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Abstract: Evidence shows that second language (L2) learning affects cognitive function. Here in
this work, we compared brain activation in native speakers of Mandarin (L1) who speak Japanese
(L2) between and within two groups (high and low L2 ability) to determine the effect of L2 ability
in L1 and L2 speaking tasks, and to map brain regions involved in both tasks. The brain activation
during task performance was determined using prefrontal cortex blood flow as a proxy, measured by
functional near-infrared spectroscopy (fNIRS). People with low L2 ability showed much more brain
activation when speaking L2 than when speaking L1. People with high L2 ability showed high-level
brain activation when speaking either L2 or L1. Almost the same high-level brain activation was
observed in both ability groups when speaking L2. The high level of activation in people with high
L2 ability when speaking either L2 or L1 suggested strong inhibition of the non-spoken language. A
wider area of brain activation in people with low compared with high L2 ability when speaking L2 is
considered to be attributed to the cognitive load involved in code-switching L1 to L2 with strong
inhibition of L1 and the cognitive load involved in using L2.

Keywords: bilingualism; Mandarin/Japanese; functional brain imaging; prefrontal cortex; speaking
task; functional near-infrared spectroscopy; cognitive load; inhibition

1. Introduction

Humans learn their first language (hereinafter referred to as L1) naturally from their
parents in parallel with lateralization of the brain. A mostly right-handed person has
their language center in the left hemisphere. Both the Wernicke and the Broca areas
in the left hemisphere become active when people are trying to understand or express
something in language [1]. Antoniou et al. [2] elucidated how the prefrontal cortex was
involved in learning a second language (hereinafter referred to as L2). Rodriguez-Fornells
et al. [3] reported that the prefrontal cortex, especially Brodmann Areas (BA10 and BA46),
is particularly involved in the early stages of L2 acquisition. Additionally, it was reported
that the volume of white matter in the prefrontal cortex of the right hemisphere increases
and neural bonds strengthen with L2 acquisition [4]. Moreover, density of both gray matter
and white matter was revealed to have increased with L2 acquisition [5–7] Furthermore,
patterns of brain activation were associated with age of L2 learning, task difficulty, and
proficiency of L2 ability.

Onset of dementia in bilinguals is about 4–6 years later than in monolinguals, accord-
ing to a large-scale investigation [8]. The reason is believed to lie in cognitive processes
involved in inhibition of one language in favor of another while code-switching between
languages. It was suggested that use of multiple languages over many years requiring
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code-switching and inhibition affects cognitive function [6,9,10]. Additionally, it has been
reported that the anterior middle frontal gyrus, especially BA46, plays a central role in
language production and is involved in control of cognitive function [11]. Evidence that
the prefrontal cortex is involved in switching between languages was demonstrated by
brain activation in this location during code-switching tasks [12].

In tasks requiring repetitive code-switching, it was confirmed that the number of
times required for code-switching was higher in bilinguals than in less proficient speakers
of the second language, and reaction time was shorter in the former [9,13]. Accordingly, it
has been well documented that there are structural, functional, and cognitive associations
between language function and the prefrontal cortex activity of bilinguals. Therefore, it was
suggested that L2 learning affects cognitive function [14,15]. Nowadays, with increasing
longevity worldwide, and considering the onset of dementia is delayed in second-language
speakers, this is an important area of research.

Regarding the relationship between brain activation and language proficiency, there
have been many studies of bilinguals including Japanese/English (L1/L2) [4] and En-
glish/Mandarin (L1/L2) speakers [5]. Among these languages, English uses phonetic
characters, whereas Mandarin and Japanese use ideographs. It can be expected that brain
activation patterns may differ slightly due to the differences among these languages, and
that brain activity patterns may change when the code-switching function is activated or
repeatedly employed. In particular, Mandarin and Japanese use almost the same Kanji
characters (漢字), but their pronunciation and grammar differ. In Mandarin, the order of
Kanji characters in speech or text is closer to that of English as subject–verb–object (SVO),
but that of Japanese is (S)OV. Additionally, Mandarin contains only Kanji, whereas Japanese
includes Hiragana and Katakana too. Katakana was derived from English, Latin, and other
languages. There are many differences between Mandarin and Japanese languages due
to their different historical backgrounds and cultures. It would be useful to clarify how
L2 proficiency affects prefrontal cortex activation in people speaking Mandarin/Japanese
(L1/L2). As far as the authors are aware, no previous study has investigated this.

