Effects of Automation on Sustainability of Immunohistochemistry Laboratory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biopsy Specimens
2.2. Protocols for Immunohistochemistry
2.3. Reagents and Instrumentation
3. Results
3.1. IHC Cycle Duration
3.2. Cost Analysis
3.2.1. Cost of Reagents Used to Run IHC
3.2.2. Cost of Consumables
3.2.3. Cost of Resources
3.2.4. Cost of Depreciation of Automated Immunostainer
3.2.5. Costs of Annual Automated Immunostainer Service
3.2.6. Final Cost of Single Immunohistochemistry (IHC) Microscope Slide
3.3. Models of Routine Work in the Immunohistochemistry Laboratory before and during the COVID-19 Pandemic
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Markin, R.S.; Whalen, S.A. Laboratory Automation: Trajectory, Technology, and Tactics. Clin. Chem. 2000, 46, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Ialongo, C.; Porzio, O.; Giambini, I.; Bernardini, S. Total Automation for the Core Laboratory: Improving the Turnaround Time Helps to Reduce the Volume of Ordered STAT Tests. J. Lab. Autom. 2016, 21, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.R. The Total Test Approach to Standardization of Immunohistochemistry. Arch. Pathol. Lab. Med. 2000, 124, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.W.; Stratton, C.W. Advanced Techniques in Diagnostic Microbiology; Springer: Cham, Switzerland, 2018; Volume 2. [Google Scholar] [CrossRef]
- Yoo, I.Y.; Oh, J.W.; Cha, H.S.; Koh, E.M.; Kang, E.S. Performance of an automated fluorescence antinuclear antibody image analyzer. Ann. Lab. Med. 2017, 37, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Roh, J.; Park, C.S. Immunohistochemistry for pathologists: Protocols, pitfalls, and tips. J. Pathol. Transl. Med. 2016, 50, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prichard, J.W. Overview of automated immunohistochemistry. Arch. Pathol. Lab. Med. 2014, 138, 1578–1582. [Google Scholar] [CrossRef] [Green Version]
- Prichard, J.; Bitting, A.K. Automated immunohistochemistry overview. In Handbook of Practical Immunohistochemistry; Springer: New York, NY, USA, 2015; pp. 31–38. [Google Scholar] [CrossRef]
- Moreau, A.; Le Neel, T.; Joubert, M.; Truchaud, A.; Laboisse, C. Approach to automation in immunohistochemistry. Clin. Chim. Acta 1998, 278, 177–184. [Google Scholar] [CrossRef]
- Sattler, A. Automated Staining: Ventana Perspective. In Handbook of Practical Immunohistochemistry; Springer: New York, NY, USA, 2011; pp. 37–43. [Google Scholar] [CrossRef]
- Riera, J.R. Automation in immunohistochemistry. Adv. Stand. Immunohistochem. 1999, 32, 358–360. [Google Scholar]
- Angeletti, S.; De Cesaris, M.; Hart, J.G.; Urbano, M.; Vitali, M.A.; Fragliasso, F.; Dicuonzo, G. Laboratory Automation and Intra-Laboratory Turnaround Time: Experience at the University Hospital Campus Bio-Medico of Rome. J. Lab. Autom. 2015, 20, 652–658. [Google Scholar] [CrossRef] [Green Version]
- Greub, G.; Prod’hom, G. Automation in clinical bacteriology: What system to choose? Clin. Microbiol. Infect. 2011, 17, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Croxatto, A.; Prod’hom, G.; Faverjon, F.; Rochais, Y.; Greub, G. Laboratory automation in clinical bacteriology: What system to choose? Clin. Microbiol. Infect. 2016, 22, 217–235. [Google Scholar] [CrossRef] [Green Version]
- Klohe, E.; Cotta, C.V.; Posch, A.; Klinkosz, R.; Rowe, E.; Magcamit-Labay, E.; Jones, F.; Wayman, M.; Mangalindan, D.; Sanchez, S.; et al. Innovation in Immunohistochemistry (IHC) Staining: Single Piece Flow IHC Slide Processing. Available online: https://www.darkdaily.com/white-papers/innovation-in-immunohistochemistry-ihc-staining-single-piece-flow-ihc-slide-processing-11712/ (accessed on 20 July 2020).
