population. Medicine 2019, 98, e16511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, H.; Zhou, H.; Santiago, S.; Lee, J.M.; Garon, E.B.; Yang, J.; Brinkmann, O.; Yan, X.; Akin, D.; et al. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell. Mol. Life Sci. CMLS 2012, 69, 3341–3350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, S.; Yamamichi, T.; Shinzawa, K.; Kasahara, Y.; Nojima, S.; Kodama, T.; Obika, S.; Takehara, T.; Morii, E.; Okuyama, H.; et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat. Commun. 2019, 10, 3882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouresmaeili, F.; Jamshidi, J.; Azargashb, E.; Samangouee, S. Association between vitamin D receptor Gene BsmI polymorphism and bone mineral density in a population of 146 Iranian women. Cell J. 2013, 15, 75–82. [Google Scholar] [PubMed]
- Moran, J.M.; Pedrera-Canal, M.; Rodriguez-Velasco, F.J.; Vera, V.; Lavado-Garcia, J.M.; Fernandez, P.; Pedrera-Zamorano, J.D. Lack of association of vitamin D receptor BsmI gene polymorphism with bone mineral density in Spanish postmenopausal women. PeerJ 2015, 3, e953. [Google Scholar] [CrossRef] [PubMed]
- Pedrera-Canal, M.; Moran, J.M.; Vera, V.; Roncero-Martin, R.; Lavado-Garcia, J.M.; Aliaga, I.; Pedrera-Zamorano, J.D. Common allelic variants of the vitamin receptor D gene rs7975232 (ApaI) do not influence bone mineral density figures in postmenopausal osteoporotic women. Int. J. Clin. Exp. Med. 2015, 8, 8173–8177. [Google Scholar]
- Pedrera-Canal, M.; Moran, J.M.; Vera, V.; Roncero-Martin, R.; Lavado-Garcia, J.M.; Aliaga, I.; Pedrera-Zamorano, J.D. Lack of influence of vitamin D receptor BsmI (rs1544410) Polymorphism on the rate of Bone loss in a cohort of postmenopausal Spanish women affected by osteoporosis and followed for five years. PLoS ONE 2015, 10, e0138606. [Google Scholar] [CrossRef] [Green Version]
- Pocock, N.A.; Eisman, J.A.; Hopper, J.L.; Yeates, M.G.; Sambrook, P.N.; Eberl, S. Genetic determinants of bone mass in adults. A twin study. J. Clin. Investig. 1987, 80, 706–710. [Google Scholar] [CrossRef]
- Smith, D.M.; Nance, W.E.; Won Kang, K.; Christian, J.C.; Johnston, C.C., Jr. Genetic factors in determining bone mass. J. Clin. Investig. 1973, 52, 2800–2808. [Google Scholar] [CrossRef] [Green Version]
- Gross, C.; Eccleshall, T.R.; Malloy, P.J.; Villa, M.L.; Marcus, R.; Feldman, D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1996, 11, 1850–1855. [Google Scholar] [CrossRef]
- Efstathiadou, Z.; Tsatsoulis, A.; Ioannidis, J.P. Association of collagen Ialpha 1 Sp1 polymorphism with the risk of prevalent fractures: A meta-analysis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2001, 16, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Inoue, S.; Hosoi, T.; Ouchi, Y.; Emi, M.; Shiraki, M.; Orimo, H. Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem. Biophys. Res. Commun. 1995, 217, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Ota, N.; Nakajima, T.; Nakazawa, I.; Suzuki, T.; Hosoi, T.; Orimo, H.; Inoue, S.; Shirai, Y.; Emi, M. A nucleotide variant in the promoter region of the interleukin-6 gene associated with decreased bone mineral density. J. Hum. Genet. 2001, 46, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, K.; Ohta, N.; Shirai, Y.; Emi, M. A highly polymorphic CA repeat marker at the human interleukin 6 receptor (IL6R) locus. J. Hum. Genet. 1998, 43, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Langdahl, B.L.; Knudsen, J.Y.; Jensen, H.K.; Gregersen, N.; Eriksen, E.F. A sequence variation: 713-8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 1997, 20, 289–294. [Google Scholar] [CrossRef]
- Wynne, F.; Drummond, F.; O’Sullivan, K.; Daly, M.; Shanahan, F.; Molloy, M.G.; Quane, K.A. Investigation of the genetic influence of the OPG, VDR (Fok1), and COLIA1 Sp1 polymorphisms on BMD in the Irish population. Calcif. Tissue Int. 2002, 71, 26–35. [Google Scholar] [CrossRef]
- Wynne, F.; Drummond, F.J.; Daly, M.; Brown, M.; Shanahan, F.; Molloy, M.G.; Quanel, K.A. Suggestive linkage of 2p22-25 and 11q12-13 with low bone mineral density at the lumbar spine in the Irish population. Calcif. Tissue Int. 2003, 72, 651–658. [Google Scholar] [CrossRef]
- Hegarty, K.; Daly, M.; Chavrimootoo, S.; Molloy, M. Evidence of association between the gene regulated by oestrogen in breast cancer 1 and variation in bone mineral density in Caucasians. Bone 2009, 44. [Google Scholar] [CrossRef]
- Zheng, F.; Lv, P.; Tang, C.; Hou, X.; Zhang, K.; Liu, Z.; Zheng, Q.; Li, J.; Zheng, G. Association between GREB1 gene polymorphism and osteoporotic fracture in the elderly. Chin. J. Osteoporos. 2018, 24. [Google Scholar] [CrossRef]
- Lee, R.; Tosi, L. Association of GREB1 Polymorphisms with Bone and Muscle Health Phenotypes; Bpress: Berkeley, CA, USA, 2019. [Google Scholar]
- Kathiresan, S.; Newton-Cheh, C.; Gerszten, R.E. On the interpretation of genetic association studies. Eur. Heart J. 2004, 25, 1378–1381. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Fernandez, A.; Roncero-Martin, R.; Moran, J.M.; Lavado-García, J.; Puerto-Parejo, L.M.; Lopez-Espuela, F.; Aliaga, I.; Pedrera-Canal, M. Nursing Genetic Research: New Insights Linking Breast Cancer Genetics and Bone Density. Healthcare 2020, 8, 172. https://doi.org/10.3390/healthcare8020172
Sanchez-Fernandez A, Roncero-Martin R, Moran JM, Lavado-García J, Puerto-Parejo LM, Lopez-Espuela F, Aliaga I, Pedrera-Canal M. Nursing Genetic Research: New Insights Linking Breast Cancer Genetics and Bone Density. Healthcare. 2020; 8(2):172. https://doi.org/10.3390/healthcare8020172
Chicago/Turabian StyleSanchez-Fernandez, Antonio, Raúl Roncero-Martin, Jose M. Moran, Jesus Lavado-García, Luis Manuel Puerto-Parejo, Fidel Lopez-Espuela, Ignacio Aliaga, and María Pedrera-Canal. 2020. "Nursing Genetic Research: New Insights Linking Breast Cancer Genetics and Bone Density" Healthcare 8, no. 2: 172. https://doi.org/10.3390/healthcare8020172
APA StyleSanchez-Fernandez, A., Roncero-Martin, R., Moran, J. M., Lavado-García, J., Puerto-Parejo, L. M., Lopez-Espuela, F., Aliaga, I., & Pedrera-Canal, M. (2020). Nursing Genetic Research: New Insights Linking Breast Cancer Genetics and Bone Density. Healthcare, 8(2), 172. https://doi.org/10.3390/healthcare8020172