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Abstract: A novel donor-π-acceptor fluorescent dye as a chemosensor for Cu2+ ions is herein pre-
sented. The fluorophoric core consists of a 3,5-diphenyl-dicyanomethylene-4H-pyran (DCM), with
extended styryl chains on positions 2 and 6, bearing terminal di-(2-picolyl)amine (DPA) groups for
metal coordination. Optical characterization of the chemosensor dye reveals an absorption maximum
at ca. 500 nm and a strong bathochromic shift in the emission, reaching ca. 750 nm in polar solvents.
This solvatochromic behavior, which yields very large Stokes shifts (up to ~6700 cm−1), is character-
istic of the strong intramolecular Charge Transfer (CT) nature of this chromophoric system. While
the chemosensor has demonstrated no changes in its optical properties over a wide pH range (2–12),
a strong quenching effect was observed upon Cu2+ coordination, with a 1:1 binding stoichiometry,
indicating that only one DPA unit is capable of effectively chelating Cu2+, rendering the second DPA
motif inactive. The binding constant was determined to be 7.5 × 107 M−1, indicating a very high
sensitivity, and an LOD of 90.1 nM. Competition assays have demonstrated that the chemosensor is
highly selective towards Cu2+, even in the presence of excesses of other mono- and di-valent cations.
Co2+ and Ni2+ proved to be the strongest interferents, particularly in the luminescent response. Paper
test-strips prepared with the embedded sensor showed a fluorometric response in the presence of
different copper (II) concentrations, which attested to the potential of this chemosensor to be used in
the determination of Cu2+ content in aqueous media, for in-field applications.

Keywords: Di-(2-picolyl)amine (DPA); copper (II); fluorescent sensor; 3,5-diphenyl-dicyanomethylene-
4H-pyran (DCM); near-infrared (NIR); charge transfer (CT)

1. Introduction

Fluorescent chemosensors have been widely investigated over the past few decades,
mainly due to their high sensitivity when compared to other sensor systems, allowing for a
high spatiotemporal resolution and continuous monitoring of analyzed samples [1]. Sensors
that are coupled to metal binding moieties have been designed since the early 1980s, and an
enormous collection of molecules has been reported, where the chelating moiety plays the
key role in the selectivity towards a specific metal cation [2]. A particular successful case is
the di-(2-picolyl)-amine (DPA) chelating group, which has been thoroughly investigated by
a large number of research groups.

The development of new sensor systems for specific metal ions has been boosted by
the relevance of several cations, given their roles in biological processes, and in some cases,
their inherent toxicity for the environment. Along with iron and zinc, copper plays a key
role as a catalytic cofactor for many metalloenzymes in the human body. It is therefore an
essential trace element for both fauna and flora [3]. Nevertheless, at certain concentrations,
it is toxic to fish and aquatic life due to high levels of bioaccumulation and its integration
within the food chain, and long-term exposure can lead to severe food poisoning, ultimately
resulting in permanent damage to the liver and kidneys. Additionally, it has been linked to
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several neurodegenerative diseases (e.g., Alzheimer’s and Wilson’s diseases), probably due
to its involvement in the production of reactive oxygen species [4–6].

DPA-based sensors for Cu2+ with several different fluorophores have been reported,
including ruthenium (II) [7,8] and iridium (II) [9] complexes, naphthalimide [10–12], chal-
cones [13] and BODIPY dyes [14,15], among others [16].

Over recent years, significant research effort from the scientific community has been
directed to designing chemosensors with optical properties in the near-infrared (NIR)
region, i.e., with absorption and emission above 700 nm. This specific class of sensors is
particularly relevant for biological samples, since it is in this spectral region that light can
penetrate deeper into cellular tissues, thereby allowing in vivo monitoring with minimal
radiation damage [17]. Another significant advantage for optical sensors operating in the
NIR region is the minimum fluorescence background, and another is less light scattering
with visible light, especially for cases where less intrusive integration of artificial lighting
may be better suited [18]. While several NIR systems are known to preferentially detect
copper (II), to the best of our knowledge, only one integrates DPA as a Cu2+-selective
coordination moiety [19].

Dicyanomethylene-4H-pyran (DCM) fluorophores have been reported to absorb
and/or emit NIR light, since they present a strong intramolecular Charge Transfer (CT)
character which shifts the optical properties towards lower energies in polar media, due
to the strong stabilization of the excited CT state [20,21]. Additionally, extension of the
π-conjugated chain is readily accessible through Knoevenagel condensation of the end
methyl groups with aldehyde derivatives, resulting in a red shift of the optical properties
of the DCM core [22,23].

