UV-Activated NO2 Gas Sensing by Nanocrystalline ZnO: Mechanistic Insights from Mass Spectrometry Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanocrystalline ZnO and Samples Preparation
2.2. Characterization of ZnO
2.3. Gas-Sensing Measurements
2.4. In Situ Photostimulated Mass Spectrometry
3. Results
3.1. Crystal Structure, Morphology, and Optical Properties ZnO
3.2. Photostimulated Oxygen Adsorption on ZnO
3.3. Photostimulated NO2 Processes on the ZnO Surface
3.3.1. Photoadsorption NO2 from Oxygen-Depleted Atmosphere
3.3.2. Photoadsorption NO2 from Oxygen-Rich Atmosphere
3.4. UV-Activated Gas Sensitivity ZnO to NO2
4. Discussion
4.1. Defect Structure of Synthesized Nanocrystalline ZnO
4.2. Surface Reactivity of ZnO under UV Activation
4.2.1. Oxygen Photoadsorption
4.2.2. NO2 Photoadsorption
- (i)
- When a ZnO sample is annealed in an inert atmosphere, the surface can be reduced with the formation of oxygen vacancies, as a result of which an increase in the surface concentration of oxygen vacancies leads to a change in surface reactivity.
- (ii)
- When ZnO is heated in an inert gas flow, the surface of ZnO is cleaned as a result of thermal desorption of H2O, CO2 (Figure S3), and other volatile contaminants, as well as chemisorbed oxygen; existing adsorption sites suitable for NO2 adsorption become unoccupied and this increases the reactivity of the surface.
4.3. Insights to Mechanisms of Gas Sensitivity of ZnO to NO2 under UV Activation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moseley, P.T. Progress in the development of semiconducting metal oxide gas sensors: A review. Meas. Sci. Technol. 2017, 28, 082001. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Rumyantseva, M.; Gas’kov, A. Chemical modification of nanocrystalline metal oxides: Effect of the real structure and surface chemistry on the sensor properties. Russ. Chem. Bull. 2008, 57, 1106–1125. [Google Scholar] [CrossRef]
- Oprea, A.; Degler, D.; Barsan, N.; Hemeryck, A.; Rebholz, J. 3-Basics of semiconducting metal oxide–based gas sensors. In Gas Sensors Based on Conducting Metal Oxides; Metal Oxides; Barsan, N., Schierbaum, K., Eds.; Elsevier: Cambridge, MA, USA, 2019; pp. 61–165. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.A.; Gaskov, A. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef]
- Xue, S.; Cao, S.; Huang, Z.; Yang, D.; Zhang, G. Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review. Materials 2021, 14, 4263. [Google Scholar] [CrossRef]
- Chizhov, A.; Rumyantseva, M.; Gaskov, A. Light Activation of Nanocrystalline Metal Oxides for Gas Sensing: Principles, Achievements, Challenges. Nanomaterials 2021, 11, 892. [Google Scholar] [CrossRef]
- Wang, J.; Shen, H.; Xia, Y.; Komarneni, S. Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances. Ceram. Int. 2021, 47, 7353–7368. [Google Scholar] [CrossRef]
- Xuan, J.; Zhao, G.; Sun, M.; Jia, F.; Wang, X.; Zhou, T.; Yin, G.; Liu, B. Low-temperature operating ZnO-based NO2 sensors: A review. RSC Adv. 2020, 10, 39786–39807. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sens. Actuators B 2013, 188, 709–728. [Google Scholar] [CrossRef]
- Solomatin, M.A.; Glukhova, O.E.; Fedorov, F.S.; Sommer, M.; Shunaev, V.V.; Varezhnikov, A.S.; Nasibulin, A.G.; Ushakov, N.M.; Sysoev, V.V. The UV Effect on the Chemiresistive Response of ZnO Nanostructures to Isopropanol and Benzene at PPM Concentrations in Mixture with Dry and Wet Air. Chemosensors 2021, 9, 181. [Google Scholar] [CrossRef]
- Kumar, R.; Liu, X.; Zhang, J.; Kumar, M. Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials. Nano Micro Lett. 2020, 12, 164. [Google Scholar] [CrossRef]
