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Abstract: In this paper, we propose a fully transparent and flexible high-performance pH sensor
based on an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) transducer
with a coplanar dual-gate structure on polyimide substrates. The proposed pH sensor system features
a transducer unit consisting of a floating gate (FG), sensing gate (SG), and control gate (CG) on a
polyimide (PI), and an extended gate (EG) sensing unit on a separate glass substrate. We designed
a capacitive coupling between (SG) and (CG) through the FG of an a-IGZO TFT transducer to
contribute to sensitivity amplification. The capacitance ratio (CSG/CCG) increases linearly with the
area ratio; therefore, the amplification ratio of the pH sensitivity was easily controlled using the area
ratio of SG/CG. The proposed sensor system improved the pH sensitivity by up to 359.28 mV/pH
(CSG/CCG = 6.16) at room temperature (300 K), which is significantly larger than the Nernstian limit
of 59.14 mV/pH. In addition, the non-ideal behavior, including hysteresis and drift effects, was
evaluated to ensure stability and reliability. The amplification of sensitivity based on capacitive
coupling was much higher than the increase in the hysteresis voltage and drift rate. Furthermore, we
verified the flexibility of the a-IGZO coplanar dual-gate TFT transducer through a bending test, and
the electrical properties were maintained without mechanical damage, even after repeated bending.
Therefore, the proposed fully transparent and highly sensitive a-IGZO coplanar dual-gate TFT-based
pH sensor could be a promising wearable and portable high-performance chemical sensor platform.

Keywords: transparent; flexible; PI substrate; a-IGZO; coplanar dual-gate; capacitive coupling; pH
sensor; FET

1. Introduction

Recently, research interest in chemical sensors has increased owing to the increased
interest in medical care worldwide, and these sensors can detect signals of small amounts
of chemicals or biomolecules. Chemical sensors can be applied to various fields such as
food manufacturing, environmental conditioning, and biological monitoring (blood, sweat,
urine). Accordingly, many types of chemical sensors for detecting pH, viruses, proteins,
and chemicals have been reported [1–3]. Among them, the field-effect transistor (FET)-type
sensor platform has attracted considerable interest owing to its excellent features, such as
fast response, label-free detection, compatibility with CMOS technology, and easy signal
processing [4–6]. In a study by Bergveld, the author considered FET-based sensors as
ion-sensitive FETs (ISFETs) [7]. However, because ISFETs detect signals from chemicals
through direct contact with the gate dielectric sensing membrane, there is a possibility
of its degradation by chemicals. To avoid these reliability-related issues, extended-gate
FET (EGFET)-type sensor platforms were introduced [8]. The EGFET consists of two
separate parts: a transducer unit and sensing unit. Various high-performance sensing
membrane materials have been developed by applying an extended gate that is electrically
connected to the gate electrode of the FET to prevent degradation caused by chemical
damage [9–11]. However, the most significant limitation hindering the commercialization of
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FET-based sensors is the physical sensitivity limit of 59.14 mV/pH at 300 K, which is known
as the Nernstian limit [12,13]. Among the many approaches reported in the literature,
FET-based sensors with dual-gate structures can overcome the Nernstian limit through
the self-amplification of the capacitive coupling between the two gate electrodes [14–18].
Furthermore, interest in portable and wearable sensors as promising next-generation
sensor platforms have continued to increase [19–24]. Transparent and flexible sensors
can be applied to wearable or portable sensor systems, which results in the point-of care
(POC) or real-time monitoring of wound, skin, sweat, and blood that is difficult to achieve
with conventional rigid sensor systems. Amorphous oxide semiconductors (AOSs) are
widely applied transparent material for transparent TFTs due to their transparency, ease
of processing, and high electron mobility [25]. Many studies have been conducted on
FET-based sensors fabricated on flexible substrates, including polyimide (PI), polyethylene
naphthalate (PEN), and polyethylene terephthalate (PET) [26–30]. In particular, PI is a
desirable material for transparent and flexible substrates because it is suitable for CMOS
technology owing to its excellent thermal, chemical, and mechanical properties [31,32].

