Potentiometric Sensors for the Selective Determination of Benzodiazepine Drug Residues in Real Wastewater Effluents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Chemicals and Reagents
2.3. Collection, Preparation, and Storage of the Samples
2.4. Standard Solutions
2.5. Preparation of Ion Pair Complexes
2.6. Sensors’ Fabrication, Calibration, and Optimization
2.7. Application of the Suggested Method in Spiked Water Samples and Real Wastewater Effluent
3. Results
3.1. Performance Characteristics of the Fabricated Membranes
3.2. Quantification of BRZ in Spiked Water Samples
3.3. Quantification of BRZ in Real Wastewater Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffin, C.E.; Kaye, A.M.; Bueno, F.R.; Kaye, A.D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J. 2013, 13, 214–223. [Google Scholar]
- International Narcotics Control Board (INCB). Psychotropic Substances—Statistics; International Narcotics Control Board (INCB): New York, NY, USA, 2015. [Google Scholar]
- Brodin, T.; Nordling, J.; Lagesson, A.; Klaminder, J.; Hellström, G.; Christensen, B.; Fick, J. Environmental relevant levels of a benzodiazepine (oxazepam) alters important behavioral traits in a common planktivorous fish, (Rutilus rutilus). J. Toxicol. Environ. Health A 2017, 80, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Hirschtritt, M.E.; Olfson, M.; Kroenke, K. Balancing the Risks and Benefits of Benzodiazepines. JAMA 2021, 32, 347–348. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; Streltzer, J. Risks Associated with Long-Term Benzodiazepine Use. Am. Fam. Physician 2013, 88, 224–225. [Google Scholar] [PubMed]
- Seifrtová, M.; Aufartová, J.; Vytlacilová, J.; Pena, A.; Solich, P.; Nováková, L. Determination of fluoroquinolone antibiotics in wastewater using ultra high-performance liquid chromatography with mass spectrometry and fluorescence detection. J. Sep. Sci. 2010, 33, 2094–2108. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Gawad, S.A.; Afzal, O.; Arab, H.H.; Alabbas, A.B.; Alqarni, A.M. Fabrication of Membrane Sensitive Electrodes for the Validated Electrochemical Quantification of Anti-Osteoporotic Drug Residues in Pharmaceutical Industrial Wastewater. Molecules 2021, 26, 5093. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Gawad, S.A.; Arab, H.H.; Alabbas, A.B. Validated Simultaneous Gradient Ultra-Performance Liquid Chromatographic Quantification of Some Proton Pump Inhibitor Drug Residues in Saudi Pharmaceutical Industrial Wastewater. Molecules 2021, 26, 4358. [Google Scholar] [CrossRef]
- Boxall, A.B. The environmental side effects of medication. EMBO Rep. 2004, 5, 1110–1116. [Google Scholar] [CrossRef] [Green Version]
- El-Brashy, A.M.; Aly, F.A.; Belal, F. Determination of 1,4-benzodiazepines in drug dosage forms by difference spectrophotometry. Microchim. Acta 1993, 110, 55–60. [Google Scholar] [CrossRef]
- Salem, A.A.; Barsoum, B.N.; Izake, E.L. Spectrophotometric and fluorimetric determination of diazepam, bromazepam and clonazepam in pharmaceutical and urine samples. Spectrochim. Acta A 2004, 60, 771–780. [Google Scholar] [CrossRef]
- Darwish, H.W.; Ali, N.A.; Naguib, I.A.; El Ghobashy, M.R.; Al-Hossaini, A.M.; Abdelrahman, M.M. Stability indicating spectrophotometric methods for quantitative determination of bromazepam and its degradation product. Spectrochim. Acta A 2020, 238, 118433. [Google Scholar] [CrossRef] [PubMed]
