Fluorescent “OFF–ON” Sensors for the Detection of Sn2+ Ions Based on Amine-Functionalized Rhodamine 6G
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Synthesis and Characterization of Receptors
3. Results and Discussion
3.1. Binding Properties of the Synthesized Receptors
3.2. Binding Mechanism of the Receptors towards Sn2+
3.3. Reversibility of the Receptors
3.4. Potential Application
3.4.1. Imaging Studies by Fluorescent Microscope
3.4.2. Determination of Sn2+ from the Catalyzed Reaction Product
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Elsabbagh, H.S.; Moussa, S.Z.; el-tawil, O.S. Neurotoxicologic Sequelae of Tributyltin Intoxication in Rats. Pharmacol. Res. 2002, 45, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, C.; Zou, Y.; Wang, H.; Yi, T.; Huang, C. A Highly Selective Fluorescence Sensor for Tin (Sn4+) and its Application in Imaging Live Cells. Org. Biomol. Chem. 2012, 10, 6740–6746. [Google Scholar] [CrossRef]
- Benoy, C.J.; Hooper, P.A.; Schneider, R. TheToxicity of Tin in Canned Fruit Juices and Solid Foods. Food Cosmet. Toxicol. 1971, 9, 645–656. [Google Scholar] [CrossRef]
- Bernardo-Filho, M.; da Conceicão Cunha, M.; de Oliveira Valsa, J.; Caldeira de Araujo, A.; Campos Pereira da Silva, F.; de Souza da Fonseca, A. Evaluation of Potential Genotoxicity of Stannous Chloride: Inactivation, Filamentation and Lysogenic Induction of Escherichia Coli. Food Chem. Toxicol. 1994, 32, 477–479. [Google Scholar] [CrossRef]
- Boogaard, P.; Boisset, M.; Blunden, S.; Davies, S.; Ong, T.; Taverne, J.-P. Comparative Assessment of Gastrointestinal Irritant Potency in Man of Tin(II) Chloride and Tin Migrated from Packaging. Food Chem. Toxicol. 2004, 41, 1663–1670. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, K.; Yang, L.; Liu, J.; Li, K.; Luo, S. One Single Molecule as a Multifunctional Fluorescent Probe for Ratiometric Sensing of Fe3+, Cr3+ and Colorimetric Sensing of Cu2+. Sensors 2015, 15, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Wen, Y.; Zhang, J. Synthesis of a Cu2+-Selective Probe Derived from Rhodamine and Its Application in Cell Imaging. Sensors 2014, 14, 21375–21384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brasca, R.; Onaindia, M.C.; Goicoechea, H.C.; Peña, A.M.d.l.; Culzoni, M.J. Highly Selective and Ultrasensitive Turn-on Luminescence Chemosensor for Mercury (II) Determination Based on the Rhodamine 6G Derivative FC1 and Au Nanoparticles. Sensors 2016, 16, 1652. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Leng, J. Theoretical Studies on Two-Photon Fluorescent Hg2+ Probes Based on the Coumarin-Rhodamine System. Sensors 2017, 17, 1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-S.; Balamurugan, R.; Lin, J.-C.; Fitriyani, S.; Liu, J.-H.; Emelyanenko, A. Pd2+ Fluorescent Sensors Based on Amino and Imino Derivatives of Rhodamine and Improvement of Water Solubility by the Formation of Inclusion Complexes with β-Cyclodextrin. Analyst 2017, 142, 1536–1544. [Google Scholar] [CrossRef]
- Balamurugan, R.; Liu, J.-H.; Liu, B.-T. A Review of Recent Developments in Fluorescent Sensors for the Selective Detection of Palladium Ions. Coord. Chem. Rev. 2018, 376, 196–224. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, J.; Wang, Q.; Zeng, L. Highly Selective Fluorescent Probe for the Detection of Tin (IV) Ion. J. Lumin. 2014, 148, 161–164. [Google Scholar] [CrossRef]
- Mahapatra, A.K.; Manna, S.K.; Mandal, D.; Mukhopadhyay, C.D. Highly Sensitive and Selective Rhodamine-Based “Off–On” Reversible Chemosensor for Tin (Sn4+) and Imaging in Living Cells. Inorg. Chem. 2013, 52, 10825–10834. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yang, E.; Ding, P.; Tang, J.; Zhang, D.; Zhao, Y.; Ye, Y. Two Rhodamine Based Chemosensors For Sn4+ and the Application in Living Cells. Sens. Actuators B Chem. 2015, 221, 688–693. [Google Scholar] [CrossRef]