In this study, we propose a fully transparent high-performance coplanar dual-gate
thin-film transistor (TFT)-based pH sensor on a flexible PI substrate. We used amorphous
indium gallium zinc oxide (a-IGZO) channel layers, indium tin oxide (ITO) source/drain
(S/D), and ITO gate electrodes to obtain fully transparent optical properties. An amorphous
oxide semiconductor material with high transmittance in the visible light range was used
to obtain transparent optical properties [25,33]. We also fabricated an extended gate
with an SnO2 sensing membrane, which ensured excellent sensing properties close to
the theoretical Nernstian limit with an acid and base affinity constant of 2.5 × 106 and
1.1 × 10−5, respectively [18]. Our pH sensor system consists of an a-IGZO coplanar dual-
gate TFT transducer and SnO2 extended-gate (EG) sensing units. In the proposed pH sensor
system, we designed a capacitive coupling between the sensing gate (SG) and the control
gate (CG) via the floating gate (FG) of the a-IGZO transducer to improve its sensitivity
amplification. In particular, the SG and CG were located on the same plane on the gate
insulating film, but the FG was located below the a-IGZO FET channel and was electrically
separated from the CG and SG by a gate insulating film. The capacitance ratio (CSG/CCG)
changes according to the combination of the areas of CG and SG, indicating that the
proposed sensor is a self-amplifiable chemical sensor platform with tunable sensitivity.
This tunable sensitivity is a beneficial feature of the capacitive coupling-based coplanar
dual-gate structure pH sensor that cannot be achieved with a dual-gate structure consisting
of a top- and bottom-gate. The CSG and CCG values of top- and bottom-gate structure
pH sensors are fixed because they are determined by the pattern size of the channel layer.
However, the CSG and CCG values of the proposed coplanar dual-gate structure pH sensors
are controlled by the gate electrode pattern sizes because the biases in each gate’s electrodes
are applied to the channel layer via the FG. Therefore, the proposed coplanar dual-gate
pH sensor based on capacitive coupling has the advantage of tunable sensitivity over various
conventional chemical sensors. In addition, in comparison to conventional SOI substrate-based
dual-gate structure pH sensors, the proposed pH sensor provides various advantages in its
material, process, and device design. We also evaluated the non-ideal behavior, such as the
hysteresis and drift effects, to ensure its stability and reliability. To ensure its flexibility, the
mechanical and electrical stabilities of the a-IGZO coplanar dual-gate TFT transducer on a
flexible PI substrate were determined through repeated bending tests.

2. Materials and Methods

Figure 1 shows a schematic illustration of the fabricated a-IGZO coplanar dual-gate
TFT transducer and SnO2 EG sensing units. To construct the pH sensor system, we
connected the two units using an electric cable, as indicated by the dotted line. Specifically,
the gate electrode of the transducer unit was electrically connected to the conductive layer
of the sensing unit to apply the chemical potential of the sensing membrane to the gate
electrode. The fully transparent and flexible coplanar dual-gate TFTs were fabricated
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to prepare the transducer unit. The transducer unit was fabricated using the following
procedure. We prepared 6-µm-thick PI films on 1.5 cm × 1.5 cm size glass plates covered
with a 100/100 nm thick SiNx/SiO2 adhesive layer. The PI substrates were wet cleaned,
for 10 min each, using a standard solvent cleaning process with deionized water (DI)
and 2-propyl-alcohol (IPA) in an ultrasonic bath. The substrates were then dried in an
oven at 100 ◦C for 1 h to evaporate the residual solvent and moisture. Subsequently,
a 300-nm-thick ITO layer, 100-nm-thick SiO2 layer, and 50-nm-thick a-IGZO layer were
sequentially deposited on the FG, gate insulating film, and channel layer, respectively. The
active regions of the TFTs were formed by photolithography and a lift-off process of the
a-IGZO layer. The channel width/length ratio of the patterned IGZO channel layer was
80/120 µm. Subsequently, an ITO film with a thickness of 150 nm was deposited, and
coplanar dual-gate electrodes (SG, CG) and S/D electrodes were simultaneously formed by
a lift-off process. In particular, the CG electrodes patterned with various sizes contributed
to achieving various amplification ratios. Finally, the a-IGZO coplanar dual-gate TFT
fabricated on the PI substrate was annealed at 250 ◦C in O2 ambient for 30 min (PMA).
We also prepared the EG sensing unit using the following procedure. A 300-nm-thick
ITO conductive layer was deposited as an electrode on a cleaned 1.5 cm × 2.5 cm glass
substrate, followed by a 50 nm thick SnO2 layer as a sensing membrane. Finally, a 0.6 cm
inner diameter polydimethylsiloxane (PDMS) reservoir was attached to the SnO2 sensing
membrane to accommodate the electrolyte solution. The ITO, SiO2, a-IGZO, and SnO2
layers used for the a-IGZO TFT and SnO2 EG fabrication were deposited using an RF
magnetron sputtering system.
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Figure 1. Schematic illustration of an a-IGZO coplanar dual-gate TFT transducer and SnO2 EG
sensing units. The dotted line represents the electrical connection between the two units. Reference
electrode is connected to the ground unit of measurement instrument.