With this in mind, we designed a NIR fluorescent chemosensor with a 3,5-diphenyl-
dicyanomethylene-4H-pyran (DCM) core, with an extended push-pull π-system, possessing
two DPA units for metal ion detection, and fully characterized it in terms of sensitivity and
selectivity towards metal ions, both in solution and in paper-support.

2. Materials and Methods
2.1. Synthesis

All used chemicals were of analytical grade and used as purchased. Fine chemicals
were acquired from Sigma-Aldrich (St. Louis, MO, USA), and solvents were purchased
either from Sigma-Aldrich or Carlo Erba (Barcelona, Spain).

2.1.1. Synthesis of 2,6-dimethyl-3,5-diphenyl-4H-pyran-4-one (1)

1,3-Diphenylpropan-2-one (2.14 g, 10.0 mmol) and acetic anhydride (20 mL) were
added to a 50 mL round-bottom flask. After 1,3-diphenylpropan-2-one was fully dissolved
under stirring conditions, polyphosphoric acid (PPA) (6.75 g, 20.0 mmol) was added to the
flask. The reaction mixture was stirred at 140 ◦C for 12 h. The reaction mixture was cooled
to room temperature and then poured into 200 mL of water. The mixture was then extracted
with CH2Cl2, and the combined organic phases were dried with anhydrous Na2SO4. The
solution was filtered, and the organic solvent was removed under reduced pressure and
passed through a silica gel column, with dichloromethane as the solvent, to give a light
yellow solid (1) (0.704 g, 28.9% yield). 1H NMR (400 MHz, CDCl3) δ: 7.41 (t, J = 7.4 Hz, 4H),
7.35 (d, J = 7.1 Hz, 2H), 7.30 (d, J = 7.4 Hz, 4H), 2.28 (s, 6H). 13C NMR (101 MHz, CDCl3)
δ: 176.81, 161.71, 132.83, 130.37, 128.16, 127.68, 126.45, 18.78.

2.1.2. Synthesis of 2-(2,6-dimethyl-3,5-diphenyl-4H-pyran-4-ylidene) Malononitrile (2)

Compound 1 (0.704 g, 2.55 mmol) and acetic anhydride (5 mL) were added to a 250 mL
round-bottom flask. After compound 1 was fully dissolved under stirring conditions,
malononitrile (2.64 g, 5.92 mmol) was added and the reaction mixture was stirred at 140 ◦C
for 24 h. Afterwards, it was cooled to room temperature, and then we poured in 35 mL
of water. The mixture was then extracted with CH2Cl2, and the organic phase was dried
with anhydrous Na2SO4. We filtered it, and the solvent was removed under reduced
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pressure. The residue was purified through a silica gel column, using petroleum ether:ethyl
acetate (5:1), to yield a light red solid (2) (0.264 g, 31.8% yield). 1H NMR (400 MHz, CDCl3)
δ: 7.55–7.47 (m, 6H), 7.33–7.28* (m, 4H), 2.10 (s, 6H). 13C NMR (101 MHz, CDCl3) δ: 158.98,
153.54, 133.63, 130.95, 129.81, 129.24, 120.79, 114.88, 63.41, 18.96.

*Integration was mixed with that of CDCl3.

2.1.3. Synthesis of 2-(2,6-bis((E)-4-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(methyl)amino)
styryl)-3,5-diphenyl-4H-pyran-4-ylidene)malononitrile (4)

4-((2-(Bis(pyridin-2-ylmethyl)amino)ethyl)(methyl)amino)benzaldehyde (3) (0.14 g,
0.39 mmol), acetonitrile (5 mL), compound 2 (0.324 g, 0.20 mmol) and piperidine (0.5 mL)
were added to a round-bottom flask. The mixture was stirred at 80 ◦C for 10 h. Af-
ter the reaction mixture was cooled to room temperature, the solvent was removed
under reduced pressure. The residue was passed through a silica gel column, with
dichloromethane as a starting solvent. After collecting all impurities, the solvent was
switched to dichloromethane:methanol:ammonia (9.5:0.5:0.01). Upon evaporation of the
solvents, a red solid was collected (4) (0.075 g, 37.7% yield). 1H NMR (400 MHz, CDCl3)
δ: 8.53 (d, J = 4.9 Hz, 2H), 7.61 (t, J = 7.8 Hz, 2H), 7.58–7.50 (m, 3H), 7.47–7.35 (m, 5H),
7.18–7.09 (m, 4H), 6.48 (d, J = 8.5 Hz, 2H), 6.23 (d, J = 15.8 Hz, 1H), 3.89 (s, 4H), 3.48 (t,
J = 7.1 Hz, 2H), 2.89 (s, 3H), 2.76 (t, J = 7.2 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ: 159.16,
155.13, 153.56, 150.27, 149.13, 137.26, 136.47, 133.67, 131.96, 129.67, 129.44, 129.01, 123.02,
122.97, 122.17, 119.20, 116.06, 112.71, 111.60, 60.97, 50.65, 50.47, 38.64.