- Xu, F.; Ho, H.P. Light-Activated Metal Oxide Gas Sensors: A Review. Micromachines 2017, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Ren, B.; Xu, K.; Jeerapan, I.; Chen, H.; Li, Z.; Ou, J.Z. Recent progress in intrinsic and stimulated room-temperature gas sensors enabled by low-dimensional materials. J. Mater. Chem. C 2021, 9, 3026–3051. [Google Scholar] [CrossRef]
- Chizhov, A.; Rumyantseva, M.; Drozdov, K.; Krylov, I.; Batuk, M.; Hadermann, J.; Filatova, D.; Khmelevsky, N.; Kozlovsky, V.; Maltseva, L.; et al. Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals. Sens. Actuators B 2021, 329, 129035. [Google Scholar] [CrossRef]
- Baltrusaitis, J.; Jayaweera, P.M.; Grassian, V.H. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys. Chem. Chem. Phys. 2009, 11, 8295–8305. [Google Scholar] [CrossRef]
- Karagoz, B.; Tsyshevsky, R.; Trotochaud, L.; Yu, Y.; Karslıoğlu, O.; Blum, M.; Eichhorn, B.; Bluhm, H.; Kuklja, M.M.; Head, A.R. NO2 Interactions with MoO3 and CuO at Atmospherically Relevant Pressures. J. Phys. Chem. C 2021, 125, 16489–16497. [Google Scholar] [CrossRef]
- Drozdowska, K.; Welearegay, T.; Osterlund, L.; Smulko, J. Combined chemoresistive and in situ FTIR spectroscopy study of nanoporous NiO films for light-activated nitrogen dioxide and acetone gas sensing. Sens. Actuators B 2022, 353, 131125. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; Han, D.; Gu, F.; Guo, G. High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens. Actuators B 2011, 157, 565–574. [Google Scholar] [CrossRef]
- Sergent, N.; Epifani, M.; Pagnier, T. In situ Raman spectroscopy study of NO2 adsorption onto nanocrystalline tin(IV) oxide. J. Raman Spectrosc. 2006, 37, 1272–1277. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.; Xia, Y.; Zhang, B. Mesoporous ZnO nanosheets with rich surface oxygen vacancies for UV-activated methane gas sensing at room temperature. Sens. Actuators B 2021, 333, 129547. [Google Scholar] [CrossRef]
- Sharma, A.; Rout, C.S. Advances in understanding the gas sensing mechanisms by in situ and operando spectroscopy. J. Mater. Chem. A 2021, 9, 18175–18207. [Google Scholar] [CrossRef]
- Cho, I.; Sim, Y.C.; Cho, M.; Cho, Y.H.; Park, I. Monolithic Micro Light-Emitting Diode/Metal Oxide Nanowire Gas Sensor with Microwatt-Level Power Consumption. ACS Sens. 2020, 5, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, Y.; Xia, Y. Mesoporous MXene/ZnO nanorod hybrids of high surface area for UV-activated NO2 gas sensing in ppb-level. Sens. Actuators B 2022, 353, 131087. [Google Scholar] [CrossRef]
- Li, G.; Sun, Z.; Zhang, D.; Xu, Q.; Meng, L.; Qin, Y. Mechanism of Sensitivity Enhancement of a ZnO Nanofilm Gas Sensor by UV Light Illumination. ACS Sens. 2019, 4, 1577–1585. [Google Scholar] [CrossRef]
- Fan, S.W.; Srivastava, A.K.; Dravid, V.P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 2009, 95, 142106. [Google Scholar] [CrossRef]
- Ding, W.; Liu, D.; Liu, J.; Zhang, J. Oxygen Defects in Nanostructured Metal-Oxide Gas Sensors: Recent Advances and Challenges. Chin. J. Chem. 2020, 38, 1832–1846. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y.; Li, X.; Xia, Y.; Yang, C. Synergistic effects of UV activation and surface oxygen vacancies on the room-temperature NO2 gas sensing performance of ZnO nanowires. Sens. Actuators B 2019, 298, 126858. [Google Scholar] [CrossRef]
- Gurylev, V.; Perng, T.P. Defect engineering of ZnO: Review on oxygen and zinc vacancies. J. Eur. Ceram. Soc. 2021, 41, 4977–4996. [Google Scholar] [CrossRef]
- Kumar, R.R.; Murugesan, T.; Chang, T.W.; Lin, H.N. Defect controlled adsorption/desorption kinetics of ZnO nanorods for UV-activated NO2 gas sensing at room temperature. Mater. Lett. 2021, 287, 129257. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Liu, G.; Liu, K.; Wu, K. Room temperature NO2 sensing properties of ZnO1-α coating prepared by hydrogen reduction method. Ceram. Int. 2021, 47, 29873–29880. [Google Scholar] [CrossRef]
