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Abstract: Traditional vehicle exhaust pollutant detection methods, such as bench test and remote
sensing detection, have problems such as large volume, high cost, complex process, long waiting
time, etc. In this paper, according to the main components of vehicle exhaust pollutants, an electronic
nose with 12 gas sensors was designed independently for real-time and rapid detection of vehicle
exhaust pollutants. In order to verify that the designed electronic nose based on machine learning
classification method can accurately identify the exhaust pollutants from different engines or different
concentration levels from the same engine. After feature extraction of the collected data, Random
Forest (RF) was used as the classifier, and the average classification accuracy reached 99.92%. This
result proved that the designed electronic nose combined with RF method can accurately and
sensitively judge the concentration level of vehicle exhaust pollutants.. Then, in order to enable
the electronic nose to be vehicle-mounted and to achieve real-time and rapid detection of vehicle
exhaust pollutants. We used Recursive Feature Elimination with Cross Validation (RFECV), Random
Forest Feature Selector (RFFS) and Principal Component Analysis (PCA) to optimize the sensor array.
The results showed that these methods can effectively simplify the sensor array while ensuring the
RF classifier’s classification recognition rate. After using RFECV and RFFS to optimize the sensor
array, the RF classifier’s classification recognition rate of the optimized sensor arrays for vehicle
exhaust pollutants reached 99.77% and 99.44%, respectively. The numbers of sensors in the optimized
sensor arrays were six and eight respectively, which achieved the miniaturization and low-cost of
the electronic nose. With the limitation of six sensors, RFECV is the best sensor array optimization
method among the three methods.

Keywords: vehicle exhaust pollutants; electronic nose; sensor array optimization; feature extraction;
feature selection

1. Introduction

Vehicle exhaust contains hundreds of harmful substances and a large number of
greenhouse gases [1]. It is of great significance to strengthen the monitoring of vehicle
exhaust pollutants for environmental protection. The main components of vehicle exhaust
pollutants include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC) and
sulfur dioxide (SO2) [2].

At present, the main vehicle exhaust pollutant detection methods include remote sens-
ing detection [3], vehicle equipment detection [4] and traditional bench test [5]. However,
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these methods have many problems, such as large volume, high cost, complex process,
long waiting time, etc.

An electronic nose is an odor recognition system [6–8] composed of sensor arrays,
which simulates the working principle of mammalian olfactory organs. Electronic nose
has been widely used in various fields, such as the food industry, chemical industry, med-
ical field, etc. [9–13]. In previous work, it has been proved that the use of gas sensors
can identify CO, NOx, HC, SO2 and other exhaust pollutants and judge their concen-
tration levels [14–17]. Therefore, the electronic nose with 12 gas sensors designed inde-
pendently was used in this paper to carry out real-time and rapid detection of vehicle
exhaust pollutants.

In order to make it possible for the vehicle-mounted electronic nose to rapidly detect
vehicle exhaust pollutants in real time, it is necessary to simplify the sensor array to achieve
the miniaturization and low-cost of the electronic nose. At the same time, because the
sensor array in the electronic nose has cross sensitivity, there will be redundancy in the
sensor array. Optimizing the sensor array can not only reduce the volume and cost [18–20],
but also remove redundant information and improve the recognition rate of the electronic
nose in identifying pollutants.

At present, many feature selection methods have been used to optimize the sensor ar-
ray of electronic nose, and have achieved good results. Recursive Feature Elimination (RFE)
is a feature selection algorithm that searches for the optimal feature subset by repeatedly
constructing models, and has been widely used in the optimization of electronic nose’s
sensor array [21,22]. Genetic Algorithm (GA) is a randomized search method with global
optimization capability, and has also been used in sensor array optimization of electronic
nose [23,24]. While Random Forest (RF) can not only solve classification and regression
problems, it also has certain applications in the optimization of an electronic nose’s sensor
array [25]. This paper used two popular feature selection methods: Recursive Feature
Elimination with Cross Validation (RFECV) and Random Forest Feature Selector (RFFS).
As a contrast, this paper also used the traditional Principal Component Analysis method to
optimize the sensor array, and compares the optimization results of the popular feature
selection methods and the traditional method.