2.2. UV-Vis and Fluorescence Measurements

Absorption spectra were acquired on a Varian Cary 100 Bio UV-Vis spectrophotometer
(Agilent, Santa Clara, CA, USA). Emission spectra were obtained using a Horiba–Jobin–Yvon
SPEX Fluorolog 3.22 spectrofluorometer (HORIBA, Kyoto, Japan). Solutions for UV-Vis
absorption and fluorescence measurements were prepared by adding an aliquot of 57 µL
of a 1.32 × 10−4 M methanolic solution of 4, 1470 µL of methanol and 1500 µL of buffer,
for a final chemosensor concentration of 2.5 µM. For all metal titrations, 10 mM HEPES
buffer at pH 7.0 ± 0.2 was used. pH titrations were performed using Theorell and Sten-
hagen universal buffer [24]. Metal ion titrations were performed by adding small aliquots
of a metal stock solution to a cuvette containing solely the chemosensor, recording both
UV-Vis and luminescence spectra in between additions. Posterior correction on the values
of chemosensor and metal concentrations to account for the volume change upon each
addition were made. The limit of detection (LOD) of Cu2+ was determined according to
IUPAC guidelines [25], by measuring seven independently prepared samples of chemosen-
sor 4 with no metal (blank) and applying the formula: LOD = |3σ/b|, where σ represents
the standard deviation of these measurements, and b represents the slope over a fixed
linear range (0–1.4 µM of Cu2+ was selected). All UV-Vis absorption and emission spectra
were acquired in 1 cm Plastibrand cuvettes on a Varian Cary 100 Bio U-spectrophotometer,
except for experiments with different organic solvents, where a 1 cm quartz cuvette was
used. Fluorescence quantum yield for 4 was determined using 4-(dicyanomethylene)-2-
methyl-6-(p-dimethylaminostyryl)-4H-pyran (φf = 0.43 in methanol) [26]. The binding
constants for 4-Cu2+ and 4-Co2+ were determined by fitting the experimental data to a
Henderson-Hasselbalch binding model using the Solver Add-In from Microsoft Excel [27].
Paper test-strips were prepared by incubating 1 by 2 cm paper rectangles (FILTER-LAB®

medium-filtration qualitative filter paper from Anoia, Barcelona, España) for 30 min in a
0.5 mM methanolic solution of chemosensor 4. Afterwards, the paper was air dried, dipped
in aqueous solutions of different copper (II) concentrations and left to dry once more before
recording the photos (ambient light and 365 nm UV light) with an iPhone SE 2020 (Apple,
Cupertino, CA, USA), and acquiring the luminescent spectra.
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3. Results and Discussion
3.1. Synthesis

The synthetic design of chemosensor 4 comprised a total of three reaction steps
(Figure 1). The core dicyanomethylene-4H-pyran was obtained by reacting 1,3-diphenylpropan-
2-one with acetic anhydride, under acidic conditions, followed by the addition of maloni-
trile at position 4 [23].
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Figure 1. Full synthesis of chemosensor 4.

The DPA motif was introduced by reacting 4-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)
(methyl)amino)benzaldehyde (3) [13] with compound 2, via a Knoevenagel condensation, to
yield the final chemosensor 4. Full NMR and HRMS spectra for structural characterization
of 4 can be found in the Supporting Information (Figures S1–S11).

3.2. Photophysical Characterization

Chemosensor 4 possesses a dicyanomethylene-4H-pyran as the core fluorophore. The
conjugation of the π-system was extended with the introduction of two styryl “arms”,
each with an amine in position 4. The donor character each of these nitrogen’s lone pair
of electrons, combined with the electron withdrawing nature of the pyran core, causes a
strong push-pull effect, leading to a pronounced red shift in the emission of the fluorophore
in highly polar solvents. Indeed, Figure 2 shows the linear relationship between the Stokes
shift of 4 and the empirical polarity parameter EN

T [28] (see Table S2 for the list of used
solvents and respective polarity data), which indicates the strong intramolecular Charge
Transfer (CT) character of this molecule. In highly polar media, this value reaches up
to 6700 cm−1, reaching the NIR region with an emission maximum at ca. 750 nm. This
large Stokes shift in polar solvents is accompanied by a strong non-radiative decay from
the excited state, which is reflected in the recorded fluorescent quantum yield of 0.008,
consistent with molecules undergoing intramolecular CT processes in the excited state [29].

