Effect of Exercise-Based Cardiac Rehabilitation on Left Ventricular Function in Asian Patients with Acute Myocardial Infarction after Percutaneous Coronary Intervention: A Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching for Literature
2.2. Study Selection
2.3. Data Extraction and Risk of Bias Assessment
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Included Studies
3.2. Exercise-Based CR and LVEF
3.3. Exercise-Based CR and LVEDD
3.4. Exercise-Based CR and LVESV
3.5. Exercise-Based CR and LVESD, LVEDV
4. Discussion
4.1. Clinical Implications
4.2. Methodological Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D.; Katus, H.A.; Apple, F.S.; Lindahl, B.; Morrow, D.A.; et al. Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 2012, 60, 1581–1598. [Google Scholar] [CrossRef] [Green Version]
- Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute myocardial infarction. Lancet 2017, 389, 197–210. [Google Scholar] [CrossRef]
- Boateng, S.; Sanborn, T. Acute myocardial infarction. Dis. Mon. 2013, 59, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Yeh, R.W.; Sidney, S.; Chandra, M.; Sorel, M.; Selby, J.V.; Go, A.S. Population trends in the incidence and outcomes of acute myocardial infarction. N. Engl. J. Med. 2010, 362, 2155–2165. [Google Scholar] [CrossRef]
- Kastrati, A.; Pache, J.; Dirschinger, J.; Neumann, F.J.; Walter, H.; Schmitt, C.; Schömig, A. Primary intracoronary stenting in acute myocardial infarction: Long-term clinical and angiographic follow-up and risk factor analysis. Am. Heart J. 2000, 139, 208–216. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, J. Effects of early passive movement on troponin, brain natriuretic peptide, ejection fraction and incidence of adverse cardiovascular events in acute myocardial infarction patients after percutaneous coronary intervention. Int. J. Clin. Exp. Med. 2020, 13, 4855–4863. [Google Scholar]
- Bhagwat, M.M.; Woods, J.A.; Dronavalli, M.; Hamilton, S.J.; Thompson, S.C. Evidence-based interventions in primary care following acute coronary syndrome in Australia and New Zealand: A systematic scoping review. BMC Cardiovasc. Disord. 2016, 16, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moody, W.E.; Edwards, N.C.; Chue, C.D.; Taylor, R.J.; Ferro, C.J.; Townend, J.N.; Steeds, R.P. Variability in cardiac MR measurement of left ventricular ejection fraction, volumes and mass in healthy adults: Defining a significant change at 1 year. Br. J. Radiol. 2015, 88, 20140831. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.S.; Brown, A.; Ebrahim, S.; Jolliffe, J.; Noorani, H.; Rees, K.; Skidmore, B.; Stone, J.A.; Thompson, D.R.; Oldridge, N. Exercise-based rehabilitation for patients with coronary heart disease: Systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 2004, 116, 682–692. [Google Scholar] [CrossRef]
- Acar, R.D.; Bulut, M.; Ergun, S.; Yesin, M.; Kalkan, M.E.; Akcakoyun, M. Assessment of the Left Ventricular Systolic Function of Patients with Acute Myocardial Infarction after Cardiac Rehabilitation by Using Two Dimensional Echocardiography. Turk. Fiz. Tip Rehabil. Derg. Turk. J. Phys. Med. Rehabil. 2015, 61, 211–215. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Wang, Y.; Cao, A.; Han, C.; Zhang, R. Application of optimized cardiac rehabilitation program in exercise tolerance and quality of life of elderly patients undergoing percutaneous coronary intervention for acute myocardial infarction. Int. J. Clin. Exp. Med. 2018, 11, 4087–4093. [Google Scholar]