Here, a novel speaking task was developed wherein Mandarin/Japanese (L1/L2)
speakers had to describe stimuli using L1 or L2. Simultaneously, cerebral blood flow
changes in the prefrontal cortex as proxy for prefrontal cortex activation were analyzed.
The relationships between such activation and L2 proficiency were analyzed and discussed.

2. Methods
2.1. Subjects

Twenty-four right-handed, healthy Chinese speakers of Mandarin with Japanese as a
second language were divided into low- and high-L2-ability groups, determined by self-
evaluation questionnaire with both L1 and L2 scored on a scale of 1 to 10 in all four domains:
listening, speaking, writing, and reading [16–18]. Each individual’s self-evaluation was
obtained according to the guideline of 1 (very poor level), 5 (adequate level), or 10 (perfect
level). Those with high L2 ability had lived in Japan for over 20 years as adults and used
Japanese in their daily activities and Mandarin at home. They were essentially bilingual.
In contrast, those with low L2 ability were graduate students who had lived in Japan
for only two years or so. Although they spoke Japanese, their Mandarin proficiency was
clearly higher. In addition, cognitive reserve was measured using Cognitive Reserve Index
questionnaire (CRiq) [19].

Characteristics of the study participants with standard deviation (SD) and p-value are
shown in Table 1. Ethical approval for the present study was obtained from Hiroshima
International University, and the study adhered to the protocols of the Helsinki Declaration.
All subjects provided written informed consent.



Healthcare 2021, 9, 412 3 of 16

Table 1. Characteristics of study participants.

All Subjects Are Native Speakers of Mandarin (L1) with Japanese as a Second Language (L2)

Characteristics Group 1
(n = 12)

Group 2
(n = 12) p-Value

Age (years: mean ± SD) 51.1 ± 5.0 24.9 ± 1.4 <0.0001

Sex (female/male) 5/7 6/6

Living years in Japan (years: mean ± SD) 22.3 ± 3.5 2.75 ± 1.1 <0.0001

AOA * (years: mean ± SD) 27.3 ± 2.5 22.4 ± 0.5 <0.0001

Japanese (L2)

Reading (mean score ± SD) 9.2 ± 0.4 4.2 ± 1.8 <0.0001

Listening (mean score ± SD) 9.2 ± 0.7 4.0 ± 1.8 <0.0001

Writing (mean score ± SD) 8.1 ± 1.2 2.8 ± 1.8 <0.0001

Speaking (mean score ± SD) 8.5 ± 1.2 3.4 ± 1.8 <0.0001

total-Japanese (mean score ± SD) 8.8 ± 0.7 3.6 ± 1.7 <0.0001

Mandarin (L1)

Reading (mean score ± SD) 9.4 ± 0.9 9.3 ± 0.9 =0.8215

Listening (mean score ± SD) 9.5 ± 0.7 9.8 ± 0.4 =0.150

Writing (mean score ± SD) 9.0 ± 0.6 9.0 ± 1.1 =1.0000

Speaking (mean score ± SD) 9.5 ± 0.5 9.7 ± 0.5 =0.3140

total-Japanese (mean score ± SD) 9.4 ± 0.5 9.5 ± 0.6 =0.6553

Criq **

CRiq-E *** (mean score ± SD) 132 ± 2 102 ± 5 <0.0001

CRiq-W **** (mean score ± SD) 108 ± 15 91 ± 1 =0.0006

CRiq-L ***** (mean score ± SD) 107 ± 8 89 ± 1 <0.0001

total-CRiq (mean score ± SD) 120 ± 8 92 ± 3 <0.0001

group 1 = High L2 ability group 2 = Low L2 ability

* AOA = age of acquisition of L2. ** CRiq = Cognitive Reserve Index questionnaire; *** E = Education; **** W = Working Activity; ***** L =
Leisure Time [19]. Scores: L1 and L2 scores from self-assessment questionnaire previously described [16–18].