- Le Solleu, H.; Demotes-Mainard, F.; Vinçon, G.; Bannwarth, B. The determination of bromazepam in plasma by reversed-phase high-performance liquid chromatography. J. Pharm. Biomed. Anal. 1993, 11, 771–775. [Google Scholar] [CrossRef]
- Capella-Peiró, M.E.; Bose, D.; Martinavarro-Domínguez, A.; Gil-Agustí, M.; Esteve-Romero, J. Direct injection micellar liquid chromatographic determination of benzodiazepines in serum. J. Chromatogr. B 2002, 780, 241–249. [Google Scholar] [CrossRef]
- Podilsky, G.; Berger-Gryllaki, M.; Testa, B.; Pannatier, A. Development and validation of an HPLC method for the simultaneous monitoring of bromazepam and omeprazole. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 878–890. [Google Scholar] [CrossRef]
- Darwish, H.W.; Ali, N.A.; Naguib, I.A.; El Ghobashy, M.R.; Al-Hossaini, A.M.; Abdelrahman, M.M. Development and validation of a stability indicating RP-HPLC-DAD method for the determination of bromazepam. PLoS ONE 2021, 16, e0244951. [Google Scholar] [CrossRef]
- Al-Hawasli, H.; Al-Khayat, M.A.; Al-Mardini, M.A. Development of a validated HPLC method for the separation and analysis of a Bromazepam, Medazepam and Midazolam mixture. J. Pharm. Anal. 2012, 2, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.C.S.; Monteiro, T.M.; de Miranda Neves, C.S.; da Silva Gram, K.R.; Volpato, N.M.; Silva, V.A.; Caminha, R.; Gonçalves Mdo, R.; Santos, F.M.; Silveira, G.E.; et al. On-line solid-phase extraction coupled with high-performance liquid chromatography and tandem mass spectrometry (SPE-HPLC-MS-MS) for quantification of bromazepam in human plasma: An automated method for bioequivalence studies. Ther. Drug Monit. 2005, 27, 601–607. [Google Scholar] [CrossRef]
- Laurito, T.L.; Mendes, G.D.; Santagada, V.; Caliendo, G.; de Moraes, M.E.A.; De Nucci, G. Bromazepam determination in human plasma by high-performance liquid chromatography coupled to tandem mass spectrometry: A highly sensitive and specific tool for bioequivalence studies. J. Mass Spectrum. 2004, 39, 168–176. [Google Scholar] [CrossRef]
- Chèze, M.; Villain, M.; Pépin, G. Determination of bromazepam, clonazepam and metabolites after a single intake in urine and hair by LC-MS/MS: Application to forensic cases of drug facilitated crimes. Forensic Sci. Int. 2004, 145, 123–130. [Google Scholar] [CrossRef]
- Brooks, M.A.; Hackman, M.R. Trace Level Determination of 1,4-benzodiazepines in blood by differential pulse polarography. Anal. Chem. 1975, 47, 2059–2062. [Google Scholar] [CrossRef]
- Dos Santos, M.M.C.; Famila, V.; Simões Gonçalves, M.L. Square-wave voltammetric techniques for determination of psychoactive 1,4-benzodiazepine drugs. Anal. Bioanal. Chem. 2002, 374, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Hernández, L.; Zapardiel, A.; López, J.A.P.; Bermejo, E. Determination of camazepam and bromazepam in human serum by adsorptive stripping voltammetry. Analyst 1987, 112, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Valdeón, J.L.; Escribano, M.T.S.; Hernandez, L.H. Determination of bromazepam and its urinary metabolites, with a previous hydrolysis reaction, by voltammetric and spectrophotometric techniques. Analyst 1987, 112, 1365–1368. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.A.; Barsoum, B.N.; Izake, E.L. Potentiometric determination of diazepam, bromazepam and clonazepam using solid contact ion-selective electrodes. Anal. Chim. Acta 2003, 498, 79–91. [Google Scholar] [CrossRef]