- Hsi, E.D. A Practical Approach for Evaluating New Antibodies in the Clinical Immunohistochemistry Laboratory. Arch. Pathol. Lab. Med. 2001, 125, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Dauwalder, O.; Landrieve, L.; Laurent, F.; De Montclos, M.; Vandenesch, F.; Lina, G. Does bacteriology laboratory automation reduce time to results and increase quality management? Clin. Microbiol. Infect. 2016, 22, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutters, N.T.; Hodiamont, C.J.; De Jong, M.D.; Overmeijer, H.P.J.; Van Den Boogaard, M.; Visser, C.E. Performance of Kiestra Total Laboratory Automation combined with MS in clinical microbiology practice. Ann. Lab. Med. 2014, 34, 111–117. [Google Scholar] [CrossRef]
- Wittwer, C.T.; Hawker, C.D.; Genzen, J.R. Automation in the Clinical Laboratory. In Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2017; p. 370. [Google Scholar]
- Seaberg, R.S.; Stallone, R.O.; Statland, B.E. The Role of Total Laboratory Automation in a Consolidated Laboratory Network. Clin. Chem. 2000, 46, 751–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Camacho, J.L.; Calva-Espinosa, D.Y.; Leal-Leyva, Y.Y.; Elizalde-Olivas, D.C.; Campos-Romero, A.; Alcántar-Fernández, J. Transformation from a conventional clinical microbiology laboratory to full automation. Lab. Med. 2018, 49, e1–e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, S.E.; Rogers, W.A.; Fisk, A.D. Understanding human management of automation errors. Theor. Issues Ergon Sci. 2014, 15, 545–577. [Google Scholar] [CrossRef] [Green Version]
- Zaninotto, M.; Plebani, M. The “hospital central laboratory”: Automation, integration and clinical usefulness. Clin. Chem. Lab. Med. 2010, 48, 911–917. [Google Scholar] [CrossRef]
- Statistical Office of the Republic of Serbia. Average Annual Gross Salary for Period January–Decembre 2019. Available online: https://www.stat.gov.rs/sr-cyrl/vesti/20200225-prosecne-zarade-po-zaposlenom-decembar-2019/ (accessed on 26 February 2020).
- Household Consumption Calculator. Available online: http://kalkulator.eps-snabdevanje.rs/kalkulator (accessed on 10 December 2020).
- Zanatta, L.; Valori, L.; Cappelletto, E.; Pozzebon, M.E.; Pavan, E.; Dei Tos, A.P.; Merkle, D. Reagent and Labor Cost Optimization through Automation of Fluorescence In Situ Hybridization (FISH) with the VP 2000: An Italian Case Study. J. Lab. Autom. 2015, 20, 25–31. [Google Scholar] [CrossRef]
- Kalmár, A.; Péterfia, B.; Wichmann, B.; Patai, Á.V.; Barták, B.K.; Nagy, Z.B.; Furi, I.; Tulassay, Z.; Molnár, B. Comparison of Automated and Manual DNA Isolation Methods for DNA Methylation Analysis of Biopsy, Fresh Frozen, and Formalin-Fixed, Paraffin-Embedded Colorectal Cancer Samples. J. Lab. Autom. 2015, 20, 642–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, T.; Simmons, P.; Inzunza, H.D.; Cogswell, J.; Novotny, J.; Taylor, C.; Zhang, X. Development of an Automated PD-L1 Immunohistochemistry (IHC) Assay for Non-Small Cell Lung Cancer. Appl. Immunohistochem. Mol. Morphol. 2015, 23, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourbeau, P.P.; Ledeboer, N.A. Automation in clinical microbiology. J. Clin. Microbiol. 2013, 51, 1658–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streitberg, G.S.; Angel, L.; Sikaris, K.A.; Bwititi, P.T. Automation in clinical biochemistry: Core, peripheral, STAT, and specialist laboratories in Australia. J. Lab. Autom. 2012, 17, 387–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protocol Steps | IHC Protocol | Duration (min) | |