2.2. Speaking Task

Subjects were tasked to describe in Japanese or Mandarin stimuli that appeared
on a PC screen in the sequence of 15 s pre-rest–30 s speaking task–15 s post-rest, as
shown in Figure 1. Briefly, six PowerPoint slides displaying monochrome kanji characters,
shared by both languages but with different pronunciations of mountain (山—shan/yama),
large (大—da/dai, people (人, ren/hito), and water (水, shui/mizu), and shapes (triangle
4—sanjiao/sankaku, (rectangle �—sijiao/shikaku) of different sizes and locations were
presented, and subjects were tasked to describe the stimuli using either L1 or L2. After
subjects confirmed that they understood the task requirements, the experimenter retreated
out of vision of the subjects and the slide show commenced. The target language was
indicated at the top of each slide. Between stimuli slides, a slide instructing subjects to
repeatedly pronounce at normal conversation speed the vowels “a” (阿 in Mandarin orあ
in Japanese), “i” (伊 orい), and “u” (烏 orう) in order for 30 s was presented, which was
deemed to represent 15 s pre- and post-rest periods and was used to obtain baseline. The
slide show progressed regardless of whether or not subjects had completed their responses
to stimuli slides.
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Figure 1. Speaking task slide schedule.

2.3. Measurement Environment

The tasks were performed in a quiet room under adequate lighting with the tempera-
ture maintained at about 25 ◦C. The subjects sat on a seat in an upright position and were
instructed to maintain a still posture with their hands on their knees and to keep their head
still, which was supported by a cushion as shown in Figure 2, while wearing a device to
record and measure brain activation.

Figure 2. Arrangement of sensor array and 22 channels above the prefrontal cortex.

2.4. Measuring Positions

Data of localized blood oxygenation levels in the prefrontal cortex indicating neural
activity were acquired by a functional near-infrared spectroscopy (fNIRS) system that
included an array of sensors (FOIRE-3000, Shimadzu Co. Japan) worn on the head, which
recorded change in cerebral blood flow during task performance. The array of sensors
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(fNIRS sources and detectors) was equipped with 22 channels and was attached to the
head in a location positioned from the prefrontal area in accordance with the International
10–20 system (Figure 2). The sensors were positioned across from each other at 3 cm
intervals. Basing on the modified Beer–Lambert law, the oxy-hemoglobin change (∆oxy-
Hb, mM·mm) was acquired from the cortical concentration levels. The sites to measure
oxy-hemoglobin change associated with cerebral blood flow change were determined using
a 3D digitizer (FASTRACK, Polhemus) as previously described [20,21]. Their placements
coincided with Brodmann Areas BA9, BA10, and BA46. The physiological noise from
cardiac signal and respiration, and so forth was filtered by a temporal low-pass cut-off at
0.1 Hz.

2.5. Data Analysis
2.5.1. Approximate Integrals of Cerebral Blood Flow Change

Figure 3 shows sample waveforms of cerebral blood flow change obtained from a
channel in a subject. Red, blue, and green lines show change in ∆oxy-Hb, ∆deoxy-Hb, and
∆total-Hb, respectively. Each line was smoothed by 5 data (sampling rate: 0.13 s/datum)
for three times. The data obtained during the 5 s pre- and post-rest period were taken as
baseline data for comparison within subjects.
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Figure 3. Sample waveforms of cerebral blood flow obtained from a channel in a subject: red,
∆oxy-Hb (oxy-hemoglobin change); blue, ∆deoxy-Hb; green, ∆total-Hb.

The data of ∆oxy-Hb obtained during performance of the speaking task were approxi-
mately integrated for analysis of cerebral blood flow change using a method previously
described [22]. Note that ∆deoxy-Hb was not used in the following analysis.

Since the data was parametric and showed a normal distribution, comparisons be-
tween groups were assessed using Student’s t-test with differences with a probability of
p < 0.05 deemed significant. Additionally, the correlations between the L2 ability and
the cerebral blood flow changes while speaking each language were obtained by linear
regression analysis using the least-squares estimation.

2.5.2. Common Activation Regions

To map brain regions that were commonly activated during task performance, the data
of ∆oxy-Hb were treated using a Statistical Parametric Mapping software package (NIRS-
SPM; Welcome Trust Centre for Neuroimaging, London, UK) run in a MATLAB-based
environment. This treatment is frequently applied when dealing with magnetic resonance
imaging by using the general linear model analysis as described [23], after excluding the
activations caused by non-task factors such as subjects’ body movement. The temporal
autocorrelation was estimated and then removed through a Gaussian smoothing with
a full width at half maximum at two seconds. A detrending algorithm, which is based



Healthcare 2021, 9, 412 6 of 16

on the wavelet minimum description length, was applied to correct the signal distortion.
The beta value as the individual task-related activity was obtained from a general linear
model analysis with the hemodynamic response curve to model the ∆oxy-Hb values. The
topography was drawn from the beta values, which correspond to the sites of sensors.
When the SPM t-statistic maps were calculated for group analysis, the common regions of
activation were determined as significantly (p < 0.05) more active than others during the
task performance.