2. Materials and Methods
2.1. Structure of the Electronic Nose

The electronic nose system designed in this paper mainly includes a sampling unit and
a detection unit. The sampling unit is mainly composed of a sampling pipe, three-way valve,
flowmeter and chamber. The detection unit mainly includes a sensor array, regulating
circuit board, analog digital converter (16 channel 12 bits of Beijing Pop WS-5921/U60216),
computer, several connecting wires and a power supply (5V DC). The sensor converts
the odor information into electrical signals through the change of the internal resistance
value, then transmits it to the regulating circuit board in turn, and converts the electri-
cal signals into digital signals through the analog digital converter, finally transmits the
digital signals to the Vib’SYS signal acquisition, processing and analysis software at the
computer terminal.

As the main components of vehicle exhaust pollutants are carbon monoxide (CO),
nitrogen oxides (NOx), hydrocarbons (HC), Pb compounds (Pb), carbon dioxide (CO2),
particulate emissions (PM), sulfur dioxide (SO2) and other gases [2], this paper used 12 gas
sensors that are sensitive to the above gases. The details of the selected gas sensors are
shown in Table 1.

The sensor array chamber is composed of an external cavity column and an octagonal
plate, respectively. The gas sensor is fixed through the hole on the octagonal plate in the
same direction, and the detection surface of the gas sensor is in the inner plane of the
chamber. The 3D schematic diagram of the sensor cavity structure is shown in Figure 1.
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Table 1. Information of the 12 gas sensors.

Serial
Number Sensor Response Characteristics Producer (Country)

A GSBT11 VOCs, toluene, benzene, formaldehyde Ogam (Korea)
B MP135 Ethanol, cigarette smoke, air pollutants Winsen (China)
C MP901 Alcohol, smoke, formaldehyde Winsen (China)
D WSP1110 Carbon dioxide Winsen (China)
E WSP2110 Toluene, benzene, alcohol, acetone Winsen (China)
F TGS2600 Air quality gas (hydrogen sulfide, etc.) Figaro (Japan)
G TGS2602 Formaldehyde and VOCs Figaro (Japan)
H TGS2603 Sulfur odor gas Figaro (Japan)
I TGS2610 Butane, liquefied gas Figaro (Japan)
J TGS2611 Natural gas Figaro (Japan)
K TGS2612 Combustible gas Figaro (Japan)
L TGS2620 Liquor Figaro (Japan)
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2.2. Engine Bench Test

In order to summarize the concentration variation law of diesel engine’s exhaust
pollutants, we conducted the engine bench test at first. The CA4D28C5 diesel engine
and the G01 gasoline engine were used in the test. The bench was set at the same rotary
speed and different torques, and the exhaust pollutants concentration was measured in a
continuous time. The engine’s testing bench and device are shown in Figure 2.
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engine testing device.

An AVL DICOM 4000 pollutant analyzer and a HORIBA MEXA-7100DEGR pollutant
analyzer were used for vehicle exhaust pollutant detection, respectively. The former was
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used for diesel engine pollutant detection, and the latter was used for gasoline engine
pollutant detection. These two pollutant analyzers not only meet the standards of vehicle
exhaust pollutants detection, but also have the advantages of moderate measurement range,
high measurement accuracy, stable reading and good anti-interference performance. The
two pollutant analyzers are shown in Figure 3. The changes diagrams of exhaust pollu-
tants concentration of CA4D28C5 diesel engine measured by AVL DICOM 4000 pollutant
analyzer under the operating conditions of 1600 r/min and 2200 r/min, respectively with
different torques (Nm) are shown in Figure 4.
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It can be seen from the changes in exhaust pollutants concentrations under different
working conditions in Figure 4 that, at the same rotary speed, with the increase in torque, the
concentrations of carbon monoxide (CO) and total hydrocarbons (THC) gradually decrease,
however the concentrations of nitric oxide (NO) and nitrogen oxides (NOx) gradually
increase, and their change ranges are similar; at the same torque with different rotary
speeds, the change trends of CO, THC, NO and NOx are similar, but the concentrations
are different.