- Volodina, K.A.; Linchak, R.M.; Achkasov, E.E.; Alaeva, E.N.; Bulgakova, O.V.; Puzin, S.N.; Buvalin, N.A. Effect of physical rehabilitation on echocardiographic parameters in patients with acute coronary syndrome. Bull. Exp. Biol. Med. 2018, 164, 420–424. [Google Scholar] [CrossRef]
- Cuellar-Gallardo, A.A.; Gomez-Garcia, Y.D.; Castro-Torres, Y.; Triana-Diaz, A.; Gomez-Lauchy, J.M.; Gavilanes-Hernandez, R.; Herrera-Leon, Y.; Leon, A.R. Cardiac rehabilitation in patients with ST-segment elevation acute myocardial infarction and percutaneous coronary intervention. Corsalud 2019, 11, 278–286. [Google Scholar]
- Xu, L.; Cai, Z.; Xiong, M.; Li, Y.; Li, G.; Deng, Y.; Hau, W.K.; Li, S.; Huang, W.; Qiu, J. Efficacy of an early home-based cardiac rehabilitation program for patients after acute myocardial infarction A three-dimensional speckle tracking echocardiography randomized trial. Medicine 2016, 95, e5638. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kim, D.Y.; Lee, D.W. The impact of early regular cardiac rehabilitation program on myocardial function after acute myocardial infarction. Ann. Rehabil. Med. 2011, 35, 535–540. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, H.X.; Jiang, P.; Tang, H.Q. Cardiac rehabilitation in acute myocardial infarction patients after percutaneous coronary intervention A community-based study. Medicine 2018, 97, e9785. [Google Scholar] [CrossRef]
- Wang, J. Clinical efficacy of early cardiac rehabilitation nursing for patients with acute myocardial infarction after interventional therapy. Int. J. Clin. Exp. Med. 2020, 13, 7986–7992. [Google Scholar]
- Chen, M.G.; Liang, X.; Kong, L.; Wang, J.; Wang, F.; Hu, X.; He, J.; Zeng, R.X.; Mao, S.; Guo, L.; et al. Effect of baduanjin sequential therapy on the quality of life and cardiac function in patients with ami after pci: A randomized controlled trial. Evid. Based Complementary Altern. Med. 2020, 2020, 8171549. [Google Scholar] [CrossRef]
- Zheng, H.; Luo, M.; Shen, Y.; Ma, Y.; Kang, W. Effects of 6 months exercise training on ventricular remodelling and autonomic tone in patients with acute myocardial infarction and percutaneous coronary intervention. J. Rehabil. Med. 2008, 40, 776–779. [Google Scholar]
- Koizumi, T.; Miyazaki, A.; Komiyama, N.; Sun, K.; Nakasato, T.; Masuda, Y.; Komuro, I. Improvement of left ventricular dysfunction during exercise by walking in patients with successful percutaneous coronary intervention for acute myocardial infarction. Circ. J. 2003, 67, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Abtahi, F.; Tahamtan, M.; Homayouni, K.; Moaref, A.; Zamirian, M. The Assessment of Cardiac Rehabilitation on Echocardiographic Parameters of Left Ventricular Systolic Function in Patients Treated by Primary Percutaneous Coronary Intervention due to Acute ST-Segment Elevation Myocardial Infarction: A Randomized Clinical Trial. Int. Cardiovasc. Res. J. 2017, 11, 130–136. [Google Scholar]
- Fan, Z.; Sun, P.; Zhang, J.; Li, Y. Effect of exercise training on oxygen metabolic equivalent and left ventricular function in patients with acute myocardial infarction after PCI. J. Am. Coll. Cardiol. 2015, 66, C234. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016, 2016, Cd001800. [Google Scholar]
- Dugmore, L.D.; Tipson, R.J.; Phillips, M.H.; Flint, E.J.; Stentiford, N.H.; Bone, M.F.; Littler, W.A. Changes in cardiorespiratory fitness, psychological wellbeing, quality of life, and vocational status following a 12 month cardiac exercise rehabilitation programme. Heart 1999, 81, 359–366. [Google Scholar] [CrossRef]