Figure 2a,b show photographs of the prepared transparent and flexible a-IGZO copla-
nar dual-gate TFT transducer and SnO2 EG sensing units, respectively. Figure 2c shows the
optical transmittance spectra of the PI substrate and fabricated a-IGZO coplanar dual-gate
TFT transducer unit. The inset shows a photograph of the transparent transducer. The
average transmittance of the transducer unit was 76.96% under visible light (wavelength
550–800 nm), whereas that of the PI film was 88.59%.
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Figure 2. Photographs of the fabricated (a) transducer unit and (b) sensing unit. (c) Optical transmit-
tance spectra of the PI film and a-IGZO coplanar dual-gate TFT transducer unit. The inset shows a
photograph of the fabricated transparent transducer unit. The average transmittance at visible light
(wavelength 550–800 nm) of the device is 76.96 %.

The capacitance–voltage (C–V) characteristics were measured using an Agilent 4284A
Precision LCR meter (Agilent Technologies, Santa Clara, CA, USA). All the electrical characteris-
tics of the a-IGZO TFTs and pH sensor platforms were characterized using an Agilent 4156 B
Precision Semiconductor Parameter Analyzer (Agilent Technologies) in a dark box to eliminate
noise or light. A pH buffer solution (pH 3.0, 4.0, 6.0, 7.0, 9.0, 10.0) and a commercial Ag/AgCl
reference electrode (Horiba 2086A-06T, Kyoto, Japan) were prepared for pH sensing.

3. Results
3.1. C–V Characteristics of the Coplanar Dual-Gate

Figure 3a shows an optical microscope image of a coplanar dual-gate TFT. The SG
was designed to have a fixed size of 90 × 420 µm2, whereas the CG had various sizes of
90 × 420 µm2, 80 × 200 µm2, 80 × 110 µm2, and 60 × 70 µm2. The measured C–V curves
for the various CG sizes are shown in Figure 3b. The capacitances of the CGs with the
four dimensions specified above were 2.1 pF, 4.54 pF, 6.67 pF, and 12.65 pF, respectively.
Meanwhile, the capacitance of the SG was 12.94 pF, which is almost identical to that of
the CG of the same size. The relationship between the gate area and capacitance is shown
in Figure 3c; the figure shows that the capacitance increased linearly with an increase in
the area. The inset shows the relationship between the CSG/CCG and the gate area ratio
(ASG/ACG), which indicates that the CSG/CCG is linearly proportional to the ASG/ACG.
Therefore, by adjusting the area of the SG and CG, we can easily control the CSG/CCG,
which is similar to the amplification ratio in capacitive coupling.
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3.2. DC Bias Coupling Test of the a-IGZO Coplanar Dual-Gate TFT

Figure 4a shows the schematic illustration of the electrical equivalent circuit of an
a-IGZO coplanar dual-gate TFT, depicting a simplified model in which the parasitic capaci-
tance components are ignored. The CG where the gate voltage sweeps and the SG where
the electrochemical potential of the pH buffer solution is biased are capacitively connected
via an electrically isolated FG. In this case, the voltages of the coplanar gates (VCG and
VSG) are capacitively coupled to FG (VFG), as expressed in Equation (1). The relationship
between VCG and VSG can then be expressed as given in Equation (2). Consequently, the
change in the potential of the SG (∆VSG) can be amplified as the capacitance ratio of the
CSG/CCG by capacitive coupling, as expressed in Equation (3). In addition, the ratio of
the sensing gate capacitance to the control gate capacitance can modify the relationship
between ∆VSG and ∆VCG.