- Qu, S.; Zheng, C.; Liao, G.; Fan, C.; Liu, G.; Pu, S. A Fluorescent Chemosensor for Sn2+ and Cu2+ Based on a Carbazole-Containing Diarylethene. RSC Adv. 2017, 7, 9833–9839. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.; Ghosh, A.; Guria, S.; Sahana, A. A Through Bond Energy Transfer Based Ratiometric Probe for Fluorescent Imaging of Sn2+ Ions in Living Cells. RSC Adv. 2016, 6, 39657–39662. [Google Scholar] [CrossRef]
- Bao, X.; Cao, X.; Nie, X.; Jin, Y.; Zhou, B. RBAP, a Rhodamine β-Based Derivative: Synthesis, Crystal Structure Analysis, Molecular Simulation, and Its Application as a Selective Fluorescent Chemical Sensor for Sn2+. Molecules 2014, 19, 7817–7831. [Google Scholar] [CrossRef]
- Lan, H.; Wen, Y.; Shi, Y.; Liu, K.; Mao, Y.; Yi, T. Fluorescence Turn-On Detection of Sn2+ in Live Eukaryotic and Prokaryotic Cells. Analyst 2014, 139, 5223–5229. [Google Scholar] [CrossRef]
- Ravichandiran, P.; Prabakaran, D.S.; Bella, A.P.; Boguszewska-Czubara, A.; Masłyk, M.; Dineshkumar, K.; Johnson, P.M.; Park, B.-H.; Han, M.-K.; Kim, H.G.; et al. Naphthoquinone-Dopamine Linked Colorimetric and Fluorescence Chemosensor for Selective Detection of Sn2+ Ion in Aqueous Medium and Its Bio-Imaging Applications. ACS Sustain. Chem. Eng. 2020, 8, 10947–10958. [Google Scholar] [CrossRef]
- Jadhav, A.G.; Shinde, S.S.; Lanke, S.K.; Sekar, N. Benzophenone Based Fluorophore for Selective Detection of Sn2+ Ion: Experimental and Theoretical Study. Spectrochim. Acta A 2017, 174, 291–296. [Google Scholar] [CrossRef]
- Ravichandiran, P.; Krishnamoorthi Kaliannagounder, V.; Antony Paulraj, B.; Boguszewska-Czubara, A.; Masłyk, M.; Pant, H.; Park, C.; Johnson, P.; Park, B.-H.; Han, M.-K.; et al. Simple Colorimetric and Fluorescence Chemosensing Probe for Selective Detection of Sn2+ Ions in an Aqueous Solution: Evaluation of the Novel Sensing Mechanism and Its Bioimaging Applications. Anal. Chem. 2021, 93, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; You, L.; Li, S.; Sun, Q.; Luo, X.; He, H.; Wang, J.; Zhao, F. An ICT-Based Fluorescence Enhancement Probe for Detection of Sn2+ in Cancer Cells. RSC Adv. 2020, 10, 37735–37742. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, M.; Lu, W.; Li, L.; Li, J.; Chen, M.; Wang, Q.; Qin, G.; Cao, D. Rhodamine-Based Chemosensor for Sn2+ Detection and its Application in Nanofibrous Film and Bioimaging. Anal. Bioanal. Chem. 2022, 414, 2009–2019. [Google Scholar] [CrossRef]
- Wang, X.; Song, H.; Fan, C.; Pu, S. Europium(III) Complex Fluorescent Sensor for Dual Channel Recognition of Sn2+ And Cu2+ Ions in Water. Spectrochim. Acta A 2021, 250, 119373. [Google Scholar] [CrossRef] [PubMed]
- Salem, J.K.; El Nahhal, I.M.; Shurrab, M.H. Citrate Stabilised Silver Nanoparticles as Sensing Probe for In-Situ Sn2+ Ion Determination. Int. J. Environ. Anal. Chem. 2020, 1–11. [Google Scholar] [CrossRef]
- Ma, X.; Tan, Z.; Wei, G.; Wei, D.; Du, Y. Solvent Controlled Sugar–Rhodamine Fluorescence Sensor for Cu2+ Detection. Analyst 2012, 137, 1436–1439. [Google Scholar] [CrossRef]
- Rathinam, B.; Chien, C.-C.; Chen, B.-C.; Liu, J.-H. Fluorogenic and Chromogenic Detection of Cu2+ And Fe3+ Species in Aqueous Media by Rhodamine–Triazole Conjugate. Tetrahedron 2013, 69, 235–241. [Google Scholar] [CrossRef]
- Wang, S.; Ding, H.; Wang, Y.; Fan, C.; Tu, Y.; Liu, G.; Pu, S. An ‘‘Off–On–Off’’ Sensor for Sequential Detection of Cu2+ and Hydrogen Sulfide Based on A Naphthalimide–Rhodamine β Derivative and its Application in Dual-Channel Cell Imaging. RSC Adv. 2018, 8, 33121–33128. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; She, M.; Yin, B.; Cui, J.; Zhang, Y.; Sun, W.; Li, J.; Shi, Z. Three Rhodamine-Based “Off–On” Chemosensors with High Selectivity and Sensitivity for Fe3+ Imaging in Living Cells. J. Org. Chem. 2012, 77, 1143–1147. [Google Scholar] [CrossRef]
