Comparison of Mean Glandular Dose between Full-Field Digital Mammography and Digital Breast Tomosynthesis
Abstract
:1. Introduction
1.1. Background of Mammography
1.2. Radiation Dose and the Estimated Risk in Mammography
1.3. Practice of Mammographic Techniques in Hospital Canselor Tuanku Muhriz (HCTM)
2. Materials and Methods
2.1. Subjects and Procedures
2.2. Ethical Considerations
2.3. MGD
2.4. Sample Size Calculation and Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. MGD of FFDM and DBT
3.3. Comparison with Other Healthcare Centres
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Poplack, S.P.; Tosteson, A.N.; Grove, M.R.; Wells, W.A.; Carney, P.A. Mammography in 53,803 women from the New Hampshire Mammography Network. Radiology 2000, 217, 832–840. [Google Scholar] [CrossRef]
- Linver, M.N.; Paster, S.B. Mammography outcomes in a practice setting by age: Prognostic factors, sensitivity, and positive biopsy rate. J. Natl. Cancer Inst. Monogr. 1997, 22, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, M.; Quaresma, M.; Berrino, F.; Lutz, J.-M.; De Angelis, R.; Capocaccia, R.; Baili, P.; Rachet, B.; Gatta, G.; Hakulinen, T.; et al. Cancer survival in five continents: A worldwide population-based study (CONCORD). Lancet Oncol. 2008, 9, 730–756. [Google Scholar] [CrossRef]
- Consensus Statement NIH. Breast cancer screening for women ages 40–49. J. Natl. Cancer Inst. 1997, 89, 1015–1020. [Google Scholar]
- Joe, B.N.; Sickles, E.A. The Evolution of Breast Imaging: Past to Present. Radiology 2014, 273, S23–S44. [Google Scholar] [CrossRef] [Green Version]
- Skaane, P.; Hofvind, S.; Skjennald, A. Randomised Trial of Screen-Film Versus Full-Field Digital Mammography with Soft-Copy Reading in Population-Based Screening Program: Follow-up and Final Results of Oslo Ii Study. Radiology 2007, 244, 708–717. [Google Scholar] [CrossRef] [Green Version]
- Knox, M.; O’brien, A.; Szabó, E.; Smith, C.S.; Fenlon, H.M.; Mcnicholas, M.M.; Flanagan, F.L. Impact of Full Field Digital Mammography on the Classification and Mammographic Characteristics of Interval Breast Cancers. Eur. J. Radiol. 2015, 84, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, S.P.; Conant, E.F.; Keller, B.M.; Maidment, A.D.A.; Barufaldi, B.; Weinstein, S.P.; Synnestvedt, M.; Mcdonald, E.S. Implementation of Synthesised Two-Dimensional Mammography in a Population-Based Digital Breast Tomosynthesis Screening Program. Radiology 2016, 281, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.P.; Rumaisa, M.P.; Radhika, S.; Nurismah, M.I.; Norlia, A.; Zulfiqar, M.A. The comparative accuracy of ultrasound and mammography in the detection of breast cancer. Med. J. Malays. 2014, 69, 79–85. [Google Scholar]
- Baharuddin, W.N.A.; Abdullah, S.N.H.S.; Sahran, S.; Qasem, A.; Hussain, R.I.; Abdullah, A. Breast Tissue Classification via Interval Type 2 Fuzzy Logic Based Rough Set. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1792–1802. [Google Scholar] [CrossRef]
- Qasem, A.; Abdullah, S.N.H.S.; Sahran, S.; Hussain, R.I.; Ismail, F. An Accurate Rejection Model for False Positive Reduction of Mass Localisation in Mammogram. Pertanika J. Sci. Technol. 2017, 25, 49–62. [Google Scholar]
- James, J.R.; Pavlicek, W.; Hanson, J.A.; Boltz, T.F.; Patel, B.K. Breast Radiation Dose with Cesm Compared with 2d Ffdm and 3d Tomosynthesis Mammography. Am. J. Roentgenol. 2017, 208, 362–372. [Google Scholar] [CrossRef]
- Miglioretti, D.L.; Lange, J.; Van Den Broek, J.J.; Lee, C.I.; Van Ravesteyn, N.T.; Ritley, D.; Kerlikowske, K.; Fenton, J.J.; Melnikow, J.; De Koning, H.J.; et al. Radiation-Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modeling Study. Ann. Intern. Med. 2016, 164, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Sulieman, A.; Serhan, O.; Al-Mohammed, H.I.; Mahmoud, M.Z.; Alkhorayef, M.; Alonazi, B.; Manssor, E.; Yousef, A. Estimation of cancer risks during mammography procedure in Saudi Arabia. Saudi J. Biol. Sci. 2019, 26, 1107–1111. [Google Scholar] [CrossRef]
