Effect of Transcranial Direct Current Stimulation Combined with Rehabilitation on Arm and Hand Function in Stroke Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- 1.
- Search strategy for Pubmed:
- 2.
- Search strategy for cochrane controlled register of trials:
- 3.
- Search strategy for EMBASE:
- 4.
- Search strategy for SCOPUS:
References
- Grefkes, C.; Fink, G.R. Noninvasive brain stimulation after stroke: It is time for large randomized controlled trials! Curr. Opin. Neurol. 2016, 29, 714–720. [Google Scholar] [CrossRef]
- Priori, A.; Hallett, M.; Rothwell, J.C. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2009, 2, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Naros, G.; Geyer, M.; Koch, S.; Mayr, L.; Ellinger, T.; Grimm, F.; Gharabaghi, A. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction? Clin. Neurophysiol. 2016, 127, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.P.; Rahman, A.; Lafon, B.; Kronberg, G.; Ling, D.; Parra, L.C.; Bikson, M. Animal models of transcranial direct current stimulation: Methods and mechanisms. Clin. Neurophysiol. 2016, 127, 3425–3454. [Google Scholar] [CrossRef] [Green Version]
- Schjetnan, A.G.P.; Faraji, J.; Metz, G.A.; Tatsuno, M.; Luczak, A. Transcranial direct current stimulation in stroke rehabilitation: A review of recent advancements. Stroke Res. Treat. 2013, 2013, 170256. [Google Scholar]
- Ilić N, V.; Dubljanin-Raspopović, E.; Nedeljković, U.; Tomanović-Vujadinović, S.; Milanović, S.D.; Petronić-Marković, I.; Ilić, T.V. Effects of anodal tDCS and occupational therapy on fine motor skill deficits in patients with chronic stroke. Restor. Neurol. Neurosci. 2016, 34, 935–945. [Google Scholar] [CrossRef]
- Elsner, B.; Kwakkel, G.; Kugler, J.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: A network meta-analysis of randomised controlled trials. J. Neuroeng. Rehabil. 2017, 14, 95. [Google Scholar] [CrossRef]
- Mills, E.J.; Bansback, N.; Ghement, I.; Thorlund, K.; Kelly, S.; Puhan, M.A.; Wright, J. Multiple treatment comparison meta-analyses: A step forward into complexity. Clin. Epidemiol 2011, 3, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yozbatiran, N.; Der-Yeghiaian, L.; Cramer, S.C. A standardized approach to performing the action research arm test. Neurorehabil. Neural. Repair 2008, 22, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Gladstone, D.J.; Danells, C.J.; Black, S.E. The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabil. Neural. Repair 2002, 16, 232–240. [Google Scholar] [CrossRef]
- Moseley, A.M.; Herbert, R.D.; Sherrington, C.; Maher, C.G. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro). Aust. J. Physiother. 2002, 48, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Foley, N.C.; Teasell, R.W.; Bhogal, S.K.; Speechley, M.R. Stroke rehabilitation evidence-based review: Methodology. Top. Stroke Rehabil. 2003, 10, 1–7. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; pp. 147–150. [Google Scholar]
- Rosenthal, R.; Rubin, D.B. A simple, general purpose display of magnitude of experimental effect. J. Educ. Psychol. 1982, 74, 166. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 Index? Psychol. Methods 2006, 11, 193. [Google Scholar] [CrossRef] [Green Version]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Introduction to Meta-Analysis, 2nd ed.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2021; pp. 59–94. [Google Scholar]