3. Results
3.1. Language Proficiency

Results of the self-assessed language proficiency questionnaire are presented in Table 1.
Figure 4 shows the mean scores with standard deviation for L1 and L2 overall ability in
both L2-ability groups. In the high-L2-ability group, there was no significant difference
between L1 and L2 ability. In the low-L2-ability group, L2 ability was significantly lower
than L1 ability (p < 0.001). There was no significant between-group difference in L1 ability.
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Figure 4. Self-rated L1 and L2 ability of native speakers of Mandarin (L1) who speak Japanese (L2).

3.2. Cerebral Blood Flow Change in the Prefrontal Cortex

Figure 5 shows approximate integral values of ∆oxy-Hb observed in the prefrontal
cortex for both high- and low-L2-ability speakers in performance of a speaking task. The
horizontal axis indicates the speaking task target language. The vertical axis indicates the
integrated amounts of ∆oxy-Hb measured in the prefrontal cortex. Error bars indicate the
standard deviation.

In high-L2-ability speakers, the value of ∆oxy-Hb in the prefrontal cortex was slightly
higher when speaking L1 than when speaking L2, albeit not significantly. In contrast, in low-
L2-ability speakers, the value was significantly lower when speaking L1 than when speak-
ing L2. Moreover, the value of ∆oxy-Hb in the high-L2-ability speakers was significantly
higher than that in the low-L2-ability speakers when speaking L1 (p < 0.005). Furthermore,
there was no significant between-group difference when speaking L2 (p = 0.795).
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3.3. Cerebral Blood Flow Change in the Left and Right Prefrontal Cortices

Figure 6 compares ∆oxy-Hb values with standard deviation in left and right hemi-
spheres of the prefrontal cortex within groups for both speaking tasks. In high-L2-ability
speakers, the values were higher in the left than in the right hemisphere whichever lan-
guage was spoken. The same was true in low-L2-ability speakers, however in these subjects
the value in the right hemisphere was below the baseline value during performance of the
L1 task.
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3.4. Cerebral Blood Flow Change at Each of the 22 Channels

Table 2 compares mean ± SD of values of cerebral blood flow change and significance
differences between high- and low-L2-ability speakers at each channel during performance
of the speaking tasks. High-L2-ability speakers showed significantly higher values than
those of low-L2-ability speakers, in all channels but 3, 4, and 8 located in the left dorsolateral
prefrontal cortex when speaking L1 (p < 0.05). In contrast, there was no between-group
difference in any channel when speaking L2.

Table 2. Values of ∆oxy-Hb at 22 channels in high- and low-L2-ability speakers when speaking Mandarin (L1) or Japanese
(L2): red indicates significant between-group differences (p < 0.05).