---|---|---|---|
Manual | Automated | ||
1 | Slide labeling | 24 | 24 |
2 | FFPE cutting | 24 | 24 |
3 | Slide drying | 60 | 60 |
4 | Xylene | 15 | 125 * |
5 | Alcohol 100% | 6 | |
6 | Alcohol 96% | 4 | |
7 | Alcohol 70% | 2 | |
8 | Washing step—distilled water (dH2O) | 4 | |
9 | Cooking and cooling (HIER) | 75 | |
10 | Washing step—distilled water (dH2O) | 5 | |
11 | Peroxidase block—3% H2O2 | 10 | 125 * |
12 | Washing with PBS (2 × 5 min) | 10 | |
13 | Protein block—1% BSA | 5 | |
14 | Application of primary antibody | 12 | |
15 | Primary antibody incubation step | 60 | |
16 | Washing with PBS (3 × 5 min) | 15 | |
17 | Application of secondary antibody | 8 | |
18 | Secondary antibody incubation step | 10 | |
19 | Washing with PBS (3 × 5 min) | 15 | |
20 | Application of tertiary antibody | 8 | |
21 | Tertiary antibody incubation step | 15 | |
22 | Washing with PBS (3 × 5 min) | 15 | |
23 | DAB | 18 | |
24 | Washing step—dH2O | 8 | |
25 | Hematoxylin | 2 | 2 |
26 | Washing step—dH2O | 2 | 2 |
27 | Ammonia | 1 | 1 |
28 | Washing step—dH2O | 2 | 2 |
29 | I 100% alcohol | 1 | 1 |
30 | II 100% alcohol | 1 | 1 |
31 | Xylene + 100% alcohol (ana partes) | 10 | 10 |
32 | I Xylene | 5 | 5 |
33 | II Xylene | 5 | 5 |
34 | Canada balsam and covering | 3 | 3 |
Total time [min] | 460 | 390 |
No. | Reagents | Volume of Manufacture Pack (Unit of Measure) | Price (EUR) | Quantity Used in a Single Run | Total Number of Units from Manufacture Pack | Reagent Cost of a Single IHC Slide (EUR) | |
---|---|---|---|---|---|---|---|
1 | Superfrost microscope slides | 72 | pcs | 23.00 | 1 pcs | 72 | 0.32 |
2 | Xylene | 1000 | mL | 2.67 | 100 mL | 640 | 0.00 |
3 | Alcohol 100% | 1000 | mL | 3.48 | 100 mL | 640 | 0.01 |
4 | Alcohol 96% | 1000 | mL | 2.58 | 100 mL | 640 | 0.00 |
5 | HIER antigen retrieval reagent | 1000 | mL | 149.44 | 250 mL | 80 | 1.87 |
6 | PBS washing buffer (10×) | 1000 | mL | 9.33 | 100 mL | 1600 | 0.06 |
7 | Primary antibody | 100 | µL | 591.66 | 1 µL | 100 | 5.92 |
8 | Antibody diluent | 125 | mL | 125.00 | 100 µL | 1250 | 0.10 |
9 | Kit for detection of antibody binding | 125 | mL | 2150.00 | 150 µL | 833 | 2.58 |
10 | DAB Buffer substrate and chromogen | 125 | mL | 294.00 | 300 µL | 416 | 0.71 |
11 | Hematoxylin | 1000 | mL | 2.95 | 100 mL | 640 | 0.00 |
12 | Canada balsam | 100 | mL | 46.00 | 40 µL | 2500 | 0.02 |
13 | Coverslips | 100 | pcs | 3.85 | 1 pcs | 100 | 0.04 |
Total | 11.63 |
No. | Reagents | Volume of Manufacture Pack (Unit of Measure) | Price (EUR) | Quantity Used in a Single Run | Total Number of Units from Manufacture Pack | Reagent Cost of a Single Run (EUR) | |
---|---|---|---|---|---|---|---|
1 | Superfrost microscope slides | 72 | pcs | 23.00 | 1 pcs | 72 | 0.32 |
2 | Primary antibody—ready to use (RTU) | 12 | mL | 250.00 | 150 µL | 80 | 3.12 |
3 | EnVision FLEX visualization system | 600 | tests | 2150.00 | 1 test | 600 | 3.58 |
4 | Hematoxylin | 1000 | mL | 2.95 | 100 mL | 640 | 0.00 |
5 | Alcohol 96% | 1000 | mL | 2.58 | 100 mL | 640 | 0.00 |
6 | Alcohol 100% | 1000 | mL | 3.48 | 100 mL | 640 | 0.01 |
7 | Xylene | 1000 | mL | 2.67 | 100 mL | 640 | 0.00 |
8 | Canada balsam | 100 | mL | 46.00 | 40 µL | 2500 | 0.02 |