VFG =
CCG

CSG + CCG
VCG +

CSG

CSG + CCG
VSG (1)

VCG =
CSG + CCG

CCG
VFG −

CSG

CCG
VSG (2)

∴ ∆VCG ∝
CSG

CCG
∆VSG (3)Chemosensors 2023, 10, x FOR PEER REVIEW 6 of 12 
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Figure 4. (a) Simplified schematic illustration of the electrical equivalent circuit of an a-IGZO coplanar
dual-gate TFT. Shifts in the transfer characteristic curve for amplification factor of (b) 0.98 and (c) 6.16
when SG bias (VSG) is varied from +300 mV to −300 mV at intervals of 150 mV. (d) ∆VCG/∆VSG for
various values of CSG/CCG obtained at IRead = 1 nA.

Prior to the pH sensing measurements, a DC bias-coupling test was conducted to
verify the amplification factor because of capacitive coupling. When a DC bias voltage is
applied to the SG, the threshold voltage of the CG shifts according to the magnitude of
the SG bias. The shifts in the transfer characteristic curve for CSG/CCG of 0.98 and 6.16 are
shown in Figure 4b,c, respectively. When the SG bias was varied between +300 mV and
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−300 mV, at intervals of 150 mV, a decrease in the drain current and a rightward shift in the
transfer characteristic curve were observed in response to a decrease in the VSG. Figure 4d
shows the amplification factor (∆VCG/∆VSG) for various CSG/CCG values extracted at a
read drain current (IRead) of 1 nA. It can be observed that there is a linear proportional
relationship between ∆VCG/∆VSG and CSG/CCG. For the CSG/CCG values of 0.98, 1.94, 2.85,
and 6.16, the values of ∆VCG/∆VSG were 0.99, 1.99, 2.86 and 6.13, respectively. Therefore,
we demonstrated that ∆VSG can be amplified by the amplification factor.

Table 1 lists the values of ∆VCG/∆VSG obtained from the DC bias test for various
amplification factors.

Table 1. Amplification factors (∆VCG/∆VSG) obtained from the DC bias test of the a-IGZO coplanar
dual-gate TFT.

CSG/CCG ∆VCG/∆VSG R2 (%)

0.98 0.99 99.93
1.94 1.99 99.95
2.85 2.86 99.99
6.16 6.13 99.98

3.3. pH Sensing Characteristics of the a-IGZO Coplanar Dual-Gate TFT pH sensor

The pH response of the FET-type chemical sensor can be explained by combining the
Gouy–Chapman–Stern (GCS) theory and the site-binding model (SBM) [34–36]. According
to the GCS theory, an electric double layer is created at the interface between the sensing
membrane and the electrolyte solution. In addition, the surface potential (ψ) of the corre-
sponding interface in the SBM is a critical parameter for the ion-sensing capability, which is
summarized in Equation (4) [37,38]:

2.303
(

pHpzc− pH
)
= βψ+ sin h−1

[
σ0

2q(Kb/Ka)
1/2Ns

]
− ln

(
1− σ0

qNs

)
(4)

where k is the Boltzmann constant, T is the temperature of the Kelvin system, q is the
elementary charge, β is the dimensionless chemical sensitivity of the sensing membrane,
pHpzc is the pH at which the net charge of the surface is zero, σ0 is the charge density, and
the Ns is the total number of the sites per unit area; ψ varies depending on the chemical
properties of the sensing membrane and the pH of the electrolyte. The values of the pHpzc
and β of SnO2 that we adopt as sensing membrane are 5.6 and 58.6, respectively. According
to this model, the sensing characteristics of the FET-type chemical sensors are determined
using ∆ψ. However, in this model, the sensitivity of the conventional single-gate FET-type
pH sensor cannot exceed the physical limit of ~59.14 mV/pH at 300 K, which is known as
the Nernstian limit. To overcome this fatal drawback, we introduced a coplanar dual-gate
structure based on capacitive coupling, which amplifies the small potential change in the
SG and makes it detectable in the CG.