- Giannuzzi, P.; Tavazzi, L.; Temporelli, P.L.; Corrà, U.; Imparato, A.; Gattone, M.; Giordano, A.; Sala, L.; Schweiger, C.; Malinverni, C. Long-term physical training and left ventricular remodeling after anterior myocardial infarction: Results of the Exercise in Anterior Myocardial Infarction (EAMI) trial. EAMI Study Group. J. Am. Coll. Cardiol. 1993, 22, 1821–1829. [Google Scholar] [CrossRef] [Green Version]
- Leosco, D.; Rengo, G.; Iaccarino, G.; Golino, L.; Marchese, M.; Fortunato, F.; Zincarelli, C.; Sanzari, E.; Ciccarelli, M.; Galasso, G.; et al. Exercise promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc. Res. 2008, 78, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Giallauria, F.; Cirillo, P.; Lucci, R.; Pacileo, M.; De Lorenzo, A.; D’Agostino, M.; Moschella, S.; Psaroudaki, M.; Del Forno, D.; Orio, F.; et al. Left ventricular remodelling in patients with moderate systolic dysfunction after myocardial infarction: Favourable effects of exercise training and predictive role of N-terminal pro-brain natriuretic peptide. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Haykowsky, M.; Scott, J.; Esch, B.; Schopflocher, D.; Myers, J.; Paterson, I.; Warburton, D.; Jones, L.; Clark, A.M. A meta-analysis of the effects of exercise training on left ventricular remodeling following myocardial infarction: Start early and go longer for greatest exercise benefits on remodeling. Trials 2011, 12, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannuzzi, P.; Temporelli, P.L.; Marchioli, R.; Maggioni, A.P.; Balestroni, G.; Ceci, V.; Chieffo, C.; Gattone, M.; Gtiffo, R.; Schweiger, C.; et al. Global secondary prevention strategies to limit event recurrence after myocardial infarction: Results of the GOSPEL study, a multicenter, randomized controlled trial from the Italian Cardiac Rehabilitation Network. Arch. Intern. Med. 2008, 168, 2194–2204. [Google Scholar] [CrossRef] [PubMed]
- Giallauria, F.; Lucci, R.; D’Agostino, M.; Vitelli, A.; Maresca, L.; Mancini, M.; Aurino, M.; Del Forno, D.; Giannuzzi, P.; Vigorito, C. Two-year multicomprehensive secondary prevention program: Favorable effects on cardiovascular functional capacity and coronary risk profile after acute myocardial infarction. J. Cardiovasc. Med. 2009, 10, 772–780. [Google Scholar] [CrossRef]
- Anderson, L.J.; Taylor, R.S. Cardiac rehabilitation for people with heart disease: An overview of Cochrane systematic reviews. Int. J. Cardiol. 2014, 177, 348–361. [Google Scholar] [CrossRef] [Green Version]
- Chaves, G.S.S.; Ghisi, G.L.M.; Grace, S.L.; Oh, P.; Ribeiro, A.L.; Britto, R.R. Effects of comprehensive cardiac rehabilitation on functional capacity and cardiovascular risk factors in Brazilians assisted by public health care: Protocol for a randomized controlled trial. Braz. J. Phys. Ther. 2016, 20, 592–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalal, H.M.; Zawada, A.; Jolly, K.; Moxham, T.; Taylor, R.S. Home based versus centre based cardiac rehabilitation: Cochrane systematic review and meta-analysis. BMJ 2010, 340, b5631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolly, K.; Taylor, R.S.; Lip, G.Y.; Stevens, A. Home-based cardiac rehabilitation compared with centre-based rehabilitation and usual care: A systematic review and meta-analysis. Int. J. Cardiol. 2006, 111, 343–351. [Google Scholar] [CrossRef]