9 | Coverslips | 100 | pcs | 3.85 | 1 pcs | 100 | 0.04 |
Total | 7.09 |
No | Type of Costs | Manual Protocol | Automated Protocol | |
---|---|---|---|---|
1 | Reagent | 11.63 | 7.09 | |
2 | Cost of technicians’ work | 0.50 | 0.10 | |
Gross technician monthly salary (EUR) | 674.86 | 674.86 | ||
Number of working days monthly | 22 | 22 | ||
Number of working hours monthly | 176 | 176 | ||
Price of technicians’ work per 1 h | 3.83 | 3.83 | ||
Price of technicians’ work per 1 min | 0.06 | 0.06 | ||
Total technicians’ hands-on time per single IHC cycle (min) | 400 | 80 | ||
Total technicians’ hands-on time per single IHC slide (min) | 8.33 | 1.67 | ||
3 | Consumables | 0.12 | 0.12 | |
Microtubes 1.5 mL | 0.03 | 0.03 | ||
Pipette tips 200 μl | 0.05 | 0.05 | ||
Pipette tips 0.2–10 μL | 0.03 | 0.03 | ||
Nitril gloves | 0.01 | 0.01 | ||
4 | Resources (electricity) | 0.01 | 0.01 | |
Monthly electricity consumption (kWh) | Illumination | 61.14 | 8.55 | |
Microscope | 0.26 | 0.40 | ||
Automated cooking and cooling | 30.25 | 30.25 | ||
Automated immunostainer | / | 60.50 | ||
Fridge | 63.36 | 63.36 | ||
Total monthly electricity consumption (kWh) | 155.00 | 163.06 | ||
The price of total monthly electricity consumption (EUR) | 14.44 | 14.91 | ||
Number of IHC cycle per day | 1 | 1 | ||
Number of IHC microscope slides per cycle per day | 48 | 48 | ||
The price of electricity consumption calculated per single IHC slide (EUR) | 0.01 | 0.01 | ||
5 | Depreciation costs of automated immunostainer | / | 0.29 | |
Automated immunostainer price (EUR) | / | 35,000 | ||
Expected automated immunostainer usage time (years) | / | 10 | ||
Number of working days per year | / | 250 | ||
Number of IHC slides per day | / | 48 | ||
Number of IHC slides per year | / | 12,000 | ||
Number of IHC slides within the expected usage automated immunostainer time | / | 120,000 | ||
6 | Annual automated immunostainer service | / | 0.08 | |
Annual service cost (EUR) | / | 1000.00 | ||
Annual IHC slide volume (number of IHC slides) | / | 12,000 | ||
Total cost (1 + 2 + 3 + 4 + 5 + 6) | 12.26 | 7.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đorđević, M.; Životić, M.; Radojević Škodrić, S.; Nešović Ostojić, J.; Marković Lipkovski, J.; Filipović, J.; Ćirović, S.; Kovačević, S.; Dunđerović, D. Effects of Automation on Sustainability of Immunohistochemistry Laboratory. Healthcare 2021, 9, 866. https://doi.org/10.3390/healthcare9070866
Đorđević M, Životić M, Radojević Škodrić S, Nešović Ostojić J, Marković Lipkovski J, Filipović J, Ćirović S, Kovačević S, Dunđerović D. Effects of Automation on Sustainability of Immunohistochemistry Laboratory. Healthcare. 2021; 9(7):866. https://doi.org/10.3390/healthcare9070866
Chicago/Turabian StyleĐorđević, Marija, Maja Životić, Sanja Radojević Škodrić, Jelena Nešović Ostojić, Jasmina Marković Lipkovski, Jelena Filipović, Sanja Ćirović, Sanjin Kovačević, and Duško Dunđerović. 2021. "Effects of Automation on Sustainability of Immunohistochemistry Laboratory" Healthcare 9, no. 7: 866. https://doi.org/10.3390/healthcare9070866
APA StyleĐorđević, M., Životić, M., Radojević Škodrić, S., Nešović Ostojić, J., Marković Lipkovski, J., Filipović, J., Ćirović, S., Kovačević, S., & Dunđerović, D. (2021). Effects of Automation on Sustainability of Immunohistochemistry Laboratory. Healthcare, 9(7), 866. https://doi.org/10.3390/healthcare9070866