- Samiec, P.; Navrátilová, Z. Electrochemical behavior of bromazepam and alprazolam and their determination in the pharmaceutical tablets Lexaurin and Xanax on carbon paste electrode. Monatsh. Chem. 2016, 148, 449–455. [Google Scholar] [CrossRef]
- Samiec, P.; Švorc, Ľ.; Stanković, D.M.; Vojs, M.; Marton, M.; Navrátilová, Z. Mercury-free and modification-free electroanalytical approach towards bromazepam and alprazolam sensing: A facile and efficient assay for their quantification in pharmaceuticals using boron-doped diamond electrodes. Sens. Actuators B-Chem. 2017, 245, 963–971. [Google Scholar] [CrossRef] [Green Version]
- Cunha, D.L.; de Araujo, F.G.; Marques, M. Psychoactive drugs: Occurrence in aquatic environment, analytical methods, and ecotoxicity—A review. Environ. Sci. Pollut. Res. 2017, 24, 24076–24091. [Google Scholar] [CrossRef]
- de Araujo, F.G.; Bauerfeldt, G.F.; Marques, M.; Martins, E.M. Development and Validation of an Analytical Method for the Detection and Quantification of Bromazepam, Clonazepam and Diazepam by UPLC-MS/MS in Surface Water. Bull. Environ. Contam. Toxicol. 2019, 103, 362–366. [Google Scholar] [CrossRef]
- Seger, C. Usage and limitations of liquid chromatography-tandem mass spectrometry (LC-MS/MS) in clinical routine laboratories. Wien. Med. Wochenschr. 2012, 162, 499–504. [Google Scholar] [CrossRef]
- Coşofre, V.V.; Buck, R.P. Recent advances in pharmaceutical analysis with potentiometric membrane sensors. Crit. Rev. Anal. Chem. 1993, 24, 1–58. [Google Scholar] [CrossRef]
- Al Attas, A.S. Construction and analytical application of ion selective bromazepam sensor. Int. J. Electrochem. Sci. 2009, 4, 20–29. [Google Scholar]
- Lindner, E.; Umezawa, Y. Performance evaluation criteria for preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure Appl. Chem. 2008, 80, 85–104. [Google Scholar] [CrossRef]
- Tohda, K.; Dragoe, D.; Shibata, M.; Umezawa, Y. Studies on the matched potential method for determining the selectivity coefficients of ion-selective electrodes based on neutral ionophores: Experimental and theoretical verification. Anal. Sci. 2001, 17, 733–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Mehtab, S.; Jain, A.K. Selective electrochemical sensor for copper (II) ion based on chelating ionophores. Anal. Chim. Acta. 2006, 575, 25–31. [Google Scholar] [CrossRef]
- Bakker, E.; Buhlmann, P.; Pretsch, E. The phase-boundary potential model. Talanta 2004, 63, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Meyerholf, M.E.; Opdycke, W.N. In Advances in Clinical Chemistry; Spiegel, H.E., Ed.; Academic Press Inc.: Orlando, FL, USA, 2013; Volume 25, pp. 1–47. [Google Scholar]
- Riad, S.M.; Mostafa, N.M. Ion selective electrodes for potentiometric determination of baclofen in pharmaceutical preparations. Anal. Bioanal. Electrochem. 2013, 5, 494–505. [Google Scholar]