Figure 5a,b show the transfer characteristic curves of the a-IGZO coplanar dual-gate
TFT pH sensor for CSG/CCG values of 0.98 and 6.16, respectively, indicating that they shift
with the pH. The sensing properties were measured with a pH buffer solution of pH 3 to 10
at 300 K. The practical pH sensitivities of various CSG/CCG values obtained at IRead = 1 nA
are shown in Figure 5c. The pH sensitivities for CSG/CCG values of 0.98, 1.94, 2.85, and 6.16
were 57.77 mV/pH, 116.4 mV/pH, 174.38 mV/pH, and 359.28 mV/pH, respectively. The
pH sensitivity without capacitive coupling (CSG/CCG = 1) was 58.29 mV/pH. It is note-
worthy that the proposed sensor exhibited high-performance pH sensing properties that
far exceeded the Nernstian limit without additional amplification circuits. This is because
the capacitive coupling of the coplanar dual-gate structure enables self-amplification in
practical pH sensing operations.
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Figure 5. Transfer characteristics curves of the a-IGZO coplanar dual-gate TFT pH sensor in various
pH buffer solutions for CSG/CCG of (a) 0.98 and (b) 6.16. (c) pH sensitivity for various CSG/CCG

values (IRead = 1 nA).

3.4. Non-Ideal Behavior of the a-IGZO Coplanar Gate TFT pH Sensor

In addition to sensitivity, stability and reliability are important performance indicators
of chemical sensors. To verify whether the proposed sensor system ensures repetitive
sensing operation over a relatively short period and long period, we measured the hysteresis
and drift effects. The hysteresis and drift effects are typical non-ideal behaviors that prevent
accurate detection by sensors. The hysteresis effect often arises from the reaction between
electrolyte ions (H+ or OH−) and the surface, or from the slow transport of ionic species in
the sensing membrane bulk [39]. The drift effect is caused by the permeation of ionic species
in the electrolyte or by defects in the sensing membrane through hopping or trap-limited
transport [40,41]. The hysteresis effect was measured for a total of 50 min by changing the
pH of the buffer solution at 300 K in the order of 7→10→7→4→7. Then, the hysteresis
voltage (VH) was extracted from the ∆VCG difference between the start and end points of
the pH loop. Figure 6a shows the VH for various CSG/CCG values; the VH values were
5.29 mV, 9.13 mV, 13.83 mV, and 20.54 mV for CSG/CCG values of 0.98, 1.94, 2.85, and
6.16, respectively. The drift rate (Rdrift) was determined by immersion in a pH 7 buffer
solution at 300 K for 10 h. Figure 6b shows the drift rates; the Rdrift values were 7.84 mV/h,
16.71 mV/h, 32.21 mV/h, and 65.08 mV/h for CSG/CCG values of 0.98, 1.94, 2.85 and
6.16, respectively. As capacitive coupling amplifies the surface potential of the sensing
membrane connected to the SG, both the VH and Rdrift increase with an increase in the
CSG/CCG. However, it can be observed that the increments in VH and Rdrift are smaller
than that of sensitivity.
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Table 2 summarizes the pH sensing properties of the proposed a-IGZO coplanar
dual-gate TFT pH sensor. It can be observed that the increments in the VH and Rdrift with
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an increase in the CSG/CCG are less than 9.1% and 18.5% that of sensitivity, respectively.
Therefore, the proposed a-IGZO coplanar gate TFT pH sensor is a stable and reliable
chemical sensor platform with a sensitivity high above the Nernstian limit.