- Simes, R.J. Confronting publication bias: A cohort design for meta-analysis. Stat. Med. 1987, 6, 11–29. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alisar, D.C.; Ozen, S.; Sozay, S. Effects of bihemispheric transcranial direct current stimulation on upper extremity function in stroke patients: A randomized double-blind sham-controlled study. J. Stroke Cerebrovasc. Dis. 2019, 1, 104454. [Google Scholar] [CrossRef] [PubMed]
- Allman, C.; Amadi, U.; Winkler, A.M.; Wilkins, L.; Filippini, N.; Kischka, U.; Stagg, C.J.; Johansen-Berg, H. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci. Transl. Med. 2016, 8, 330re1. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, L.D.; Blanchette, A.K.; Mercier, C.; Bernard-Larocque, V.; Milot, M.H. Efficacy, safety, and tolerability of bilateral transcranial direct current stimulation combined to a resistance training program in chronic stroke survivors: A double-blind, randomized, placebo-controlled pilot study. Restor. Neurol. Neurosci. 2018, 37, 333–346. [Google Scholar] [CrossRef]
- Bornheim, S.; Croisier, J.L.; Maquet, P.; Kaux, J.F. Transcranial direct current stimulation associated with physical- therapy in acute stroke patients-a randomized, triple blind, sham-controlled study. Brain Stimul. 2020, 13, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.S.; Cha, H. Effect of mirror therapy with tDCS on functional recovery of the upper extremity of stroke patients. J. Phys. Ther. Sci. 2015, 27, 1045–1047. [Google Scholar] [CrossRef] [Green Version]
- Dehem, S.; Gilliaux, M.; Lejeune, T.; Delaunois, E.; Mbonda, P.; Vandermeeren, Y.; Detrembleur, C.; Stoquart, G. Effectiveness of a single session of dual-transcranial direct current stimulation in combination with upper limb robotic-assisted rehabilitation in chronic stroke patients: A randomized, double-blind, cross-over study. Int. J. Rehabil. Res. 2018, 41, 138–145. [Google Scholar] [CrossRef]
- Figlewski, K.; Blicher, J.U.; Mortensen, J.; Severinsen, K.E.; Nielsen, J.F.; Andersen, H. Transcranial direct current stimulation potentiates improvements in functional ability in patients with chronic stroke receiving constraint-induced movement therapy. Stroke 2017, 48, 229–232. [Google Scholar] [CrossRef]
- Hesse, S.; Waldner, A.; Mehrholz, J.; Tomelleri, C.; Pohl, M.; Werner, C. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: An exploratory, randomized multicenter trial. Neurorehabil. Neural. Repair 2011, 25, 838–846. [Google Scholar] [CrossRef]
- Kim, D.Y.; Lim, J.Y.; Kang, E.K.; You, D.S.; Oh, M.K.; Oh, B.M.; Paik, N.J. Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am. J. Phys. Med. Rehabil. 2010, 89, 879–886. [Google Scholar] [CrossRef]
- Kim, S.H. Effects of dual transcranial direct current stimulation and modified constraint-induced movement therapy to improve upper-limb function after stroke: A double-blinded, pilot randomized controlled trial. J. Stroke Cerebrovasc. Dis. 2021, 30, 105928. [Google Scholar] [CrossRef]