- Paolucci, V.; De Santis, J.; Lozzi, L.; Rigon, M.; Martucci, A.; Cantalini, C. ZnO thin films containing aliovalent ions for NO2 gas sensor activated by visible light. Ceram. Int. 2021, 47, 25017–25028. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Meng, L.; Sun, Z.; Chen, Z.; Huang, X.; Qin, Y. Adjustment of oxygen vacancy states in ZnO and its application in ppb-level NO2 gas sensor. Sci. Bull. 2020, 65, 1650–1658. [Google Scholar] [CrossRef]
- Liu, J.; Gao, F.; Wu, L.; Zhang, H.; Hong, W.; Jin, G.; Zhai, Z.; Fu, C. Size effect on oxygen vacancy formation and gaseous adsorption in ZnO nanocrystallites for gas sensors: A first principle calculation study. Appl. Phys. A 2020, 126, 454. [Google Scholar] [CrossRef]
- Lu, W.; Olaitan, A.D.; Brantley, M.R.; Zekavat, B.; Erdogan, D.A.; Ozensoy, E.; Solouki, T. Photocatalytic Conversion of Nitric Oxide on Titanium Dioxide: Cryotrapping of Reaction Products for Online Monitoring by Mass Spectrometry. J. Phys. Chem. C 2016, 120, 8056–8067. [Google Scholar] [CrossRef]
- Bedjanian, Y.; El Zein, A. Interaction of NO2 with TiO2 Surface Under UV Irradiation: Products Study. J. Phys. Chem. A 2012, 116, 1758–1764. [Google Scholar] [CrossRef]
- Sanchez-Martın, S.; Olaizola, S.; Castaño, E.; Mandayo, G.; Ayerdi, I. Low temperature NO2 gas sensing with ZnO nanostructured by laser interference lithography. RSC Adv. 2021, 11, 34144–34151. [Google Scholar] [CrossRef]
- Bobkov, A.; Varezhnikov, A.; Plugin, I.; Fedorov, F.S.; Trouillet, V.; Geckle, U.; Sommer, M.; Goffman, V.; Moshnikov, V.; Sysoev, V. The Multisensor Array Based on Grown-On-Chip Zinc Oxide Nanorod Network for Selective Discrimination of Alcohol Vapors at Sub-ppm Range. Sensors 2019, 19, 4265. [Google Scholar] [CrossRef] [Green Version]
- Benamara, M.; Massoudi, J.; Dahman, H.; Ly, A.; Dhahri, E.; Debliquy, M.; El Mir, L.; Lahem, D. Study of room temperature NO2 sensing performances of ZnO1−x (x= 0, 0.05, 0.10). Appl. Phys. A 2022, 128, 31. [Google Scholar] [CrossRef]
- Liu, K.; Sakurai, M.; Aono, M. ZnO-Based Ultraviolet Photodetectors. Sensors 2010, 10, 8604–8634. [Google Scholar] [CrossRef] [Green Version]
- Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.A.; Aplin, D.P.R.; Park, J.; Bao, X.Y.; Lo, Y.H.; Wang, D. ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Lett. 2007, 7, 1003–1009. [Google Scholar] [CrossRef]
- Djurišić, A.; Leung, Y.H. Optical Properties of ZnO Nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef]
- Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P.R.; Dutt, A. Photoluminescence of ZnO Nanowires: A Review. Nanomaterials 2020, 10, 857. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202. [Google Scholar] [CrossRef]
- Chandrinou, C.; Boukos, N.; Stogios, C.; Travlos, A. PL study of oxygen defect formation in ZnO nanorods. Microelectron. J. 2009, 40, 296–298. [Google Scholar] [CrossRef]
- Verma, S.; Jain, S.L. Nanosized zinc peroxide (ZnO2): A novel inorganic oxidant for the oxidation of aromatic alcohols to carbonyl compounds. Inorg. Chem. Front. 2014, 1, 534–539. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. [Google Scholar] [CrossRef]
- Melnick, D.A. Zinc Oxide Photoconduction, an Oxygen Adsorption Process. J. Chem. Phys. 1957, 26, 1136–1146. [Google Scholar] [CrossRef]
- Barry, T.I.; Stone, F.S. The Reactions of Oxygen at Dark and Irradiated Zinc Oxide Surface. Proc. R. Soc. Lond. A Math. Phys. Sci. 1960, 255, 124–144. [Google Scholar]
- Yan, Y.; Al-Jassim, M.M.; Wei, S.H. Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO(100) surface. Phys. Rev. B 2005, 72, 161307. [Google Scholar] [CrossRef]