- Dalal, H.M.; Evans, P.H.; Campbell, J.L.; Taylor, R.S.; Watt, A.; Read, K.L.Q.; Mourant, A.J.; Wingham, J.; Thompson, D.R.; Gray, D.J.P. Home-based versus hospital-based rehabilitation after myocardial infarction: A randomized trial with preference arms—Cornwall Heart Attack Rehabilitation Management Study (CHARMS). Int. J. Cardiol. 2007, 119, 202–211. [Google Scholar] [CrossRef]
- Conti, A.A. The development of cardiac rehabilitation: A historical critical approach. Clin. Ter. 2011, 162, 365–369. [Google Scholar]
- Carlson, J.J.; Johnson, J.A.; Franklin, B.A.; VanderLaan, R.L. Program participation, exercise adherence, cardiovascular outcomes, and program cost of traditional versus modified cardiac rehabilitation. Am. J. Cardiol. 2000, 86, 17–23. [Google Scholar] [CrossRef]
- Cannistra, L.B.; Omalley, C.J.; Balady, G.J. Comparison of outcome of cardiac rehabilitation in black-women and white women. Am. J. Cardiol. 1995, 75, 890–893. [Google Scholar] [CrossRef]
- Cortes, O.; Arthur, H.M. Determinants of referral to cardiac rehabilitation programs in patients with coronary artery disease: A systematic review. Am. Heart J. 2006, 151, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Grace, S.L.; Gravely-Witte, S.; Brual, J.; Monette, G.; Suskin, N.; Higginson, L.; Alter, D.A.; Stewart, D.E. Contribution of patient and physician factors to cardiac rehabilitation enrollment: A prospective multilevel study. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 548–556. [Google Scholar] [CrossRef]
- Clark, A.M.; King-Shier, K.M.; Duncan, A.; Spaling, M.; Stone, J.A.; Jaglal, S.; Angus, J. Factors influencing referral to cardiac rehabilitation and secondary prevention programs: A systematic review. Eur. J. Prev. Cardiol. 2013, 20, 692–700. [Google Scholar] [CrossRef]
- Gravely-Witte, S.; Leung, Y.W.; Nariani, R.; Tamim, H.; Oh, P.; Chan, V.M.; Grace, S.L. Effects of cardiac rehabilitation referral strategies on referral and enrollment rates. Nat. Rev. Cardiol. 2010, 7, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Ades, P.A.; Keteyian, S.J.; Wright, J.S.; Hamm, L.F.; Lui, K.; Newlin, K.; Shepard, D.S.; Thomas, R.J. Increasing Cardiac Rehabilitation Participation from 20% to 70%: A Road Map from the Million Hearts Cardiac Rehabilitation Collaborative. Mayo. Clin. Proc. 2017, 92, 234–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soleimannejad, K.; Nouzari, Y.; Ahsani, A.; Nejatian, M.; Sayehmiri, K. Evaluation of the effect of cardiac rehabilitation on left ventricular diastolic and systolic function and cardiac chamber size in patients undergoing percutaneous coronary intervention. J. Tehran. Heart Cent. 2014, 9, 54–58. [Google Scholar]
- Zhang, Y.-M.; Lu, Y.; Tang, Y.; Yang, D.; Wu, H.-F.; Bian, Z.-P.; Xu, J.-D.; Gu, C.-R.; Wang, L.-S.; Chen, X.-J. The effects of different initiation time of exercise training on left ventricular remodeling and cardiopulmonary rehabilitation in patients with left ventricular dysfunction after myocardial infarction. Disabil. Rehabil. 2016, 38, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Phillips, A.N. Meta-analysis: Principles and procedures. BMJ 1997, 315, 1533–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muka, T.; Glisic, M.; Milic, J.; Verhoog, S.; Bohlius, J.; Bramer, W.; Chowdhury, R.; Franco, O.H. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur. J. Epidemiol. 2020, 35, 49–60. [Google Scholar] [CrossRef]
#1 | acute myocardial infarction |
#2 | AMI |
#3 | acute Heart attacks |
#4 | acute coronary syndromes |
#5 | ACS |
#6 | #1 OR #2 OR #3 OR #4 OR #5 |
#7 | percutaneous coronary intervention |
#8 | PCI |
#9 | revascularize |
#10 | #7 OR #8 OR #9 |
#11 | cardiac rehabilitation programs |