According to the above concentration variation law of the diesel engine’s exhaust
pollutants, we believe that the sensor array in the electronic nose needs to have the ability to
accurately identify the exhaust pollutants from different engines or different concentration
levels from the same engine. The test scheme developed according to the concentration
variation law of the diesel engine’s exhaust pollutants obtained from the above engine
bench test is shown in Section 2.3.
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2.3. Experimental Setups

According to the concentration variation law of the diesel engine’s exhaust pollutants
in Section 2.2, we designed five groups of experiments using electronic nose to detect
vehicle exhaust pollutants. The first four groups used a CA4D28C5 diesel engine, which
was tested under the conditions of the same rotary speed with different torques. That is,
the experiments were conducted under the conditions that the types of exhaust pollutants
gases were the same, but the concentration levels of each pollutant were only slightly
different. The fifth group used G01 gasoline engine, which means that the experimental
conditions of different exhaust pollutants gas types and different concentration levels were
taken as the control group.

The total test time of each sample was 300 s, of which 90 s is the data acquisi-
tion time, and the data acquisition frequency was 50 Hz, so that each sample contains
12 × 90 × 50 = 54,000 data points. The other 210 s is the cleaning time of the electronic nose
chamber and the zero-setting time of the resistance.

The actual experimental steps are as follows:

(1) Check the connection tightness and safety of each component.
(2) Power on, start the electronic nose detection system, warm up for 30 min, and expose

the sensor to clean air.
(3) The sample gas is introduced into the electronic nose’s chamber through the catheter

connected with the three-way valve.
(4) Collect and store the signal of the sample gas.
(5) After the data collection of one group of samples is completed, clean the electronic

nose with clean air for about 210 s.
(6) Perform the next set of experiments and repeat steps (2–5).

A total of 225 samples were obtained in the experiments. The concentration levels
of the main exhaust pollutants under the test conditions and corresponding operating
conditions of the samples are shown in Table 2.

Table 2. Composition of experimental samples.

Experimental
Number Engine Rotary Speed

(r/min)
Torque
(Nm) CO (%vol) CO2 (%vol) THC

(ppm)
Number of

Samples

1

Diesel engine

2000 29 0.03 9.6 96 45
2 2000 41.5 0.08 6.1 90 45
3 2000 103.9 0.02 9.0 54 45
4 2000 153 0.01 9.7 42 45
5 Gasoline engine 1200 67 1200 926 1.38 45

2.4. Feature Extraction

After completing the data acquisition steps in Section 2.3, in order to reduce the data
dimension and ensure the effectiveness of the subsequent pattern recognition algorithm [26],
we extracted four features from each data sample obtained: Maximum Value (MAX),
Average Value (Mean), Integral Value (IV) and Wavelet Transform (WT). MAX reflects the
steady state information of the whole gas sensor response curve. Mean and IV combine
all the information of the whole gas sensor response curve. WT can better reflect the
transient information of the whole gas sensor response curve. MAX, Mean, IV and WT
were extracted from each data sample obtained from 12 sensors. After feature extraction,
each data sample changes from a data sample containing 54,000 data points to a feature
sample containing only 12 data points. The feature samples extracted from 225 samples
were spliced together to obtain a feature matrix containing 12 feature vectors and each
feature vector contains 225 feature values.
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2.5. Sensor Array Optimization

In order to enable the electronic nose to realize real-time and rapid detection of vehicle
exhaust pollutants, it is necessary to make the electronic nose more miniaturized and
low-cost. On the one hand, the sensor array optimization method can simultaneously
realize the miniaturization and low-cost of the electronic nose. On the other hand, due
to the cross sensitivity of gas sensors, sensor array optimization can reduce the training
time of classification models, improve the recognition rate of classification models, and
avoid the occurrence of over fitting problems. Three sensor array optimization (i.e., feature
selection) methods based on different principles and optimization strategies were used
in this paper: Recursive Feature Elimination with Cross Validation (RFECV) based on
the packaging method, Random Forest Feature Selector (RFFS) based on an embedding
method, and traditional Principal Component Analysis (PCA) as the comparison. They are
briefly introduced below.

2.5.1. Sensor Array Optimization Based on RFECV

Recursive Feature Elimination (RFE) was proposed by Guyon [27] and has been
widely used in solving feature selection problems. RFECV is a feature selection process
for recursive feature elimination in the cross-validation cycle [28], which can automatically
find the feature subset with the optimal number of features to obtain feature selection
results. In this paper, Random Forest (RF) was used as the classification model in the
process of recursive feature elimination. In the recursive step of each iteration, remove the
last feature according to feature ranking, retrain the RF model with the retained features,
and cross verify the performance of the RF model until there is only one feature left. Finally,
according to the performance of RF model in different feature numbers and feature subsets
composed of different features, the optimal number of features and the optimal feature
subset can be obtained.

