Effects of Viscosity and Salt Interference for Planar Iridium Oxide and Silver Chloride pH Sensing Electrodes on Flexible Substrate
Abstract
:1. Introduction
2. Materials and Tools
3. Experiments
3.1. Electrode Preparation
3.2. Viscous Sample Preparation
4. Results and Discussion
4.1. Cyclic Voltammetry Analysis
4.2. Nernstian Response in Aqueous Solutions
4.3. Viscosity Readings
4.4. Experiments with Starch as the Thickening Agent
4.5. Experiments with Agar as the Thickening Agent
4.6. pH Calibration
4.7. Specificity to pH
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frant, M.S. How to Measure pH in Mixed and Nonaqueous solutions. Today’s Chem. Work 1995, 39–42. [Google Scholar]
- Izutsu, K.; Yamamoto, H. Response of an Iridium Oxide pH-Sensor in Nonaqueous Solutions. Comparison with Other pH-Sensors. Anal. Sci. 1996, 12, 905–909. [Google Scholar] [CrossRef]
- Pandey, P.C.; Singh, G. Tetraphenylborate doped polyaniline based novel pH sensor and solid-state urea biosensor. Talanta 2001, 55, 773–782. [Google Scholar] [CrossRef]
- Samaranayake, C.P.; Sastry, S.K. In-situ pH measurement of selected liquid foods under high pressure. Innov. Food Sci. Emerg. Technol. 2013, 17, 22–26. [Google Scholar] [CrossRef]
- Karastogianni, S.; Girousi, S.; Sotiropoulos, S. pH: Principles and measurement. Encycl. Food Health 2016, 4, 333–338. [Google Scholar]
- Woolf, A.D.; Woolf, A.; Shaw, J.S. Nail primer cosmetics: Correlations between product pH and adequacy of labeling. J. Toxicol. Clin.Toxicol. 1999, 37, 827–832. [Google Scholar] [CrossRef]
- Liudmyla, K.; Olena, C.; Nadiia, S. Chemical properties of Helix aspersa mucus as a component of cosmetics and pharmaceutical products. Mater. Today Proc. 2022, 62, 7650–7653. [Google Scholar] [CrossRef]
- Traple, M.A.L.; Saviano, A.M.; Francisco, F.L.; Lourenço, F.R. Measurement uncertainty in pharmaceutical analysis and its application. J. Pharm. Anal. 2014, 4, 1–5. [Google Scholar] [CrossRef]
- Mäder, K. Pharmaceutical applications of in vivo EPR. Phys. Med. Biol. 1998, 43, 1931. [Google Scholar] [CrossRef]
- Artiola, J.F. Environmental chemical properties and processes. In Environmental Monitoring and Characterization; Elsevier Science: Amsterdam, The Netherlands, 2004; pp. 241–261. [Google Scholar]
- Kurzweil, P. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook. Sensors 2009, 9, 4955–4985. [Google Scholar] [CrossRef]
- Noh, J.; Park, S.; Boo, H.; Kim, H.C.; Chung, T.D. Nanoporous Platinum Solid-state Reference Electrode with Layer-by-layer Polyelectrolyte Junction for pH Sensing Chip. Lab. A Chip 2011, 11, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Hiratsuka, A.; Sasaki, S.; Karube, I. Problems Associated with the Thin-film Ag/AgCl Reference Electrode and a Novel Structure with Improved Durability. Sens. Actuators. B Chem. 1998, 46, 104–113. [Google Scholar] [CrossRef]
- Kim, T.Y.; Hong, S.A.; Yang, S. A Solid-State Thin-Film Ag/AgCl Reference Electrode Coated with Graphene Oxide and its Use in a pH Sensor. Sensors 2015, 15, 6469–6482. [Google Scholar] [CrossRef] [PubMed]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
- Baur, J.E.; Spaine, T.W. Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium (III) oxide. J. Electroanal Chem. 1998, 443, 208–216. [Google Scholar] [CrossRef]
- Kreider, K. Iridium Oxide Thin-Film Stability in High-temperature Corrosive Solutions. Sensors Actuators B Chem. 1991, 5, 165–169. [Google Scholar] [CrossRef]
- Jang, H.; Lee, J. Iridium Oxide Fabrication and Application: A Review. J. Energy Chem. 2020, 46, 152–172. [Google Scholar] [CrossRef]