- Han, X.; Wang, D.-E.; Chen, S.; Zhang, L.; Guo, Y.; Wang, J. A New Rhodamine-Based Chemosensor for Turn-On Fluorescent Detection of Fe3+. Anal. Methods 2015, 7, 4231–4236. [Google Scholar] [CrossRef]
- Balamurugan, R.; Chang, W.-I.; Zhang, Y.; Fitriyani, S.; Liu, J.-H. A Turn-On Fluorescence Chemosensor Based on a Tripodal Amine [tris(pyrrolyl-α-methyl)amine]-rhodamine Conjugate for the Selective Detection of Zinc Ions. Analyst 2016, 141, 5456–5462. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Das, S.; Sacher, S.; Mandal, S.K.; Roy, P. A Rhodamine Based Biocompatible Chemosensor for Al3+, Cr3+ and Fe3+ Ions: Extraordinary Fluorescence Enhancement and a Precursor for Future Chemosensors. Dalton Trans. 2019, 48, 17594–17604. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Chen, Y.; Zhang, Y.; Xu, D. A Novel Rhodamine-Based Hg2+ Sensor with a Simple Structure and Fine Performance. Analyst 2019, 144, 7351–7358. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, C.-Y.; Qi, H.-R.; Tan, K.-Y.; Li, Y.-F. Rhodamine-Based Chemosensor for Fluorescence Determination of Trivalent Chromium Ion in Living Cells. Sens. Actuators B Chem. 2016, 223, 705–712. [Google Scholar] [CrossRef]
- Rathinam, B.; Liu, B.-T. Highly Efficient Probe of Dinuclear Zinc Complexfor Selective Detection of Oxalic Acid. J. Taiwan Inst. Chem. Eng. 2021, 127, 349–356. [Google Scholar] [CrossRef]
- Wang, D.; Xiang, X.; Yang, X.; Wang, X.; Guo, Y.; Liu, W.; Qin, W. Fluorescein-Based Chromo-Fluorescent Probe for Zinc in Aqueous Solution: Spirolactam Ring Opened or Closed? Sens. Actuators B Chem. 2014, 201, 246–254. [Google Scholar] [CrossRef]
- Kraithong, S.; Damrongsak, P.; Suwatpipat, K.; Sirirak, J.; Swanglap, P.; Wanichacheva, N. Highly Hg2+-Sensitive and Selective Fluorescent Sensors in Aqueous Solution and Sensors-Encapsulated Polymeric Membrane. RSC Adv. 2016, 6, 10401–10411. [Google Scholar] [CrossRef]
- Johnson, A.D.; Curtis, R.M.; Wallace, K.J. Low Molecular Weight Fluorescent Probes (LMFPs) to Detect the Group 12 Metal Triad. Chemosensors 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Gamble, A.B.; Garner, J.; Gordon, C.P.; O’Conner, S.M.J.; Keller, P.A. Aryl Nitro Reduction with Iron Powder or Stannous Chloride under Ultrasonic Irradiation. Synth. Commun. 2007, 37, 2777–2786. [Google Scholar] [CrossRef]
Reported Sensor for Stannous Ions | LOD | [Ref] |
---|---|---|
4-(Naphthalen-1-ylethynyl) aniline appended rhodamine (NAP-RD) | 5 × 10−9 M | [16] |
Rhodamine B and a benzyl 3-aminopropanoate conjugate (RBAP) | 0.044 × 10−6 M | [17] |
Rhodamine B with N,N-bis- (2-hydroxyethyl)ethylenediamine (R1) and tert-butyl carbazate group (R2) units | 5.7 × 10−7 M (R1) and 4.6 × 10−7 M (R2) | [18] |
Naphthoquinone–dopamine conjugate | 0.1 × 10−6 M | [19] |
Benzophenone-based chemosensor | 0.3898 × 10−9 M | [20] |
Diarylethene with a carbazole | 1.9 × 10−3 M | [15] |
Rhodamine–amine | 1.62 × 10−7 M | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathinam, B.; Murugesan, V.; Liu, B.-T. Fluorescent “OFF–ON” Sensors for the Detection of Sn2+ Ions Based on Amine-Functionalized Rhodamine 6G. Chemosensors 2022, 10, 69. https://doi.org/10.3390/chemosensors10020069
Rathinam B, Murugesan V, Liu B-T. Fluorescent “OFF–ON” Sensors for the Detection of Sn2+ Ions Based on Amine-Functionalized Rhodamine 6G. Chemosensors. 2022; 10(2):69. https://doi.org/10.3390/chemosensors10020069
Chicago/Turabian StyleRathinam, Balamurugan, Vajjiravel Murugesan, and Bo-Tau Liu. 2022. "Fluorescent “OFF–ON” Sensors for the Detection of Sn2+ Ions Based on Amine-Functionalized Rhodamine 6G" Chemosensors 10, no. 2: 69. https://doi.org/10.3390/chemosensors10020069
APA StyleRathinam, B., Murugesan, V., & Liu, B. -T. (2022). Fluorescent “OFF–ON” Sensors for the Detection of Sn2+ Ions Based on Amine-Functionalized Rhodamine 6G. Chemosensors, 10(2), 69. https://doi.org/10.3390/chemosensors10020069