2.5.2. Sensor Array Optimization Based on RFFS

Random forests can not only deal with classification and regression problems, but
also can be used to evaluate and select features because they can estimate the importance
of features [29]. The principle of using random forests to evaluate and select features
is based on the difference between the classification performance of random forest on
the original dataset and the randomly extracted dataset. By calculating the classification
performance difference of each decision tree in the random forest on different randomly
extracted datasets, the importance of features can be estimated and the feature ranking can
be obtained. The importance of the features is estimated by Equations (1) and (2):

The importance of feature Aj is estimated as:

I
(

Aj
)
= ∑

di
n× SEdi

, (1)

where di represents the performance difference of decision tree i and SEdi represents the
standard error of all decision trees:

SEdi =
SDdi√

n
, (2)

where SDdi is the standard deviation of di and n is the number of elements in the dataset.

2.5.3. Sensor Array Optimization Based on PCA

Principal Component Analysis is a dimension reduction method, which transforms
the original multivariable in high-dimensional space into a set of linear independent
comprehensive indexes in low-dimensional space through orthogonal transformation [30].
The eigenvalues obtained through Principal Component Analysis are sorted from large to
small to measure the importance of features. Finally, features are selected according to the
importance of features [18].
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Assuming that X = (x1, x2, . . . , x12) is the original variable (the feature extracted
from 12 gas sensors), Z =

(
z1, z2, . . . , zp

)
, (p ≤ 12) as the comprehensive indexes in the

low dimensional space. The transformation process from the original variable matrix X to
the comprehensive index matrix Z can be expressed as:

z1 = a1,1x1 + a1,2x2 + . . . + a1,12x12
z2 = a2,1x1 + a2,2x2 + . . . + a2,12x12

...
zp = ap,1x1 + ap,2x2 + . . . + ap,12x12

(3)

where ap,12 represents the 12th coefficient in the p-th comprehensive index.
Calculate the absolute value of the sum of the coefficients of the original variable cor-

responding to each feature in all comprehensive indexes, such as the absolute value of the
sum of coefficients of the feature values extracted from the 12th sensor in all comprehensive
indexes A12:

z2 = |a1,12|+ |a2,12|+ . . . +
∣∣ap,12

∣∣. (4)

The absolute value of the sum of the coefficients of each feature is used to represent
the contribution degree of each feature in the comprehensive indexes, and then the feature
selection can be obtained by descending order.

3. Results and Discussion

Different sensor array optimization methods will result in different sensor array
optimization results, in which the number and combination of sensors in the sensor array
will be different. The experimental results of this paper were obtained by taking the original
data and the data after sensor array optimization as the input data of the Random Forest
(RF) classifier. The classification recognition rate of the test set is the main index to evaluate
the effectiveness of the original sensor array and the optimized sensor array. Therefore, this
paper used the classification recognition rate of the test set to evaluate the results of sensor
array optimization. In order to make the classification results more reliable and credible,
the stratified sampling strategy was used to conduct 3-fold cross-validation 100 times, and
the average of the 300-test set classification recognition rate was calculated as the final
classification recognition rate of the test set. In the sensor array optimization stage, the
original data set was divided into 2/3 training set and 1/3 test set; the test set was not used
in the sensor array optimization stage.

The classification recognition rate obtained using RF without sensor array optimization
is shown in Figure 5a. It can be seen that the four feature extraction methods have achieved
high classification recognition rate when using RF as the classifier. The highest MAX has
an average classification recognition rate of 99.92%, and the WT with the lowest average
classification recognition rate has also reached 98.16%. This shows that the original sensor
array is effective and has the ability to accurately identify exhaust pollutants from different
engines or different concentration levels from the same engine.

The results of sensor array optimization of the four extracted eigenvalues based
on RF model and RFECV method are shown in Table 3. The optimized sensor array
includes six gas sensors: MP135, TGS2600, TGS2610, TGS2611, TGS2612, and TGS2620. The
optimization of sensor array based on RFECV method has achieved good results. Figure 5b
shows that Mean and IV, which have the lowest average classification recognition rate after
the optimization of sensor array, still reached 97.94%, almost without any loss. This shows
that the RFECV method is very effective for sensor array optimization.