For binding metal cations, the nitrogens from the DPA unit must have lone electron
pairs available to act as chelators. Titration of chemosensor 4 showed very low sensitivity
over a wide range of pH values (Figure S12), indicating that the protonation of the aliphatic
non-conjugated tertiary amine (which is expected to occur at a pH between 5 and 6 [30])
does not reflect in the optical properties of the molecule. The protonation of the nitrogen
that is directly coupled to the fluorophore is expected to occur at lower pH values, since its
lone of pair of electrons acts as a charge donor to the π-conjugated system.
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3.3. Metal Sensitivity/Selectivity

In order to understand the influence of chelation efficiency and how this process
affects the optical properties of 4, its optical properties were measured in the presence
of different metal cations. UV-Vis spectra revealed that the chemosensor presented a
noticeable selectivity for Cu(II): a strong blue shift of the maximum absorption band from
500 to 450 nm took place. The presence of other cations produced little to no changes in
the absorption spectra. Indeed, even with a naked eye, it was possible to see the change in
color from red to yellow in the presence of Cu2+. Nevertheless, one could still distinguish a
group of five cations, Zn2+, Cd2+, Ni2+, Co2+ and Pb2+, that induce slight hypsochromic
(≤13 nm) and hypochromic shifts of the free chemosensor band (Figure 3), leading to a
slight change in the color of 4 from red to orange (Figure S13A).
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Figure 3. UV-Vis (A) and emission (B) spectra of chemosensor 4 (2.5 µM) in the presence of two
equivalents of different metal ions, in a 50:50 mixture of methanol and 0.01 M HEPES buffer at
pH = 7.1 (λEXC = 500 nm).
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This strong shift from the ground-state absorption spectra to higher energies suggests
that the aromatic nitrogen which is directly coupled with the π-conjugated chain of the
dicyanomethylene-4H-pyran fluorophore also contributes to the coordination sphere for
copper chelation (see Figure 5, below). In terms of luminescence, Cu2+ was also the metal
that prompted the strongest emission changes in 4. A strong quenching effect was observed
upon increasing the concentration of this cation, which was also reflected when looking at
solutions of 4 under 365 nm UV light (Figure S13B). However, some quenching effect was
also observed with other metals, particularly for Co2+, and to a lesser extent, also Ni2+, Fe2+

and Pb2+. Taking a closer look at the behavior of 4 with copper (II), we performed UV-Vis
and fluorescence titrations, to understand the sensitivity against this specific metal cation.
The results are presented in Figure 4.
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one order of magnitude higher when compared to other similar systems [8,10,12-14]. To 
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corresponding Job’s plot (Figure 6B) [31]. The maximum was observed for a value of 0.52 
on the molar fraction of sensor 4, which indicates a 1:1 binding model. The limit of 

300 400 500 600 700
0.00

0.02

0.04

0.06

0.08

Ab
so

rb
an

ce

Wavelength (nm)

(A) 

+Cu
2

600 700 800
0.0

0.2

0.4

0.6

0.8

1.0

I (
no

rm
.)

Wavelength (nm)

(B) 

+Cu
2+ 

Figure 4. UV-Vis (A) and emission (B) spectra of 4 (2.5 µM) upon addition of increasing amounts of
Cu2+, in a 50:50 mixture of methanol and 0.01 M HEPES buffer at pH = 7.1 (λEXC = 500 nm).

For the UV-Vis absorption spectra, a decrease in the absorption bands centered at 382
and 500 nm was observed upon increasing Cu2+ concentration, along with a simultaneous
rise in a new band at circa 450 nm, corresponding to 4-Cu2+ complex. The emission from 4
was also strongly quenched by increasing amounts of Cu2+ up to about 1 equivalent, from
which point it reached a plateau and remained unchanged (Figure 4B and Figure 6A, below).
This trend suggests that, although chemosensor 4 bears two DPA moieties, the binding of a
first Cu2+ ion influences the conjugated π-system in such a way that binding a second Cu2+