- Koh, C.L.; Lin, J.H.; Jeng, J.S.; Huang, S.L.; Hsieh, C. Effects of transcranial direct current stimulation with sensory modulation on stroke motor rehabilitation: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2017, 98, 2477–2484. [Google Scholar] [CrossRef]
- Lee, D.G.; Lee, D.Y. Effects of adjustment of transcranial direct current stimulation on motor function of the upper extremity in stroke patients. J. Phys. Ther. Sci. 2015, 27, 3511–3513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Chun, M.H. Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehabil. 2014, 95, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Lindenberg, R.; Zhu, L.L.; Schlaug, G. Combined central and peripheral stimulation to facilitate motor recovery after stroke: The effect of number of sessions on outcome. Neurorehabil. Neural. Repair 2012, 26, 479–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindenberg, R.; Renga, V.; Zhu, L.L.; Nair, D.; Schlaug, G.M.D.P. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 2010, 75, 2176–2184. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Tran, V.D.; Iardella, L.; Dario, P.; Posteraro, F. Randomized, sham-controlled trial based on transcranial direct current stimulation and wrist robot-assisted integrated treatment on subacute stroke patients: Intermediate results. In Proceedings of the 2017 International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; IEEE: London, UK, 2017. [Google Scholar]
- Menezes, I.S.; Cohen, L.G.; Mello, E.A.; Machado, A.G.; Peckham, P.H.; Anjos, S.M.; UGS, I.L.S.; Conti, J.; Plow, E.B.; Conforto, A.B. Combined brain and peripheral nerve stimulation in chronic stroke patients with moderate to severe motor impairment. Neuromodulation 2018, 21, 176–183. [Google Scholar] [CrossRef]
- Mortensen, J.; Figlewski, K.; Andersen, H. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: A double-blind randomized controlled trial. Disabil. Rehabil. 2016, 38, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.G.; Renga, V.; Lindenberg, R.; Zhu, L.; Schlaug, G. Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restor. Neurol. Neurosci. 2011, 29, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabadi, M.H.; Aston, C.E. Effect of transcranial direct current stimulation on severely affected arm-hand motor function in patients after an acute ischemic stroke: A pilot randomized control trial. Am. J. Phys. Med. Rehabil. 2017, 96, S178–S184. [Google Scholar] [CrossRef]
- Rocha, S.; Silva, E.; Foerster, Á.; Wiesiolek, C.; Chagas, A.P.; Machado, G.; Baltar, A.; Monte-Silva, K. The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: A double-blind randomized controlled trial. Disabil. Rehabil. 2015, 38, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Sattler, V.; Acket, B.; Raposo, N.; Albucher, J.F.; Thalamas, C.; Loubinoux, I.; Chollet, F.; Simonetta-Moreau, M. Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke. Neurorehabil. Neural. Repair 2015, 29, 743–754. [Google Scholar] [CrossRef]
- Salazar, A.P.; Cimolin, V.; Schifino, G.P.; Rech, K.D.; Marchese, R.R.; Pagnussat, A. Bi-cephalic transcranial direct current stimulation combined with functional electrical stimulation for upper-limb stroke rehabilitation: A double-blind randomized controlled trial. Ann. Phys. Rehabil Med. 2019, 63, 4–11. [Google Scholar] [CrossRef]