The classification recognition rate of sensor array optimization using RFFS is shown in
Figure 5c. Compared with the RFECV method, RFFS retains a total of eight gas sensors. In
addition to the six same gas sensors selected in the RFECV method, it also retains two gas
sensors, GSBT11 and TGS2602. It can be seen from the comparison of average classification
recognition rate between Figure 5b,c that the classification recognition rate of RFFS with
eight gas sensors is slightly improved in Mean and IV compared with RFECV with six gas
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sensors, but it is decreased in MAX with the highest classification recognition rate, and it
also need to bear the cost of increasing the development of two gas sensors.
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The classification recognition rate of sensor array optimization using RFFS is shown 
in Figure 5c. Compared with the RFECV method, RFFS retains a total of eight gas sensors. 
In addition to the six same gas sensors selected in the RFECV method, it also retains two 
gas sensors, GSBT11 and TGS2602. It can be seen from the comparison of average classifi-
cation recognition rate between Figure 5b,c that the classification recognition rate of RFFS 
with eight gas sensors is slightly improved in Mean and IV compared with RFECV with 
six gas sensors, but it is decreased in MAX with the highest classification recognition rate, 
and it also need to bear the cost of increasing the development of two gas sensors.  

Using PCA to optimize sensor arrays requires setting corresponding thresholds to 
limit the absolute value of the sum of coefficients of each feature. In this paper, in order 
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Figure 5. (a) The RF classifier’s average classification recognition rate of the four feature extrac-
tion methods without sensor array optimization. (b) The RF classifier’s average classification
recognition rate of the four feature extraction methods after using RFECV as the sensor array
optimization method. (c) The RF classifier’s average classification recognition rate of the four
feature extraction methods after using RFFS as the sensor array optimization method. (The er-
ror bars represent the standard deviations of the recognition rates, and the calculation formula is

σ =

√(
(x1 − x)2 + (x2 − x)2 + . . . + (xn − x)2

)
/n, where σ represents the standard deviation, x1,

x2, . . . ,xn represent recognition rates, x represents the average recognition rate, n is the number of
recognition rates. In this paper, we used 3-fold cross validation 100 times, so the value of n is 300.)

Table 3. The sensor array optimization results of RFECV based on RF.

Feature Extraction Method Number of Sensors after
Optimization

Sensor Serial Number
Retained after Optimization

MAX

6
B, E, H
I, K, L

Mean
IV

WT

Using PCA to optimize sensor arrays requires setting corresponding thresholds to
limit the absolute value of the sum of coefficients of each feature. In this paper, in order to
compare with RFECV and RFFS, the threshold values are set at the values required when
six and eight gas sensors were reserved. The sensor array optimization results and the
corresponding RF classification recognition rate is shown in Table 4. Obviously, when the
number of optimized sensors is limited, the classification recognition rate of sensor array
optimized by PCA is worse than that of other sensor array optimization methods. When
eight sensors are retained, the classification recognition rate of MAX decreased by more
than 2% compared with RFFS. When six sensors are retained, the classification recognition
rate of MAX, Mean and IV declined compared with RFECV.

When PCA was used as the sensor array optimization method, TGS2600, TGS2603,
TGS2610, TGS2611, TGS2612 and TGS2620 were selected to be retained in almost every
feature extraction method, regardless of whether six or eight gas sensors were retained,
which indicates that they have a good response to vehicle exhaust pollutants. However,
MP135 and MP901, which were retained for many times when eight gas sensors were
retained, were rarely selected when six gas sensors were retained. This may be because the
target gases detected by them overlap with the six gas sensors frequently selected above.
When different feature extraction methods retained the same number of gas sensors, the
main reason why the gas sensors selected for retention were different and the main reason
why the sensor array optimization using PCA method was not as effective as the other
two sensor array optimization methods may be because it is an unsupervised dimension
reduction method, and its realization method is to maximize the variance in the projection
direction, so the category information is not fully utilized.
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Table 4. The sensor array optimization results and the classification recognition rate based on RF
after using PCA.