- Nie, L.; Liu, D.; Yao, S. Potentiometric determination of diazepam with a diazepam ion-selective electrode. J. Pharm. Biomed. Anal. 1990, 8, 379–383. [Google Scholar] [CrossRef]
- Abdel Ghani, N.T.; Rizk, M.S.; El-Nashar, R.M. Salbutamol plastic membrane electrodes based on individual and mixed ion-exchangers of salbutamolium phosphotungstate and phosphomolybdate. Analyst 2000, 125, 1129–1133. [Google Scholar] [CrossRef]
Parameter | BRZ-PTA | BRZ-TPB | Published Method [32] Ω |
---|---|---|---|
Slope (mV decade−1) * ± S.D. | 54 ± 0.321 | 57 ± 0.223 | 52 ± 0.100 |
Response time (S) | 10–20 | 10–20 | >20 |
Working pH range | 3–6 | 3–6 | 3 |
Concentration range (M) | 1 × 10−6–1 × 10−3 | 1 × 10−6–1 × 10−3 | 1 × 10−4–1 × 10−2 |
Concentration range (µg/mL) | 0.32–316 | 0.32–316 | 32–3160 |
Stability (days) | 21 | 21 | 28 |
Accuracy (Mean * ± SD) | 101.31 ± 0.72 | 99.71 ± 0.842 | NA |
Lower detection limit (µg/mL) | 0.25 | 0.25 | 9.48 |
Ruggedness † | 103.12 * ± 2.014 | 102.96 * ± 1.966 | NA |
Robustness Ψ | 100.96 * ± 0.987 | 99.36 * ± 0.586 | NA |
Interferent | BRZ-PTA (Mean * ± S.D.) | BRZ-TPB (Mean * ± S.D.) |
---|---|---|
Magnesium chloride | 2.1 × 10−4 ± 0.871 | 2.4 × 10−4 ± 0.756 |
Potassium sulfate | 3.2 × 10−4 ± 0.923 | 3.4 × 10−4 ± 0.579 |
Potassium phosphate | 1.2 × 10−4 ± 1.023 | 1.1 × 10−4 ± 1.052 |
Ammonium nitrate | 6.6 × 10−3 ± 0.911 | 6.8 × 10−3 ± 0.899 |
Potassium carbonate | 4.1 × 10−4 ± 0.534 | 4.2 × 10−4 ± 0.642 |
Sodium fluoride | 3.2 × 10−3 ± 0.468 | 3.1 × 10−3 ± 0.579 |
Sodium iodide | 4.7 × 10−3 ± 0.739 | 4.9 × 10−3 ± 0.683 |
Diazepam | 2.6 × 10−4 ± 0.877 | 2.7 × 10−4 ± 0.791 |
Clonazepam | 3.9 × 10−3 ± 1.112 | 3.8 × 10−3 ± 1.092 |
Specimen | BRZ-PTA (Rec.% * ± S.D.) | BRZ-TPB (Rec.% * ± S.D.) |
---|---|---|
Distilled water | 101.43 ± 1.012 | 99.79 ± 1.211 |
Tap water | 98.97 ± 0.915 | 101.11 ± 0.893 |
Sample Number | BRZ-PTA Conc. β (µg/mL) ± S.D. | BRZ-TPB Conc. β (µg/mL) ± S.D. | Reference Method [13] * Conc. β (µg/mL) ± S.D. |
---|---|---|---|
Sample 1 | 5.33 ± 0.667 | 5.41 ± 0.672 | 5.53 ± 0.833 |
Sample 2 | 25.98 ± 0.821 | 25.76 ± 0.779 | 25.56 ± 0.821 |
Sample 3 | 10.66 ± 0.988 | 10.43 ± 0.921 | 10.55 ± 0.892 |
Sample 4 | 53.25 ± 1.211 | 52.45 ± 0.948 | 52.84 ± 0.956 |
Sample 5 | 32.24 ± 0.934 | 32.31± 0.782 | 32.33 ± 0.668 |
Sample 6 | 75.88 ± 0.734 | 75.67 ± 0.821 | 75.56 ± 0.854 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Gawad, S.A.; Arab, H.H. Potentiometric Sensors for the Selective Determination of Benzodiazepine Drug Residues in Real Wastewater Effluents. Chemosensors 2022, 10, 74. https://doi.org/10.3390/chemosensors10020074
Abdel-Gawad SA, Arab HH. Potentiometric Sensors for the Selective Determination of Benzodiazepine Drug Residues in Real Wastewater Effluents. Chemosensors. 2022; 10(2):74. https://doi.org/10.3390/chemosensors10020074
Chicago/Turabian StyleAbdel-Gawad, Sherif A., and Hany H. Arab. 2022. "Potentiometric Sensors for the Selective Determination of Benzodiazepine Drug Residues in Real Wastewater Effluents" Chemosensors 10, no. 2: 74. https://doi.org/10.3390/chemosensors10020074
APA StyleAbdel-Gawad, S. A., & Arab, H. H. (2022). Potentiometric Sensors for the Selective Determination of Benzodiazepine Drug Residues in Real Wastewater Effluents. Chemosensors, 10(2), 74. https://doi.org/10.3390/chemosensors10020074