- Straudi, S.; Fregni, F.; Martinuzzi, C.; Pavarelliet, C.; Salvioli, S.; Basaglia, N. tDCS and robotics on upper limb stroke rehabilitation: Effect modification by stroke duration and type of stroke. Biomed. Res. Int. 2016, 2016, 5068127. [Google Scholar] [CrossRef] [Green Version]
- Triccas, L.T.; Burridge, J.H.; Hughes, A.; Verheyden, G.; Desikan, M.; Rothwell, J. A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke. NeuroRehabilitation 2015, 37, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Viana, R.T.; Laurentino, G.E.C.; Souza, R.J.P.; Fonseca, J.B.; Filho, E.M.S.; Dias, S.N.; Teixeira-Salmela, L.F.; Monte-Silva, K.K. Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: A pilot randomized controlled trial. NeuroRehabilitation 2014, 34, 437–446. [Google Scholar] [CrossRef]
- Yao, X.; Cui, L.; Wang, J.; Feng, W.; Bao, Y.; Xie, Q. Effects of transcranial direct current stimulation with virtual reality on upper limb function in patients with ischemic stroke: A randomized controlled trial. J. NeuroEng. Rehabil. 2020, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shaheiwola, N.; Zhang, B.; Jia, J.; Zhang, D. Using tDCS as an add-on treatment prior to FES therapy in improving upper limb function in severe chronic stroke patients: A randomized controlled study. Front. Hum. Neurosci. 2018, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Brien, A.T.O.; Bertolucci, F.; Torrealba-Acosta, G.; Huerta, R.; Fregni, F.; Thibaut, A. Non-invasive brain stimulation for fine motor improvement after stroke: A meta-analysis. Eur. J. Neurol. 2018, 25, 1017–1026. [Google Scholar] [CrossRef]
- Koganemaru, S.; Fukuyama, H.; Mima, T. Two is more than one: How to combine brain stimulation rehabilitative training for functional recovery? Front. Syst. Neurosci. 2015, 9, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdea, G.C. Virtual rehabilitation- benefits and challenges. Methods Inf Med. 2003, 42, 519–523. [Google Scholar]
- Rothstein, H.R.; Sutton, A.J.; Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2006; pp. 73–193. [Google Scholar]
Study | Design | Participants | Interventions | Comparison | Rehabilitation | Outcome Measure | PEDro | |||
---|---|---|---|---|---|---|---|---|---|---|
EXP | CTL | |||||||||
Sample Size | Mean Age, Onset | Sample Size | Mean Age, Onset | |||||||
Alisar et al. [19] | RCT | 16 | 63.56 352.62 days | 16 | 63.50 442.75 days | D-tDCS + OT | Sham tDCS(30 s) + PT/OT | PT/OT for 60–120 min/day, 5 days/week for 3 consecutive day | UE-FM, BSSR-upper extremity, BSSR-hand | 7 |
Allman et al. [20] | RCT | 11 | 59.5 51.2 months | 13 | 66.8 56.6 months | A-tDCS + RAT | Sham tDCS (1 mA/10 s) + RAT | RAT for 60 min/day for 9 consecutive days | ARAT, WMFT, UE-FM | 8 |
Beaulieu et al. [21] | RCT | 7 | 71 55.4 months | 7 | 66.7 86.3 months | D-tDCS + PRT | Sham tDCS (30 s) + PRT | PRT for 60 min/session, 3 times/week for 4 weeks | WMFT, BBT, MAL, mAS | 10 |
Bornheim et al. [22] | RCT | 23 | 62.48 None | 23 | 63.48 None | A-tDCS + PT/OT | Sham tDCS (15 s) + PT/OT | PT/OT for 2 h/day, 5 days/week for 4 weeks | WMFT, FM-UE | 10 |