is no longer favorable, since the lesser charge density in the central fluorophore displaces
the lone pair of electrons of the nitrogen that is located on the opposite side of the molecule,
in order to compensate and stabilize the conjugated system (Figure 5).
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Figure 5. Possible binding mode of copper to 4. The coordination of the metal includes the nitrogen
that is directly coupled to the fluorophore (shown in green), causing a blue-shift in the absorption
maximum. The lone pair from the symmetric nitrogen (shown in red) is no longer available for
binding a second copper.
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Indeed, the experimental data from fluorescence measurements fit well to a 1:1 binding
stoichiometry, yielding an association constant of 7.45×107 M−1, which is at least one
order of magnitude higher when compared to other similar systems [8,10,12–14]. To
confirm the stoichiometry, we used the method of continuous variations and obtained
the corresponding Job’s plot (Figure 6B) [31]. The maximum was observed for a value of
0.52 on the molar fraction of sensor 4, which indicates a 1:1 binding model. The limit of
detection [25] for Cu2+ was found to be 90.1 nM, which also attests to the high sensitivity
of 4 to this metal, even though other systems showed better performance by this parameter
(Table 1).
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Figure 6. (A) Emission changes of 4 (2.5 µM), in a 50:50 mixture of methanol and 0.01 M HEPES
buffer at pH = 7.1 (λEXC = 500 nm), in the presence of Cu2+. (B) Job’s plot for continuous variation
in [4] vs. [Cu2+]. The intersect between the slopes of the linear fits (red lines) was at 0.52 for the molar
fraction of 4 (X4).

The response of 4 to Cu2+ in the presence of other metals as interferents was also
assessed in a competition assay, where the intensity of the chemosensor was measured
primarily in the presence of each metal (2 equivalents), and afterwards upon the addition
of one equivalent of copper (II) ions (Figure 7).
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equivalent of Cu2+ ions (1 eq.), in a 50:50 mixture of methanol and 0.01 M HEPES buffer at pH = 7.1
(λEXC = 500 nm).



Chemosensors 2022, 10, 343 8 of 12

Table 1. Comparison between different DPA chemosensors towards copper (II).

Compound Conditions/
Solvents Type of Response Fluor. QY Binding

Constant LOD Ref.
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Table 1. Cont.

Compound Conditions/
Solvents Type of Response Fluor. QY Binding

Constant LOD Ref.
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As can be seen, the metals that interfere the most in the detection of Cu2+ are Co2+ and
Ni2+, which is in agreement with the UV-Vis and emission spectra from Figure 3. For all
remaining ions, a clear preference for Cu2+ was observed. This result indicates that sample
pre-treatment with selective chelators for Co2+ (and Ni2+) may be required for copper (II)
quantification of aqueous samples that are rich in these two interferent species.

3.4. Paper Test-Strips for Cu2+ Detection

As a proof-of-concept, paper test-strips were embedded in concentrated methanolic
solutions of chemosensor 4 and air dried, to be used for the detection of copper (II) in
aqueous solutions. The paper strips were then subsequently dipped in solutions of different
Cu2+ concentrations, and immediately left for drying in air. When completely dry, a slight
color change was observed from light red to yellow, and the corresponding emission under
UV irradiation (365 nm) allowed a clearer image of the quenching effect with increasing
concentrations of Cu2+ (Figure 8A). Emission spectra from these test-strips were also
collected and confirmed a strong decrease in the luminescence of 4 with increasing copper
(II) concentration (Figure 8B,C).
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Figure 8. (A) Pictures of paper test-strips with embedded chemosensor 4 upon exposure to in-
creasing copper concentrations (above: under ambient light; below: under 365 nm UV light).
(B) Emission spectra from the paper test-strips, and (C) corresponding fluorescence intensity at
700 nm (λEXC = 500 nm).

Overall, the spectra showed lower resolution when compared to chemosensor 4 in
solution, though retaining several scattering peaks that were present in all of the prepared
paper-strips, which indicates some interference of the matrix in the acquisition of the
emission signal. Moreover, the emission maximum was blue-shifted by circa 30 nm. Never-
theless, a clear trend was observed upon increasing copper (II) concentration: a roughly
35% decrease in the fluorescent signal at 0.05 mM and 60% quenching at 0.1 mM. Given the
current guidelines from the EU’s Environmental Protection Agency (EPA) [32,33], which set
the maximum copper concentration to be around 30 µM, these test-strips could potentially
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be used as an early screening method for this metal, or ultimately find applications in
the detection of aqueous samples with higher copper content, such as waste waters from
mining facilities [34].

4. Conclusions

We developed a new donor-π-acceptor DPA-chemosensor system based on a DCM-4H-
pyran fluorophore, capable of emitting in the NIR region of the electromagnetic spectrum,
and that responds selectively to copper (II) when compared to most of the studied metal
ions. In solution, the chemosensor presents a high binding constant with Cu2+, with a limit
of detection in the nanomolar range. Paper test-strips embedded with the chemosensor
indicated that this system can be used for a rapid screening of copper (II) in drinking water
supplies, or waste waters in mining facilities.
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