L1 Task L2 Task

High-L2-Ability
Group

Low-L2-Ability
Group

High-L2-Ability
Group

Low-L2-Ability
Group

Channel Mean SD Mean SD p-Value Mean SD Mean SD p-Value

ch1 0.739 0.621 −0.0570 0.705 0.0077 0.641 0.863 0.837 0.855 0.5819

ch2 0.606 0.636 −0.1490 0.660 0.0093 0.532 0.946 0.414 0.843 0.7508

ch3 0.611 0.619 0.1130 0.569 0.0517 0.585 0.806 0.537 0.879 0.8892

ch4 0.840 1.065 0.1810 0.719 0.0894 0.748 1.370 0.936 1.150 0.719

ch5 0.876 0.659 −0.2160 0.818 0.0016 0.699 0.833 0.698 1.180 0.9984

ch6 0.516 0.653 −0.4860 0.772 0.0024 0.318 0.100 0.350 1.004 0.9376

ch7 0.487 0.507 −0.0930 0.581 0.0162 0.327 0.801 0.460 0.775 0.6841

ch8 0.663 0.725 0.2160 0.649 0.1258 0.508 1.081 0.827 0.820 0.4248

ch9 1.094 0.885 0.4080 0.588 0.0358 0.729 1.246 1.252 0.976 0.265

ch10 0.621 0.664 −0.5850 0.732 0.0003 0.364 0.653 0.442 1.192 0.8451

ch11 0.618 0.459 −0.2250 0.533 0.0004 0.422 0.598 0.680 0.936 0.4287

ch12 0.672 0.520 0.0580 0.529 0.009 0.630 0.664 0.692 0.725 0.829

ch13 1.132 0.674 0.3490 0.685 0.0099 0.894 0.290 1.420 0.290 0.2126

ch14 0.851 0.804 0.0500 0.427 0.0059 0.528 0.587 0.745 1.267 0.5944

ch15 0.769 0.927 −0.4180 0.492 0.0007 0.539 1.007 0.992 1.262 0.3415

ch16 1.351 1.081 −0.1440 0.984 0.0018 1.102 1.105 1.267 1.064 0.7129

ch17 1.070 0.853 −0.0160 0.480 0.0009 0.845 0.953 1.073 1.059 0.5858

ch18 1.005 0.703 0.2550 0.575 0.0091 0.956 0.775 1.158 1.002 0.5856

ch19 1.135 0.867 −0.1270 0.909 0.0021 1.056 1.146 0.749 0.841 0.4626

ch20 1.200 1.074 −0.2870 1.024 0.0022 1.130 1.094 0.693 1.027 0.3242

ch21 1.201 1.199 −0.2430 0.869 0.0027 1.221 1.044 0.784 1.079 0.3244

ch22 0.951 0.757 0.0020 0.711 0.0044 1.119 0.980 0.712 1.038 0.3339

Total
right 7.932 6.379 −2.4990 4.791 0.0002 6.229 7.453 6.602 8.604 0.9106

Total left 9.239 6.990 1.3200 4.209 0.0028 8.236 8.480 9.391 7.542 0.7277

Table 3 compares mean± SD of values of cerebral blood flow change between speaking
tasks in high-L2-ability speakers at each channel. No significant difference was observed at
any channel.
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Table 3. Values of ∆oxy-Hb at 22 channels in high-L2-ability speakers when speaking Mandarin (L1)
or Japanese (L2).

L1 Task L2 Task

Channel Mean SD Mean SD p-Value

ch1 0.739 0.621 0.641 0.863 0.7526

ch2 0.606 0.636 0.532 0.946 0.8248

ch3 0.611 0.619 0.585 0.806 0.9310

ch4 0.840 1.065 0.748 1.370 0.8555

ch5 0.876 0.659 0.699 0.833 0.5693

ch6 0.516 0.653 0.318 0.100 0.5706

ch7 0.487 0.507 0.327 0.801 0.5664

ch8 0.663 0.725 0.508 1.081 0.6850

ch9 1.094 0.885 0.729 1.246 0.4180

ch10 0.621 0.664 0.364 0.653 0.3492

ch11 0.618 0.459 0.422 0.598 0.3780

ch12 0.672 0.520 0.630 0.664 0.8660

ch13 1.132 0.674 0.894 0.290 0.4874

ch14 0.851 0.804 0.528 0.587 0.2721

ch15 0.769 0.927 0.539 1.007 0.5659

ch16 1.351 1.081 1.102 1.105 0.5832

ch17 1.07 0.853 0.845 0.953 0.5486

ch18 1.005 0.703 0.956 0.775 0.8723

ch19 1.135 0.867 1.056 1.146 0.8506

ch20 1.200 1.074 1.130 1.094 0.8769

ch21 1.201 1.199 1.221 1.044 0.9648

ch22 0.951 0.757 1.119 0.98 0.6439

Total right 7.932 6.379 6.229 7.453 0.5539

Total left 9.239 6.990 8.236 8.480 0.7549

Table 4 compares mean± SD of values of cerebral blood flow change between speaking
tasks in low-L2-ability speakers at each channel. When speaking L1, values at most
channels in the right frontal cortex of these speakers tended to be below the baseline value.
Consequently, when speaking L2, the values at those channels were significantly higher
(p < 0.05).

Table 4. Values of ∆oxy-Hb at 22 channels in low-L2-ability speakers when speaking Mandarin (L1)
or Japanese (L2). Red indicates significant between-task differences (p < 0.05).