Cho et al. [23] | RCT | 14 | 58.3 13.2 months | 13 | 60.4 15.5 months | A-tDCS + MT | MT | MT for 20 min/day, 3 times/week for 6 weeks | UE-FM | 4 |
Dehem et al. [24] | RCT | 20 | 62.73 17.47 months | 20 | 58.1 58.5 months | D-tDCS + RAT | sham tDCS + RAT | RAT for 20 min/day for 7 days | BBT, PPT | 7 |
Figlewski et al. [25] | RCT | 22 | 60 9 months | 22 | 61 7 months | A-tDCS + CIMT | Sham tDCS (1.5 mA/30 s) + CIMT | CIMT for 6 h/day for 9 consecutive days | WMFT | 7 |
Hesse et al. [26] | RCT | A-tDCS: 32, 63.9, 3.4 weeks C-tDCS: 32, 65.4, 3.8 weeks Sham tDCS: 32, 65.6, 3.8 weeks | A-tDCS + RAT C-tDCS + RAT | Sham tDCS + RAT | RAT for 20 min/day, 5 times/week for 6 weeks | UE-FM, BBT | 9 | |||
Kim et al. [27] | RCT | A-tDCS: 6, 55.3, 34 days C-tDCS: 5, 53.6, 19.4 days Sham tDCS: 7, 62.9, 22.9 days | A-tDCS + OT C-tDCS + OT | Sham tDCS (1 min) + OT | OT for 30 min/day, 5 times/week for 2 weeks | UE-FM | 8 | |||
Kim. [28] | RCT | 15 | 60.2 12.13 moths | 15 | 60.33 10.93 months | D-tDCS + mCIMT | mCIMT | mCIMT for 5 h/day, 5 days/week for 4 weeks | UE-FM, MAL, accelerometer | 10 |
Koh et al. [29] | RCT | 14 | 55.3 15.8 months | 11 | 56.9 13.4 months | tDCS + SM | Sham-tDCS (30 s) + SM | SM for 30 min/day, 3 times/week for 8 weeks | UE-FM, ARAT | 9 |
Lee et al. [30] | RCT | 12 | None, 6 months | 12 | None, 6 months | A-tDCS + PT | PT | PT 5 times/week for 4 weeks | UE-FM | 4 |
Lee et al. [31] | RCT | C-tDCS + VRT:20, 63.1, 17.8 days C-tDCS: 19, 60.3, 17.4 days VRT: 20, 60.6, 16.9 days | C-tDCS + VRT | C-tDCS, VRT | VRT for 30 min/day, 5 times/week for 3 weeks | UE-FM, MFT, BBT | 7 | |||
Lindenberg et al. [32] | RCT | 10, 50.3, 20.3 months | tDCS + PT/OT | sham tDCS + PT/OT | PT/OT for 60 min/day for 5 consecutive days | UE-FM, WMFT | 9 | |||
Lindenberg et al. [33] | RCT | 10 | 61.7 30.5 months | 10 | 55.8 40.3 months | D-tDCS + PT/OT | Sham tDCS (1.5 mA/30 s) + PT/OT | PT/OT for 60 min/day for 5 consecutive days | WMFT, UE-FM | 7 |
Mazzoleni et al. [34] | RCT | 12 | 70 26.6 days | 12 | 75.3 24.2 days | A-tDCS + RAT | Sham tDCS (5 s) + RAT | RAT for 30 min/day, 5 times/week for 6 weeks | UE-FM, BBT | 5 |
Menezes et al. [35] | RCT | 22, 56.6, 5.7 years | tDCS + RPSS, sham tDCS + RPSS tDCS + shamRPSS,sham tDCS + shamRPSS | RPSS for 2 h/day | Jamar dynamometer | 9 | ||||
Mortensen et al. [36] | RCT | 8 | 65.5 32 months | 8 | 60.8 28.5 months | A-tDCS + OT | Sham-tDCS (30 s) + OT | OT for 30 min/day for 5 consecutive days | JTT | 7 |
Nair et al. [37] | RCT | 7 | 61 33 months | 7 | 56 28 months | C-tDCS + OT | Sham tDCS + OT | OT for 60 min/day for 5 consecutive days | UE-FM | 7 |
Rabadi et al. [38] | RCT | 8 | 62 6.9 days | 8 | 63 5.9 days | C-tDCS + OT | Sham-tDCS (30 s) + OT | OT for 30 min/day, 5 times/week | ARAT | 8 |
Rocha et al. [39] | RCT | A-tDCS: 7, 58.3, 27.5 months C-tDCS: 7, 58.5, 34.2 months Sham tDCS: 7, 58.5, 26.5 months | A-tDCS + CIMT C-tDCS + CIMT | Sham (30 s)-tDCS + CIMT | CIMT for 6 h/day for 4 consecutive weeks | UE-FM | 7 | |||
Sattler et al. [40] | RCT | 10 | 67.6 5.3 days | 10 | 62.7 5.6 days | A-tDCS + rPNS | Sham tDCS (1 min) + rPNS | rPNS for 13 min/day for 5 consecutive days | JTT, UE-FM, Hand dynamometer 9HPT | 9 |