- Allisy-Roberts, P.J.; Williams, J. Farr’s Physics for Medical Imaging; Elsevier Health Sciences: Philadelphia, PA, USA, 2020; ISBN 9780702028441. [Google Scholar]
- Bushberg, J.T.; Boone, J.M. The Essential Physics of Medical Imaging; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011; ISBN 9780781780575. [Google Scholar]
- Dance, D.R.; Skinner, C.L.; Young, K.C.; Beckett, J.R.; Kotre, C.J. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys. Med. Biol. 2000, 45, 3225–3240. [Google Scholar] [CrossRef]
- Houssami, N.; Lång, K.; Hofvind, S.; Zackrisson, S.; Bernardi, D.; Hunter, K.; Askie, L.; Skaane, P. Effectiveness of digital breast tomosynthesis (3D-mammography) in population breast cancer screening: A protocol for a collaborative individual participant data (IPD) meta-analysis. Transl. Cancer Res. 2017, 6, 869–877. [Google Scholar] [CrossRef]
- Baek, J.E.; Kang, B.J.; Kim, S.H.; Lee, H.S. Radiation dose affected by mammographic composition and breast size: First application of a radiation dose management system for full-field digital mammography in Korean women. World J. Surg. Oncol. 2017, 15, 38. [Google Scholar] [CrossRef] [Green Version]
- Alakhras, M.M.; Mello-Thoms, C.; Bourne, R.; Rickard, M.; Diffey, J.; Brennan, P.C. Radiation dose differences between digital mammography and digital breast tomosynthesis are dependent on breast thickness. In SPIE Medical Imaging; SPIE; International Society for Optics and Photonics: San Diego, CA, USA, 2016; p. 9783. [Google Scholar]
- Merad, A.; Saadi, S.; Khelassi-Toutaoui, N. Comparison of two full field digital mammography systems: Image quality and radiation dose. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2018; Volume 1994, p. 060008. [Google Scholar]
- Jamal, N.; Ng, K.-H.; McLean, D. A study of mean glandular dose during diagnostic mammography in Malaysia and some of the factors affecting it. Br. J. Radiol. 2003, 76, 238–245. [Google Scholar] [CrossRef]
- Borg, M.; Badr, I.; Royle, G.J. A study to determine the differences between the displayed dose values for two full-field digitalmammography units and values calculated using a range of Monte-Carlo-based techniques:a phantom study. Radiat. Prot. Dosim. 2013, 154, 217–228. [Google Scholar] [CrossRef]
- Chijoke, W.O.; Adeniji-Sofoluwe, A.T.; Jibiri, N.N. Evaluation of mean glandular dose and assessment of the risk of radiation induced carcinogenesis in women following screening mammography in a low resource setting. J. Radiat. Res. Appl. Sci. 2018, 11, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, M.; Morán, P.; Ten, J.I.; Fernández Soto, J.M.; Cepeda, T.; Vañó, E. Patient dose in digital mammography. Med. Phys. 2004, 31, 2471–2479. [Google Scholar] [CrossRef] [PubMed]
- Hermann, K.-P.; Obenauer, S.; Funke, M.; Grabbe, E. Magnification mammography: A comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications. Eur. Radiol. 2002, 12, 2188–2191. [Google Scholar] [CrossRef]
- Uhlenbrock, D.F.; Mertelmeier, T. Comparison of Anode/Filter Combinations in Digital Mammography with Respect to the Average Glandular Dose. In RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der Bildgebenden Verfahren; Georg Thieme Verlag KG: Stuttgart, NY, USA, 2009; Volume 181, pp. 249–254. [Google Scholar]
- Aminah, M.; Ng, K.H.; Abdullah, B.J.J.; Jamal, N. Optimal beam quality selection based on contrast-to-noise ratio and mean glandular dose in digital mammography. Australas. Phys. Eng. Sci. Med. 2010, 33, 329–334. [Google Scholar] [CrossRef]