#12 | CRP |
#13 | cardiac rehabilitation |
#14 | CR |
#15 | physical training |
#16 | exercise training |
#17 | exercise therapy |
#18 | exercise |
#19 | kinesiotherapy |
#20 | rehabilitation |
#21 | mobilization |
#22 | #11 OR #12 OR #13 OR #14 OR #15 #16 OR #17 OR #18 OR #19 OR #20 OR #21 |
#23 | left ventricular function |
#24 | ventricular remodeling |
#25 | myocardial function |
#26 | diastolic function |
#27 | ventricular volumes |
#28 | Left ventricular ejection fraction |
#29 | LVEF |
#30 | EF |
#31 | left ventricular end-diastolic dimension |
#32 | left ventricular end-systolic dimension |
#33 | left ventricular end-systolic volume |
#34 | left ventricular end-diastolic volume |
#35 | LVEDD |
#36 | LVESD |
#37 | LVEDV |
#38 | LVESV |
#39 | #23 OR #24 OR #25 #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR #35 #36 OR #37 OR #38 |
#40 | #6 AND #10 AND #22 AND 39 |
Author, Publication, Year | Country | Study Period | Assigned Group | Participants Characteristics | Exercise Intervention | Major Findings | ||
---|---|---|---|---|---|---|---|---|
Type of Excises | Frequency/Session Duration/Intensity | Onset/Total Duration | ||||||
Yong Zhang et al., 2018 [16] | China | 2010–2012 | Exp: CR based on routine therapy | n = 65, age 70.3 ± 10.7 years, 90.8% males | walk and other aerobic exercise | Phase II: 2–3 times per week/15–30 min (+10 min warm-up and 10-min cool-down)/HR < 130 bpm or resting HR plus 30 bpm, 250–300 kcal/time; phase III: 3–5times per week/30–45 min (+10min warm-up and 10-min cool-down)/60–75% HRmax, 300–400 kcal per time. | Phase II: the second week after discharge/6–8 weeksphase III: the 3rd month to the 6th month/4 months | Exp vs. Con: ⬆LVEF, p < 0.01 |
Con: usual care and conventional drug therapy | n = 65, age 69.8 ± 10.4 years, 83.1% males | usual care and conventional drug therapy | NA | |||||
Juan Wang, 2020 [17] | China | 2017–2018 | Exp: CR care | n = 60, age 60.28 ± 2.82 years, 51.67% males | 24h after surgery: passive movement and deep breathing exercise; 1 day after surgery: sit at bedside; 2–7 days after surgery: walk in the ward | 24h after surgery: not specified/not specified/not specified; 1 day after surgery: 3times per day/<30 min/not specified; 2–7 days after surgery:3 times per day/walk 40–300 m/not specified. | Immediately post-PCI/7 days | Exp vs. Con: ⬆LVEF, p < 0.001; ⬇LVEDD, p < 0.001. |
Con: routine care | n = 60, age 59.36 ± 3.27 years, 58.33% males | basic clinical care, monitoring condition, performing routine drug therapy according to medical orders and gradually increasing physical activity after 3 days of bed rest. | NA | |||||
Ming-Gui Chen et al., 2020 [18] | China | 2016–2017 | Exp: received 24 weeks of BST training | n = 48, age 59.98 ± 10.86 years, 67.4% males | Baduanjin exercise or regular aerobic exercise | during hospitalization: 2 times per day/30 min/not specified; Discharge: 5 times per week/30 min/not specified. | second day post-PCI/during hospitalization: 3 days Discharge: lasting up to 24-weeks | ⬌LVEF |
Con: no training | n = 48, age 61.49 ± 11.54 years, 76.9% males | requested to maintain original habit of lifestyle. | NA | 24-week vs. Baseline: ⬇LVEF, p = 0.020 | ||||
Huan Zheng et al., 2008 [19] | China | unclear | Exp: followed a 6-month exercise program | n = 27, sex and age are unknown | exercise performed on a bicycle ergometer | 3 times per week/30 min (+15min warm-up and 15-min cool-down)/not specified. | 3–7 days post-primary PCI/6 months | Exp vs. Con: ⬆LVEF, p = 0.003; ⬇LVEDD, p = 0.018; ⬌LVESD |