Salazar et al. [41] | RCT | 15 | 60 21 months | 15 | 56 23 months | D-tDCS + FES | Sham tDCS(30 s) + FES | FES for 30 min/day, 5 times/week for 2 weeks | A synchronized optoelectronic system, UE-FM, handgrop strength | 10 |
Straudi et al. [42] | RCT | 12 | 52.7 40.7 weeks | 11 | 64.3 78.2 weeks | D-tDCS + RAT | Sham-tDCS (30 s) + RAT | RAT for 30 min/day, 5 times/week for 2 weeks | UE-FM | 8 |
Triccas et al. [43] | RCT | 12 | 64.3 25.3 months | 11 | 62.5 13.4 months | A-tDCS + RAT | Sham-tDCS (10 s) + RAT | RAT for 60 min/day, 2–3 times/week for 8 weeks | UE-FM, ARAT | 6 |
Viana et al. [44] | RCT | 10 | 56 31.9 months | 10 | 55 35 months | A-tDCS + VRT | Sham-tDCS (10 s) + VRT | VRT for 60 min/day, 3 times/week for 5 weeks | UE-FM, WMFT | 9 |
Yao et al. [45] | RCT | 20 | 63 60.5 days | 20 | 66.2 56.5 days | C-tDCS + VRT | Sham-tDCS + VRT | VRT for 20 min/day, 5 sessions/week for 2 weeks | UE-FM, ARAT | 8 |
Study | Site | Intensity (mA) | Duration (min.) | A/C/D | Electrode Size (cm2) |
---|---|---|---|---|---|
Alisar et al. [19] | A = C3 of the ipsilesional hemisphere | 2 | 30 | D | 22 |
C = C4 of the contralesional hemisphere | |||||
Allman et al. [20] | A = primary motor cortex (M1) of the affected hemisphere | 1 | 20 | A | 35 |
R = Contralateral supraorbital region | |||||
Beaulieu et al. [21] | A = Ipsilesional M1 | 2 | 20 | D | 35 |
C = Contralesionanl M1 | |||||
Bornheim et al. [22] | A = MI of the lesioned side | 1 | 20 | A | 25 |
C = Contralesional eye | |||||
Cho et al. [23] | A = M1 of the affected hemisphere | 2 | 20 | A | 35 |
C = Contralateral supraorbital region | |||||
Dehem et al. [24] | A = M1 of the affected hemisphere | 1 | 20 | D | 35 |
C = M1 of the unaffected hemisphere | |||||
Figlewski et al. [25] | A = M1 of the affected hemisphere | 1.5 | 30 | A | 35 |
C = Contralateral supraorbital region | |||||
Hesse et al. [26] | A (A = M1 of the affected hemisphere | 2 | 20 | A/C | 35 |
C = Contralateral supraorbital region) | |||||
C (C = M1 of the unaffected hemisphere | |||||
A = Contralateral supraorbital region) | |||||
Kim et al. [27] | A (A = M1 of the affected hemisphere | 2 | 20 | A/C | 25 |
C = Contralateral supraorbital region) | |||||
C (C = M1 of the unaffected emisphere | |||||
A = Contralateral supraorbital region) | |||||
Kim. [28] | A = M1 of the affected hemisphere | 1 | 20 | D | - |
C = M1 of the unaffected hemisphere | |||||
Koh et al. [29] | A = M1 of the affected hemisphere | 1.5 | 30 | D | 25 |
C = M1 of the unaffected hemisphere | |||||
Lee et al. [30] | C = Non-affected motor region | 2 | 20 | C | 25 |
A = Contralateral supraorbital region | |||||
Lindenberg et al. [32] | A = M1 of the affected hemisphere | 1.5 | 30 | D | - |
C = Contralateral M1 area | |||||
Lindenberg et al. [33] | A = M1 of the affected hemisphere | 1.5 | 30 | D | 16.3 |
C = Contralateral M1 area | |||||
Mazzoleni et al. [34] | A = Presumed hand area of affected hemisphere | 2 | 20 | D | 35 |
C = Contralateral orbit region | |||||
Menezes et al. [35] | A = M1 of the affected hemisphere | 1 | 20 | A | - |
C = Contralateral supraorbital region | |||||
Mortensen et al. [36] | A = M1 of the affected hemisphere | 1.5 | 20 | A | 35 |