L1 Task L2 Task

Channel Mean SD Mean SD p-Value

ch1 −0.057 0.705 0.837 0.855 0.0106

ch2 −0.149 0.660 0.414 0.843 0.0821

ch3 0.113 0.569 0.537 0.879 0.1742

ch4 0.181 0.719 0.936 1.150 0.0667

ch5 −0.216 0.818 0.698 1.180 0.0381
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Table 4. Cont.

L1 Task L2 Task

Channel Mean SD Mean SD p-Value

ch6 −0.486 0.772 0.350 1.004 0.0322

ch7 −0.093 0.581 0.460 0.775 0.0605

ch8 0.216 0.649 0.827 0.820 0.0552

ch9 0.408 0.588 1.252 0.976 0.0176

ch10 −0.585 0.732 0.442 1.192 0.0185

ch11 −0.225 0.533 0.680 0.936 0.0081

ch12 0.058 0.529 0.692 0.725 0.0227

ch13 0.349 0.685 1.420 0.290 0.0073

ch14 0.050 0.427 0.745 1.267 0.0855

ch15 −0.418 0.492 0.992 1.262 0.0016

ch16 −0.144 0.984 1.267 1.064 0.0027

ch17 −0.016 0.480 1.073 1.059 0.0037

ch18 0.255 0.575 1.158 1.002 0.0013

ch19 −0.127 0.909 0.749 0.841 0.0266

ch20 −0.287 1.024 0.693 1.027 0.0287

ch21 −0.243 0.869 0.784 1.079 0.0175

ch22 0.002 0.711 0.712 1.038 0.0630

Total right −2.499 4.791 6.602 8.604 0.0041

Total left 1.320 4.209 9.391 7.542 0.0038

3.5. Correlations between Cerebral Blood Flow Change and Language Proficiency

Figure 7 shows relations between L2 ability and values of cerebral blood flow change
in the prefrontal cortex when speaking each language. The solid lines were obtained by
linear regression analysis using the least-squares estimation. With increase in L2 ability,
cerebral blood flow increased when speaking L1. A correlation coefficient (R) of 0.62
corresponding to a coefficient of determination (R2) of 0.39 was obtained, indicating strong
correlation between L2 ability and values of ∆oxy-Hb with clear predictability. On the
other hand, there was no correlation between L2 ability and blood flow change when
speaking L2.

3.6. Common Activation Area Obtained from NIRS-SPM Analysis

Figure 8 depicts common activation regions in both low- and high-L2-ability speakers
speaking L1 and L2, which were determined as those areas significantly (p < 0.05) more
activated than other areas during task performance. In low-L2-ability speakers, regions
BA9 and BA46 in the left dorsolateral prefrontal cortex (DLPFC), corresponding to channels
3, 4, 8, and 9, were commonly activated when speaking L1. And regions BA9 and BA46 in
the DLPFC, and BA10 in the frontal pole, corresponding to channels 3, 4, 7–9, 12, 13, and
16–22, were commonly activated when they spoke L2. In high-L2-ability speakers, not only
the left but also the right DLPFC was activated when speaking L1, and regions in both the
right and left hemispheres were activated when speaking L2.
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4. Discussion

In low-L2-ability speakers, activation was detected in the left side of the brain only
when speaking L1, but when speaking L2 their activation region expanded to a wide range
in the frontal cortex, including the frontal pole. In contrast, in high-L2-ability speakers,
both sides of the brain were activated in either task. It is suggested that the activation
pattern of the prefrontal cortex changes with language learning experience and proficiency,
and thus the cortex and gray matter were physically influenced. The above results give
new evidence that the experience of L2 learning affects prefrontal cortex function.

4.1. Subjects Selection and Cognitive Reserve Unification

To perform the speaking tasks in this study, some minimum proficiency in Japanese
was necessary. Early Japanese learners might be nervous and use hand or body gestures
in the Japanese task, which had been confirmed by a pilot experiment. This might cause
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significant bias in frontal lobe measurements. Therefore, graduate students who had lived
in Japan for two years or so and rated themselves as not high ability in the self-assessment
questionnaire were defined as low-L2-ability speakers in this study, rather than including
early Japanese leaners who spoke hardly any Japanese [24]. People who had lived in Japan
for over 20 years who showed a slightly higher proficiency in Japanese than Mandarin,
perhaps due to the frequency of occasions required to speak Japanese in their daily life,
were defined as high-L2-ability speakers. In fact, during the L1 task, unlike the other
group of subjects, some of these sometimes made the error of responding in L2. Activation
measurements on those occasions were excluded from analysis.