- Bahrami, H.; Mirbozorgi, S.A.; Ameli, R.; Rusch, L.A.; Gosselin, B. Flexible, polarization-diverse UWB antennas for implantable neural recording systems. IEEE Trans. Biomed. Circuits Syst. 2015, 10, 38–48. [Google Scholar] [CrossRef]
- Sun, Y.; Lacour, S.P.; Brooks, R.A.; Rushton, N.; Fawcett, J.; Cameron, R.E. Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 90, 648–655. [Google Scholar] [CrossRef]
- Shamma-Donoghue, S.A.; May, G.A.; Cotter, N.E.; White, R.L.; Simmons, F.B. Thin-film multielectrode arrays for a cochlear prosthesis. IEEE Trans. Electron Devices 1982, 29, 136–144. [Google Scholar] [CrossRef]
- Klein, J.D.; Clauson, S.L.; Cogan, S.F. The influence of substrate bias on the morphology and charge capacity of rf-sputtered iridium oxide films. J. Mater. Res. 1989, 4, 1505–1510. [Google Scholar] [CrossRef]
- Liu, D.; Yu, S.; Son, S.; Joo, S. Electrochemical performance of iridium oxide thin film for supercapacitor prepared by radio frequency magnetron sputtering method. Ecs Trans. 2008, 16, 103. [Google Scholar] [CrossRef]
- Han, M.; McCreery, D.B. A new chronic neural probe with electroplated iridium oxide microelectrodes. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 4220–4221. [Google Scholar]
- Pikulski, M.; Gorski, W. Iridium-based electrocatalytic systems for the determination of insulin. Anal. Chem. 2000, 72, 2696–2702. [Google Scholar] [CrossRef] [PubMed]
- Ohsaka, T.; Matsubara, Y.; Hirano, K.; Ohishi, T. Electroplating of iridium–cobalt alloy. Trans. IMF 2007, 85, 265–269. [Google Scholar] [CrossRef]
- Chen, P.; Chen, Y.; Huang, C. Free-standing iridium oxide nanotube array for neural interface electrode applications. Mater. Lett. 2018, 221, 293–295. [Google Scholar] [CrossRef]
- Chen, Y.; Chung, T.; Wu, P.; Chen, P. A cost-effective fabrication of iridium oxide films as biocompatible electrostimulation electrodes for neural interface applications. J. Alloy. Compd. 2017, 692, 339–345. [Google Scholar] [CrossRef]
- Chawang, K.; Chou, S.; Bing, S.; Wu, P.; Chiao, J. Characterization of pH Sensors Based on Iridium Oxide and Gold Encapsulated Polypropylene Membranes. In Proceedings of the IEEE Sensors Conference, Sydney, Australia, 31 October–4 November 2021. [Google Scholar]
- Marsh, P.; Huerta, M.; Le, T.; Yang, X.; Chiao, J.-C.; Cao, H. Wireless Iridium Oxide-Based pH Sensing Systems. In Proceedings of the IEEE Sensors Conference, New Delhi, India, 28–31 October 2018. [Google Scholar]
- Nguyen, C.M.; Rao, S.; Yang, X.; Dubey, S.; Mays, J.; Cao, H.; Chiao, J.-C. Sol-gel Deposition of Iridium Oxide for Biomedical Micro-devices. Sensors 2015, 15, 4212–4228. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chawang, K.; Chiao, J.-C. Wearable Iridium Oxide pH Sensors for Sweat pH Measurements. In Proceedings of the IEEE Sensors Conference, Montreal, QC, Canada, 28–31 October 2019. [Google Scholar]
- Nguyen, C.M.; Huang, W.; Rao, S.; Cao, H.; Tata, U.; Chiao, M.; Chiao, J.-C. Sol-Gel Iridium Oxide-Based pH Sensor Array on Flexible Polyimide Substrate. IEEE Sens. J. 2013, 13, 3857–3864. [Google Scholar] [CrossRef]
- Yang, X.; Chiao, J.-C. Integrated pH and Sodium Sensor Array Based on Iridium Oxide Film. In Proceedings of the IEEE Sensors Conference, New Delhi, India, 28–31 October 2018. [Google Scholar]
- Huang, W.; Deb, S.; Seo, Y.; Rao, S.; Chiao, M.; Chiao, J.C. A Passive Radio-Frequency pH-Sensing Tag for Wireless Food-Quality Monitoring. IEEE Sens. J. 2011, 12, 487–495. [Google Scholar] [CrossRef]