Con: received routine recommendations | n = 30, sex and age are unknown | received routine pharmacological therapy and lifestyle education | NA | |||||
Lin Xu et al., 2016 [14] | China | 2014–2015 | Exp: early, home-based CR program | n = 26, age 55.8 ± 9.7 years, 84.6% males | inpatient phase: casual limb movements in bed and simple walk training outpatient phase: aerobic exercise (i.e., walking or jogging, gymnastics) | inpatient phase:2–4 times per day/10–20 min/2 to 4METs, 60% HRmax; outpatient phase: 3 times per day/15–30 min (+5 min warm-up and 5 min cool-down)/60%HRmax. | Immediately post- PCI/inpatient phase: 7–10 days; outpatient phase: 4 weeks | Exp vs. Con: ⬆LVEF, p = 0.008; ⬌LVESV ⬌LVEDV |
Con: usual care | n = 26, age 55.5 ± 8.9 years, 84.6% males | usual care program including physical activity | NA | |||||
Tomomi Koizumi et al., 2003 [20] | Japan | 1998–1999 | Exp: exercise training program | n = 15, age 54 ± 12 years, 92.86% males | walking | every day/>30 min/not specified | One month post- PCI/3month | ⬌LVEF |
Con: educational support | n = 15, age 59 ± 9 years, 86.67%males | educational support, avoid strenuous physical activity | ||||||
Firoozeh Abtahi et al., 2017 [21] | Iran | 2015–2016 | Exp: CRP | n = 25, age 53.76 ± 6.96 years, 56% males | aerobic exercise | 3 times per week/40 min (+10 min warm-up and 10-min cool-down)/40–60%HRR | 1 to 2 weeks after AMI/8weeks | follow-up vs. Baseline: ⬆LVEF, p < 0.001; ⬇LVEDD, p = 0.047; ⬇LVESD, p < 0.001; ⬇LVESV, p < 0.001; ⬌LVEDV |
Con: instructed on risk factor management | n = 25, age 53.6 ± 6.98 years, 60% males | instructed on risk factor management | follow-up vs. Baseline: ⬌LVEF ⬌LVEDD⬌LVESD ⬌LVEDV ⬌LVESV | |||||
Fan Zhiqing et al., 2010 [22] | China | 2008–2009 | Exp: rehabilitation exercise | n = 47(Exp = 23, Con = 24), age 62.0 ± 5.6 years, 84% males | aerobic exercise | 1–2 times per day,4–5 days per week/<30 min/60–80% HRmax | 2–4 weeks after AMI/6 months | follow-up vs. Baseline: ⬆LVEF, p < 0.001 |
Con: usual care | no exercise prescription and no exercise rehabilitation guidance | follow-up vs. Baseline:⬌LVEF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chien, C.-W.; Xu, Y.; Tung, T.-H. Effect of Exercise-Based Cardiac Rehabilitation on Left Ventricular Function in Asian Patients with Acute Myocardial Infarction after Percutaneous Coronary Intervention: A Meta-Analysis of Randomized Controlled Trials. Healthcare 2021, 9, 774. https://doi.org/10.3390/healthcare9060774
Wang Y, Chien C-W, Xu Y, Tung T-H. Effect of Exercise-Based Cardiac Rehabilitation on Left Ventricular Function in Asian Patients with Acute Myocardial Infarction after Percutaneous Coronary Intervention: A Meta-Analysis of Randomized Controlled Trials. Healthcare. 2021; 9(6):774. https://doi.org/10.3390/healthcare9060774
Chicago/Turabian StyleWang, Yanjiao, Ching-Wen Chien, Ying Xu, and Tao-Hsin Tung. 2021. "Effect of Exercise-Based Cardiac Rehabilitation on Left Ventricular Function in Asian Patients with Acute Myocardial Infarction after Percutaneous Coronary Intervention: A Meta-Analysis of Randomized Controlled Trials" Healthcare 9, no. 6: 774. https://doi.org/10.3390/healthcare9060774
APA StyleWang, Y., Chien, C. -W., Xu, Y., & Tung, T. -H. (2021). Effect of Exercise-Based Cardiac Rehabilitation on Left Ventricular Function in Asian Patients with Acute Myocardial Infarction after Percutaneous Coronary Intervention: A Meta-Analysis of Randomized Controlled Trials. Healthcare, 9(6), 774. https://doi.org/10.3390/healthcare9060774