- Klimovskii, A.; Lisachenko, A. Determination of the kinetic-parameters for the photoadsorption and photodesorption of oxygen on zinc-oxide. Kinet. Catal. 1991, 32, 373–377. [Google Scholar]
- Titov, V.V.; Lisachenko, A.A.; Labzovskaya, M.E.; Akopyan, I.K.; Novikov, B.V. Exciton Channel of Photoactivation for Redox Reactions on the Surface of 2D ZnO Nanostructures. J. Phys. Chem. C 2019, 123, 27399–27405. [Google Scholar] [CrossRef]
- Gurlo, A. Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen. ChemPhysChem 2006, 7, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Y.; Wang, Y.; Li, X.; Guo, Y. The impact of carrier gas on room-temperature trace nitrogen dioxide sensing of ZnO nanowire-integrated film under UV illumination. Ceram. Int. 2020, 46, 16056–16061. [Google Scholar] [CrossRef]
- Watanabe, K.; Matsumoto, K.; Ohgaki, T.; Sakaguchi, I.; Ohashi, N.; Hishita, S.; Haneda, H. Development of ZnO-based surface plasmon resonance gas sensor and analysis of UV irradiation effect on NO2 desorption from ZnO thin films. J. Ceram. Soc. Jpn. 2010, 118, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Spencer, M.J.S.; Yarovsky, I. ZnO Nanostructures for Gas Sensing: Interaction of NO2, NO, O, and N with the ZnO(1010) Surface. J. Phys. Chem. C 2010, 114, 10881–10893. [Google Scholar] [CrossRef]
- Breedon, M.; Spencer, M.J.S.; Yarovsky, I. Adsorption of NO2 on Oxygen Deficient ZnO(20) for Gas Sensing Applications: A DFT Study. J. Phys. Chem. C 2010, 114, 16603–16610. [Google Scholar] [CrossRef]
- Kaur, M.; Shaheera, M.; Pathak, A.; Gadkari, S.C.; Debnath, A.K. Highly sensitive NO2 sensor based on ZnO nanostructured thin film prepared by SILAR technique. Sens. Actuators B 2021, 335, 129678. [Google Scholar] [CrossRef]
- Chen, H.; Qu, Y.; Ding, J.; Fu, H. Adsorption behavior of graphene-like ZnO monolayer with oxygen vacancy defects for NO2: A DFT study. Superlattices Microstruct. 2019, 134, 106223. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Jirsak, T.; Dvorak, J.; Sambasivan, S.; Fischer, D. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3. J. Phys. Chem. C 2000, 104, 319–328. [Google Scholar] [CrossRef]
Sample | a, nm | c, nm | , nm | , nm | , nm | , nm |
---|---|---|---|---|---|---|
ZnO-300 | 3.2511 (14) | 5.2116 (21) | 17 | 20 | 15 | 13 |
ZnO-VO | 3.2518 (12) | 5.2133 (18) | 16 | 19 | 14 | 12 |
Sample | BE Position, eV | Content, at.% | ||||
---|---|---|---|---|---|---|
O1s(I) | O1s(II) | O1s(III) | O1s(I) | O1s(II) | O1s(III) | |
ZnO-300 | 530.4 | 531.2 | 532.0 | 61.7 | 7.8 | 30.5 |
ZnO-VO | 530.3 | 531.2 | 532.0 | 64.2 | 12.4 | 23.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chizhov, A.; Kutukov, P.; Gulin, A.; Astafiev, A.; Rumyantseva, M. UV-Activated NO2 Gas Sensing by Nanocrystalline ZnO: Mechanistic Insights from Mass Spectrometry Investigations. Chemosensors 2022, 10, 147. https://doi.org/10.3390/chemosensors10040147
Chizhov A, Kutukov P, Gulin A, Astafiev A, Rumyantseva M. UV-Activated NO2 Gas Sensing by Nanocrystalline ZnO: Mechanistic Insights from Mass Spectrometry Investigations. Chemosensors. 2022; 10(4):147. https://doi.org/10.3390/chemosensors10040147
Chicago/Turabian StyleChizhov, Artem, Pavel Kutukov, Alexander Gulin, Artyom Astafiev, and Marina Rumyantseva. 2022. "UV-Activated NO2 Gas Sensing by Nanocrystalline ZnO: Mechanistic Insights from Mass Spectrometry Investigations" Chemosensors 10, no. 4: 147. https://doi.org/10.3390/chemosensors10040147
APA StyleChizhov, A., Kutukov, P., Gulin, A., Astafiev, A., & Rumyantseva, M. (2022). UV-Activated NO2 Gas Sensing by Nanocrystalline ZnO: Mechanistic Insights from Mass Spectrometry Investigations. Chemosensors, 10(4), 147. https://doi.org/10.3390/chemosensors10040147