- Ismailos, E.; Mastorakou, I.; Kelekis, N.L.; Papadopoulos, K.P.; Efstathopoulos, E.P.; Panayiotakis, G.; Kelekis, D.A. Clinical evaluation of manual and automatic exposure control techniques in film-based chest radiography. Br. J. Radiol. 1996, 69, 650–654. [Google Scholar] [CrossRef]
- Gosch, P.C.; Neilson, M. Screening for breast cancer with mammography. Cochrane Database Syst. Rev. 2001, 4, CD001877. [Google Scholar]
- Gennaro, G.; Bernardi, D.; Houssami, N. Radiation dose with digital breast tomosynthesis compared to digital mammography: Per-view analysis. Eur. Radiol. 2018, 28, 573–581. [Google Scholar] [CrossRef] [PubMed]
Projection | kVp | mAs | Target/Filter | Acquisition Mode |
---|---|---|---|---|
RCC | 29.2 ± 1.9 (8–32) | 126.8 ± 40.2 (11–263) | W/Al, W/Rh, W/Ag | FFDM |
RMLO | 30.0 ± 2.7 (20–61) | 148.3 ± 43.4 (53–345) | ||
LCC | 29.5 ± 2.7 (27–60) | 131.4 ± 45.1 (11–361) | ||
LMLO | 30.0 ± 1.7 (25–36) | 150.3 ± 47.3 (2–399) | ||
RCC | 31.2 ± 1.9 (25–36) | 58.3 ± 9.9 (36.1–120) | DBT | |
RMLO | 32.4 ± 2.9 (26–60) | 63.6 ± 10.8 (37.5–120) | ||
LCC | 31.4 ± 2.1 (25–45) | 59.0 ± 9.8 (36.8–120) | ||
LMLO | 32.6 ± 2.7 (26–44) | 64.2 ± 11.3 (37–120) |
Projection | CBT (cm) | MGD (mGy) | Acquisition Mode |
---|---|---|---|
RCC | 52.4 ± 10.2 (15–75) | 1.42 ± 0.50 (0.31–3.21) | FFDM |
RMLO | 58.3 ± 12.2 (19–92) | 1.74 ± 0.63 (0.62–5.00) | |
LCC | 53.6 ± 10.8 (19–107) | 1.49 ± 0.61 (0.41–6.02) | |
LMLO | 59.4 ± 12.9 (16–100) | 1.80 ± 0.72 (0.55–6.91) | |
RCC | 52.4 ± 10.2 (15–75) | 1.84 ± 0.45 (0.96–3.13) | DBT |
RMLO | 58.3 ± 12.2 (19–92) | 2.17 ± 0.64 (1.06–4.21) | |
LCC | 53.6 ± 10.8 (19–107) | 1.90 ± 0.51 (0.98–4.90) | |
LMLO | 59.4 ± 12.9 (16–100) | 2.24 ± 0.69 (1.04–4.97) |
View/Projection | Technique | Median MGD (mGy) | p-Value |
---|---|---|---|
RCC | FFDM | 1.42 | <0.005 |
DBT | 1.84 | ||
LCC | FFDM | 1.49 | <0.005 |
DBT | 1.9 | ||
RMLO | FFDM | 1.74 | <0.005 |
DBT | 2.17 | ||
LMLO | FFDM | 1.8 | <0.005 |
DBT | 2.24 |
CC | MLO | p-Value | |
---|---|---|---|
CBT (cm) | R: 52.4 | R: 58.3 | <0.005 |
L: 53.6 | L: 59.4 |
Data Source | Number of Patients | Mean CBT (mm) | Mean MGD per Film (FFDM) | Mean MGD per Film (DBT) |
---|---|---|---|---|
Present study | 462 | CC: 52.9 MLO: 58.8 | CC: 1.46 MLO: 1.77 | CC: 1.87 MLO: 2.21 |
Jamal et al., (2003) Malaysia (23) | 316 | CC: 37 MLO: 45 | CC: 1.54 MLO: 1.82 | - |
Chevalier et al., (2003) Spain (26) | 5034 | 52 | CC: 1.8 MLO: 1.95 | - |
Saadi et al., (2018) Algeria (22) | 32 | CC: 53.1 MLO: 57.9 | CC: 1.8 MLO: 2.03 | CC: 2.48 MLO: 2.71 |
Chijoke et al., (2017) Nigeria (25) | 427 | 51.6 | CC: 2.21 MLO: 2.63 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teoh, K.C.; Manan, H.A.; Mohd Norsuddin, N.; Rizuana, I.H. Comparison of Mean Glandular Dose between Full-Field Digital Mammography and Digital Breast Tomosynthesis. Healthcare 2021, 9, 1758. https://doi.org/10.3390/healthcare9121758
Teoh KC, Manan HA, Mohd Norsuddin N, Rizuana IH. Comparison of Mean Glandular Dose between Full-Field Digital Mammography and Digital Breast Tomosynthesis. Healthcare. 2021; 9(12):1758. https://doi.org/10.3390/healthcare9121758
Chicago/Turabian StyleTeoh, Kar Choon, Hanani Abdul Manan, Norhashimah Mohd Norsuddin, and Iqbal Hussain Rizuana. 2021. "Comparison of Mean Glandular Dose between Full-Field Digital Mammography and Digital Breast Tomosynthesis" Healthcare 9, no. 12: 1758. https://doi.org/10.3390/healthcare9121758
APA StyleTeoh, K. C., Manan, H. A., Mohd Norsuddin, N., & Rizuana, I. H. (2021). Comparison of Mean Glandular Dose between Full-Field Digital Mammography and Digital Breast Tomosynthesis. Healthcare, 9(12), 1758. https://doi.org/10.3390/healthcare9121758