Feature Extraction Number of Sensors
after Optimization

Sensor Serial
Number Retained
after Optimization

Recognition Rate
(%)

MAX

8

A, C, F, H,
I, J, K, L 97.12

Mean B, C, F, H,
I, J, K, L 98.34

IV B, C, F, H,
I, J, K, L 98.34

WT B, F, G, H,
I, J, K, L 98.59

MAX

6

A, F, I,
J, K, L 97.44

Mean F, H, I,
J, K, L 96.26

IV F, H, I,
J, K, L 96.26

WT B, F, H,
J, K, L 98.63

When the number of sensors retained after using different methods to optimize the
sensor array is the same, the sensor array with higher classification recognition rate is better.
When the classification recognition rate of sensor arrays is the same, the sensor array with
fewer sensors is better. A good sensor array needs to achieve the highest recognition rate
when the number of sensors is as small as possible. Considering that the recognition rate of
the sensor array composed of six gas sensors is almost no lower than that of the original
sensor array composed of 12 gas sensors, and the sensor array composed of six gas sensors
can reduce volume and save the cost to make it possible for the vehicle-mounted electronic
nose to rapidly detect vehicle exhaust pollutants in real time. We believe that the optimal
number of sensors is to retain six gas sensors. After limiting the number of sensors in the
sensor array to six, the recognition rate of each sensor array optimization method is shown
in Table 5.

Table 5. The classification recognition rate based on RF after using different methods (limited the
number of sensors in the sensor array to six).

Feature Extraction Sensor Array Optimization Method Recognition Rate (%)

MAX
RFECV 99.77
RFFS 99.77
PCA 97.44

Mean
RFECV 97.94
RFFS 97.94
PCA 96.26

IV
RFECV 97.94
RFFS 97.94
PCA 96.26

WT
RFECV 98.44
RFFS 98.33
PCA 98.63

In this case, the average RF classification recognition rate of MAX after using RFECV
and RFFS for sensor array optimization has both reached 99.77%. The classification recog-
nition rate of WT after using RFECV was higher than using RFFS. It means that RFECV is a
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better sensor array optimization method, and MAX is a better feature extraction method
than the other three. In addition, the sensor array optimized by RFECV method and us-
ing MAX as the feature extraction method includes sensors: MP135, TGS2600, TGS2610,
TGS2611, TGS2612 and TGS2620.

The cost of using only the above six gas sensors is $32, which can save about 56% of
the cost compared with the original 12 sensor arrays. It can also greatly reduce the volume
of the electronic nose to achieve the purpose of miniaturization. The average time of using
MAX as the feature extraction after using RFECV to test a new real sample was 0.021 s
(using Python 3.10.5 and Visual Studio Code 2022). The miniaturization and the rapid
detection time make it possible for the vehicle-mounted electronic nose to rapidly detect
vehicle exhaust pollutants in real time.

4. Conclusions

In this paper, a self-designed electronic nose composed of 12 gas sensors was used
to detect vehicle exhaust pollutants from different engines or the same engine at different
concentration levels. Firstly, we conducted an engine bench test to summarize the concen-
tration variation law vehicle exhaust pollutants. After analyzing the experimental data
and extracting the features, the highest RF classification recognition rate was up to 99.92%
without optimizing the sensor array. In order to enable the vehicle-mounted electronic
nose to quickly detect vehicle exhaust pollutants in real time, reduce the volume, save
development cost, and save detection time, we used RFECV, RFFS, and PCA to optimize
the sensor array. When the number of sensors was not fixed, the classification recognition
rate of MAX after using RFECV and RFFS methods reached 99.77% and 99.44% respectively,
while RFECV retained less sensors. When the number of sensors was limited to six, the
classification recognition rate of MAX after using RFFS was up to 99.77%, as high as that
of RFECV. The classification recognition rate of WT after using RFECV was higher than
using RFFS, which means RFECV is a better sensor array optimization method in this
case. The cost of the sensor array optimized by RFECV method and using MAX as the
feature extraction method is only 32$ with almost no loss of recognition rate. In addition,
its average detection time of a new sample was 0.021 s.

In summary, through the research in this paper, we found that it is feasible to use
electronic nose for real-time and rapid detection of vehicle exhaust pollutants, and electronic
nose has a good application prospect in this area. At the same time, combined with the
sensor array optimization methods, the electronic nose can be miniaturized and low-cost,
which makes it possible to detect vehicle exhaust pollutants in real time. In the future,
we will use the vehicle-mounted electronic nose in combination with the developing edge
computing and cloud computing technologies to develop corresponding cloud calculating
platforms. We can monitor vehicle exhaust pollutants in real time, and make corresponding
predictions regarding air quality.
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