To compare prefrontal cortex function between groups of subjects, it is essential
that within the group members have similar prefrontal cortex function. In the present
study, cognitive reserve in both groups was measured using Cognitive Reserve Index
questionnaire (CRiq) [19], and scores of index 92 ± 3 and 120 ± 8 were obtained from low-
and high-L2-ability groups, respectively. In this way, the cognitive reserve within each
group was unified.

Furthermore, since age of learning a second language is strongly associated with
physical change in gray matter and white matter pathways involved in language process-
ing [25,26], we excluded young subjects and included only subjects who started to learn
Japanese after reaching adulthood. All subjects were aged over 22 and learned Japanese
after they came to Japan.

4.2. Validity of Experimental Conditions and Analysis Methods

To ensure intrasubject reproducibility of prefrontal cortex activation, the experiment
procedure followed the protocol of the verbal fluency task [27], which is commonly used
in Japan. Baseline values were obtained from repeated pronunciation of vowels common
to both Mandarin and Japanese, (阿, Mandarin or あ, Japanese), (伊 or い), and (烏 or
う), which are transcribed similarly as “a”, “i”, and “u” in roman characters. During the
rest-task of repeated pronunciation of a, i, and u at normal conversation speed, cerebral
blood flow change was confirmed to have low values, indicating the baseline task did not
exert the subjects.

The differences between baseline activation values and activation levels observed
during performance of the speaking tasks were assumed to be measures of cognitive
language processing behavior. The baseline activation values themselves were assumed
to be measures of physical language production behavior. Three protocols, as shown in
Figure 1, were performed while cerebral blood flow change was observed and analyzed, as
in a previous study [22]. The whole procedure took less than 10 min, including fitting the
sensor array on the subject’s head.

4.3. Comparison of Brain Activation

Region BA9 in the right DLPFC (ch1, 2, 5) was activated significantly more in high
than in low-L2-ability speakers when speaking L1. It is proposed that this reflected the
demand of cognitive load to inhibit L2. In other words, significant cognitive load occurred
when code-switching from Japanese to Mandarin. Note that code-switching was defined
from various perspectives. Here in this work, it should be limited to sociolinguistics
concerning bilinguals, which helps discuss the brain activation during task performance.
Similar levels of cognitive load when speaking L2 likely occurred to inhibit L1. We suggest
these high-L2-ability speakers had little difference in proficiency of either language, i.e.,
neither was dominant (equally bilingual), thus, to speak one language cognitive load was
required to inhibit the other. This notion has been discussed previously 22.

In the low-L2-ability speakers, brain activation was similarly high and appeared over
a fairly wide area when speaking L2 (Figures 5 and 8). This could be attributed to (i)
cognitive load demand in code-switching and inhibiting L1 and (ii) cognitive load demand
in using L2. When speaking L1, either the cognitive load demand in inhibiting L2 (i) or
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that in using L1 (ii) was lower. Therefore, low levels of brain activation (Figure 5) and only
local brain activation regions (Figure 8a; channel 3, 4, 8, and 9) were detected.

Region BA46 in the left DLPFC is associated with attention function [28,29]. According
to Grundy’s meta-analysis, bilingualism is related to working memory [30]. The prefrontal
cortex is also involved in executive function of higher-order functions [31]. Among them,
the execution function consists of the inhibition function, code-switching function, and
information update [32]. This suggests that L2 learning can change the cerebral blood flow
dynamics of the prefrontal cortex.

Activation of the left hemisphere in all subjects in this study is consistent with the
involvement of left DLPFC (BA46) in language production [29]. Forstmann and colleagues
conducted an experiment using the Simon test that required inhibition of responses to
incongruent stimuli, they found that those who were proficient in inhibiting responses
showed increased structural connectivity in the right inferior frontal gyrus (IFG), reflecting
higher density of white matter [33]. The present study revealed activation of the right
DLPFC, suggesting L1 inhibition, which is consistent with the results of a study by Van
Ettinger et al., and findings that performance in high-level language tests was related to
increased activity in the IFG [34]. Moreover, the results of the present work are compatible
with those of a code-switching task in bilingual speakers of Korean and Chinese, during
which activation of the left frontal cortex and upper right frontal cortex was confirmed [35].