- Cao, H.; Rao, S.; Tang, S.; Tibbals, H.F.; Spechler, S.; Chiao, J. Batteryless Implantable Dual-Sensor Capsule for Esophageal Reflux Monitoring. Gastrointest. Endosc. 2013, 77, 649–653. [Google Scholar] [CrossRef]
- Deb, S.; Tang, S.; Abell, T.L.; McLawhorn, T.; Huang, W.; Lahr, C.; To, S.F.; Easter, J.; Chiao, J. Development of Innovative Techniques for the Endoscopic Implantation and Securing of a Novel, Wireless, Miniature Gastrostimulator (with videos). Gastrointest. Endosc. 2012, 76, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Chawang, K.; Bing, S.; Chiao, J.-C. Investigation of pH Sensing in Viscous Salt-added Solution by Iridium Oxide Film. In Proceedings of the IEEE Sensors Conference, Dallas, TX, USA, 30 October–2 November 2022. [Google Scholar]
- Huang, W.; Cao, H.; Deb, S.; Chiao, M.; Chiao, J.-C. A Flexible pH Sensor Based on the Iridium Oxide Sensing Film. Sens. Actuators A Phys. 2011, 169, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; Fu, T.; Kota, P.K.; Tjia, M.; Nguyen, C.M.; Chiao, J.-C. Lactate Sensors on Flexible Substrates. Biosensors 2016, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Osaka, A.; Takatsuna, T.; Miura, Y. Iridium oxide films via sol-gel processing. J. Non Cryst. Solids 1994, 178, 313–319. [Google Scholar] [CrossRef]
- Olthuis, W.; Robben, M.; Bergveld, P.; Bos, M.; van der Linden, W.E. pH Sensor Properties of Electrochemically Grown Iridium Oxide. Sensors Actuators B Chem. 1990, 2, 247–256. [Google Scholar] [CrossRef]
- Chou, S.C.; Hsieh, Y.C.; Cheang, W.H.; Sun, B.Y.; Chu, C.Y.; Chen, S.Y.; Chiao, J.C.; Wu, P.W. A flexible IrO2 membrane for pH sensing. Sci. Rep. 2022, 12, 11712. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, M.; Goettel, J.T.; Schrobilgen, G.J.; Su, J.; Li, J. Identification of an iridium-containing compound with a formal oxidation state of IX. Nature 2014, 514, 475–477. [Google Scholar] [CrossRef]
- Bause, S.; Decker, M.; Gerlach, F.; Näther, J.; Köster, F.; Neubauer, P.; Vonau, W. Development of an iridium-based pH sensor for bioanalytical applications. J. Solid State Electrochem. 2018, 22, 51–60. [Google Scholar] [CrossRef]
- Hernandez-Jaimes, C.; Lobato-Calleros, C.; Sosa, E.; Bello-Pérez, L.A.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Electrochemical Characterization of Gelatinized Starch Dispersions: Voltammetry and Electrochemical Impedance Spectroscopy on Platinum Surface. Carbohydr. Polym. 2015, 124, 8–16. [Google Scholar] [CrossRef]
- Rajeswari, A.; Gopi, S.; Christy, E.J.S.; Jayaraj, K.; Pius, A. Current research on the blends of chitosan as new biomaterials. In Handbook of Chitin and Chitosan; Elsevier: Amsterdam, The Netherlands, 2020; pp. 247–283. [Google Scholar]
- Bementa, E.; Rajan, M.A.J.; Gnanadass, E.S. Effect of Prolonged Duration of Gelatinization in Starch and Incorporation with Potassium Iodide on the Enhancement of Ionic Conductivity. Polym.-Plast. Technol. Eng. 2017, 56, 1632–1645. [Google Scholar] [CrossRef]
- Bennett, D. NaCl Doping and the Conductivity of Agar Phantoms. Mater. Sci. Eng. C 2011, 31, 494–498. [Google Scholar] [CrossRef]
- Strazzullo, P.; Leclercq, C. Sodium1. Adv. Nutr. Bethesda Md. 2014, 5, 188–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohl, H.R.; Wheeler, J.S.; Murray, H.E. Sodium and potassium in health and disease. In Interrelations between Essential Metal Ions and Human Diseases; Springer: Berlin/Heidelberg, Germany, 2013; pp. 29–47. [Google Scholar]
- International Association for Dental Research. Available online: https://iadr.abstractarchives.com/abstract/18iags-2954851/relationship-of-saliva-viscosity-and-ph-at-resting-and-stimulation (accessed on 7 September 2022).