C = Contralateral supraorbital region | |||||
Nair et al. [37] | C = Non-affected motor region | 1 | 30 | C | - |
R = Contralateral supraorbital region | |||||
Rabadi et al. [38] | A (A = M1 of the affected hemisphere | 1 | 30 | A/C | 35 |
C = Contralateral supraorbital region) | |||||
C (C = M1 of the unaffected hemisphere | |||||
A = Contralateral supraorbital region) | |||||
Rocha et al. [39] | A (A = M1 of the affected hemisphere | 1 | A = 13 | A/C | 35 |
C = Contralateral supraorbital region) | |||||
C (C = M1 of the unaffected hemisphere | C = 9 | ||||
A = Contralateral supraorbital region) | |||||
Salazar et al. [41] | A = Ipsilesional M1 | 2 | 30 | D | 25 |
C = Contralesionanl M1 | |||||
Sattler et al. [40] | A= M1 of the affected hemisphere | 1.2 | 13 | A | 35 |
C = Contralateral supraorbital region | |||||
Shaheiwola et al. [46] | A = M1 of the affected hemisphere | 2 | 20 | D | 25 |
C = M1 of the unaffected hemisphere | |||||
Straudi et al. [42] | A = M1 of the affected hemisphere | 1 | 30 | D | 35 |
C = Contralateral M1 area | |||||
Triccas et al. [43] | A = M1 of the affected hemisphere | 1 | 20 | A | 20 |
C = Contralateral supraorbital region | |||||
Viana et al. [44] | A = M1 of the affected hemisphere | 20 | 13 | A | 35 |
C = Contralateral orbit | |||||
Yao et al. [45] | C = M1 of the unaffected hemisphere | 2 | 20 | C | 35 |
R = Contralateral supraorbital region |
Category | Number of Studies | Effect Size | Heterogeneity | |||||
---|---|---|---|---|---|---|---|---|
d | Z | p< | Q Value | df (Q) | p | I2 | ||
Random effects analysis | ||||||||
Constraint-induced movement therapy | 3 | 0.516 | 1.245 | 0.213 | 6.297 | 2 | 0.043 | 68.241 |
Robot-assisted therapy | 6 | 0.256 | 1.674 | 0.094 | 1.475 | 5 | 0.916 | 0.000 |
Occupational therapy/physical therapy | 8 | 0.699 | 4.364 | 0.000 | 7.297 | 7 | 0.399 | 4.064 |
Virtual reality therapy | 3 | 0.510 | 2.506 | 0.012 | 0.659 | 2 | 0.719 | 0.000 |
Overall | 20 | 0.483 | 5.340 | 0.000 | 19.793 | 19 | 0.407 | 4.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Jeun, Y.-J.; Park, H.Y.; Jung, Y.-J. Effect of Transcranial Direct Current Stimulation Combined with Rehabilitation on Arm and Hand Function in Stroke Patients: A Systematic Review and Meta-Analysis. Healthcare 2021, 9, 1705. https://doi.org/10.3390/healthcare9121705
Lee J-H, Jeun Y-J, Park HY, Jung Y-J. Effect of Transcranial Direct Current Stimulation Combined with Rehabilitation on Arm and Hand Function in Stroke Patients: A Systematic Review and Meta-Analysis. Healthcare. 2021; 9(12):1705. https://doi.org/10.3390/healthcare9121705
Chicago/Turabian StyleLee, Joo-Hyun, Yu-Jin Jeun, Hae Yean Park, and Young-Jin Jung. 2021. "Effect of Transcranial Direct Current Stimulation Combined with Rehabilitation on Arm and Hand Function in Stroke Patients: A Systematic Review and Meta-Analysis" Healthcare 9, no. 12: 1705. https://doi.org/10.3390/healthcare9121705
APA StyleLee, J. -H., Jeun, Y. -J., Park, H. Y., & Jung, Y. -J. (2021). Effect of Transcranial Direct Current Stimulation Combined with Rehabilitation on Arm and Hand Function in Stroke Patients: A Systematic Review and Meta-Analysis. Healthcare, 9(12), 1705. https://doi.org/10.3390/healthcare9121705