The present study confirmed that brain blood flow was changed by language learning,
especially that involved in inhibition of L1 and L2 in high-L2-ability speakers. Behavior
inhibition was demonstrated to be associated with the right DLPFC, and language learning
was associated with the right frontal cortex, which is considered to be involved in language
learning and behavior inhibition [33,36]. Brain activation was markedly revealed at both
the right DLPFC and the left DLPFC in high-L2-ability speakers in this study, strongly
suggesting the involvement of right DLPFC with L2 language proficiency.

4.4. Mutual Influence of Language Distance

Language distance in the brain is a factor affecting L2 learning. In general, L2 learning
is easier when the L1/L2 language distance is close [37]. However, some studies also
found that close language distance causes mutual interference in code-switching and
inhibition [35,38]. Since the language distance between Japanese and Mandarin is close,
they mutually affect each other. To draw out such an influence, the same Kanji was used to
confirm brain activity.

Mandarin and Japanese bilinguals simultaneously activate two similar language
systems, and two processing departments in lemma level and lexeme level, occurring
in two directions. Bilinguals demonstrate greater cognitive load in inhibition and code-
switching to select the right language to respond to complex information in language
processing [39,40]. Furthermore, to inhibit unwanted behavior, the dorsolateral prefrontal
cortex (DLPFC BA9 and BA46: ch5, 9, 10, and 13) is involved in selecting the appropriate
behavior [34].

In the present study, the same Kanji was used in both the Mandarin and Japanese tasks;
therefore, the dominant language should easily appear. In particular, the high-L2-ability
speakers preferred to use Japanese in the Mandarin task. It has been reported that brain
activation related to inhibition of behavior occurs in the right lateral prefrontal cortex [36].
Sometimes during performance of the L1 task, high-L2-ability speakers used Japanese
subconsciously, it would seem that they prefer it to their mother-tongue Mandarin. There-
fore, inhibition was required for Japanese, and the right frontal cortex was activated more.
Involvement of the prefrontal cortex in language learning affects cognitive control [41,42],
and higher levels of metacognition [43,44] than cognitive reserve [45,46].

4.5. Study Limitations and Prospects

This study had some limitations, the number of subjects was small, only 12 in each
L2 ability group, which we selected to ensure within-group similarity in cognitive reserve.
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There was a significant age difference between groups, which was necessary to discriminate
between high and low L2 ability developed after reaching adulthood. Additionally, areas
of the brain beyond the prefrontal cortex were not measured.

On the other hand, all subjects lived and functioned in a bilingual environment in
Japan with highly unified social and economic factors, which suggests high reliability of
the study findings. The strong correlations between L2 and cognitive function suggest
learning a second language would be helpful to significantly delay the onset of dementia
by changing brain activation pattern [2,15,47,48].

5. Conclusions

A novel Mandarin (L1) Japanese (L2) speaking task system was developed and applied
to evaluate brain activation during performance of a speaking task by people who can speak
both Mandarin and Japanese. Cerebral blood flow change was revealed in the prefrontal
cortex by measuring oxygen levels using fNIRS. The relationship between prefrontal cortex
blood flow change and L2 proficiency was discussed. The results obtained were as follows:

1. People with low L2 ability showed much more brain activation when speaking L2 than
when speaking L1. People with high L2 ability showed high-level brain activation
when speaking either L2 or L1. Almost the same high-level brain activation was
observed in both ability groups when speaking L2.

2. The high level of activation in people with high L2 ability when speaking either L2 or
L1 suggested strong inhibition of the non-spoken language. A wider area of brain
activation in people with low compared with high L2 ability when speaking L2 is
considered to be attributed to the cognitive load involved in code-switching L1 to L2
with strong inhibition of L1 and the cognitive load involved in using L2.

3. The above results suggest that learning a second language of Japanese would be
helpful for Chinese speakers of Mandarin to delay the onset of dementia by changing
brain activation pattern. This effect should also be furtherly confirmed through an
analysis of a wider area of the brain of more subjects using the fNIRS measurement
as well as other techniques. Furthermore, implications for the fields of neurolinguis-
tics and language education are also expected. An effective method for language
education in enhancing the cognitive function might be important.
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