- Piagnerelli, M.; Boudjeltia, K.Z.; Vanhaeverbeek, M.; Vincent, L.-J. Physiological Reviews. In Applied Physiology in Intensive Care Medicine, 2nd ed.; Pinsky, M.R., Brochard, L., Mancebo, J., Hedenstierna, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 273–282. [Google Scholar]
- Yanniotis, S.; Skaltsi, S.; Karaburnioti, S. Effect of moisture content on the viscosity of honey at different temperatures. J. Food Eng. 2006, 72, 372–377. [Google Scholar] [CrossRef]
- Kim, H. The mineral contents, viscosity and sensory characteristics of demi-glace sauce according to the varying quantity of omija added. J. Korean Soc. Food Cult. 2004, 19, 667–677. [Google Scholar]
- Garcia, J.M.; Chambers, E.; Matta, Z.; Clark, M. Viscosity measurements of nectar-and honey-thick liquids: Product, liquid, and time comparisons. Dysphagia 2005, 20, 325–335. [Google Scholar] [CrossRef]
Thickening Agent | wt% | Viscosity (cP) |
---|---|---|
Starch | 1 | 1.17 |
1.4 | 2.39 | |
1.8 | 24 | |
2 | 47 | |
3 | 135 | |
4 | 820 | |
Agar | 0.05 | 54 |
0.1 | 360 | |
0.2 | 2553 |
1.17 cP | 47 cP | 135 cP | 820 cP | |
---|---|---|---|---|
No salt | 62.1 | 74.7 | 77.5 | 92.9 |
0.1 M | −17.9 | −21 | −47.6 | −52 |
1 M | −16 | −26.5 | −30.8 | −53.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chawang, K.; Bing, S.; Chiao, J.-C. Effects of Viscosity and Salt Interference for Planar Iridium Oxide and Silver Chloride pH Sensing Electrodes on Flexible Substrate. Chemosensors 2022, 10, 371. https://doi.org/10.3390/chemosensors10090371
Chawang K, Bing S, Chiao J-C. Effects of Viscosity and Salt Interference for Planar Iridium Oxide and Silver Chloride pH Sensing Electrodes on Flexible Substrate. Chemosensors. 2022; 10(9):371. https://doi.org/10.3390/chemosensors10090371
Chicago/Turabian StyleChawang, Khengdauliu, Sen Bing, and Jung-Chih Chiao. 2022. "Effects of Viscosity and Salt Interference for Planar Iridium Oxide and Silver Chloride pH Sensing Electrodes on Flexible Substrate" Chemosensors 10, no. 9: 371. https://doi.org/10.3390/chemosensors10090371
APA StyleChawang, K., Bing, S., & Chiao, J. -C. (2022). Effects of Viscosity and Salt Interference for Planar Iridium Oxide and Silver Chloride pH Sensing Electrodes on Flexible Substrate. Chemosensors, 10(9), 371. https://doi.org/10.3390/chemosensors10090371