Table 2. pH sensing characteristics of the a-IGZO coplanar dual-gate TFT pH sensor.

CSG/CCG
Sensitivity
(mV/pH) ∆VCG/∆VSG VH (mV) Rdrift (mV/h) VH to Sensitivity (%) Rdrift to Sensitivity (%)

0.98 57.77 0.99 5.29 7.84 9.1 13.3
1.94 116.4 1.99 9.13 16.71 7.8 14.4
2.85 174.38 2.99 13.83 32.21 7.9 18.5
6.16 359.28 6.16 20.54 65.08 5.7 18.1

3.5. Bending Test of the a-IGZO Coplanar Dual Gate TFT

In the sensor system, the flexibility of the sensor must be evaluated by the sensing
characteristics after repeated bending operation. For flexible chemical sensor platform
applications, it is necessary to maintain the sensing characteristics, including sensitivity
and the amplification factor, without a significant degradation of the electrical properties,
even after repeated bending operations. As a result of the mechanical stress accompanying
the deformation of the flexible PI substrate, various parts of the TFT device, such as the
gate insulating film, channels, electrodes, or their interfaces, may undergo irreversible
mechanical damage [42].

Figure 7a shows a TFT transducer unit bent to a diameter of 3 mm using a vernier
caliper. The inset shows an optical microscope image after the bending test, that is, 500 bend-
ing cycles to a diameter of 3 mm. Compared with the sample before the bending test, there
were no recognizable defects in the a-IGZO channel, S/D electrode, or coplanar gates, indi-
cating that there was no mechanical damage caused by the bending. Therefore, the bending
tests verified the flexibility and mechanical strength of the a-IGZO coplanar dual-gate TFT
on the PI substrate. Bending not only affects the optical and mechanical properties, but
also the electrical characteristics [42,43]. In FET-type sensor systems in which the electrical
characteristics directly affect the sensing characteristics, poor electrical characteristics lead
to the deterioration of the sensing characteristics. Therefore, to verify the flexible character-
istics of the -IGZO coplanar dual-gate TFT on the PI substrate, we measured the pH sensing
characteristics after repeated bending tests. Figure 7b,c show the transfer curves after
500 bending cycles to a diameter of 3 mm for CSG/CCG values of 0.94 and 6.16, respectively.
Figure 7d shows the pH sensitivity for various CSG/CCG values after the repeated bending
tests. The pH sensitivity obtained from the bending test, using the same samples, slightly
decreased from 57.77 mV/pH, 116.4 mV/pH, 174.38 mV/pH, and 359.28 mV/pH before
bending to 56.45 mV/pH, 113.6 mV/pH, 165.45 mV/pH, and 345.09 mV/pH after bending,
respectively. In addition, slight changes in the ∆VCG/∆VSG, from 0.99, 1.99, 2.99, and 6.16
to 0.97, 1.95, 2.84, and 5.92, were observed before and after bending, respectively. It is
considered that the slight decrease in the sensitivity and ∆VCG/∆VSG after the bending test
is caused by repeated mechanical stresses on the device. However, the decrease in sensitivity
is almost negligible, up to 5.1%, and the bent device still gives a high pH sensing performance,
above the Nernstian limit, as summarized in Table 3. Accordingly, we conclude that the a-IGZO
coplanar dual-gate TFT on a PI substrate is a suitable flexible chemical sensor system that gives
a high sensing performance, even after repeated bending tests.
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Figure 7. (a) Image of an a-IGZO coplanar dual-gate TFT converter unit on a PI substrate bent to a
diameter of 3 mm using vernier calipers. The inset shows an optical microscope image obtained after
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CSG/CCG values of (b) 0.98 and (c) 6.16. (d) pH sensitivity for various CSG/CCG values after repeated
bending tests (IRead = 1 nA).

Table 3. PH-sensing characteristics obtained from the bending test of the a-IGZO coplanar dual-gate TFT.

CSG/CCG
Sensitivity before Bending

(mV/pH)
Bending Cycles

(Times)
Sensitivity after Bending

(mV/pH)
Decrease Rate of Sensitivity

after Bending (%)

0.98 58.77

100 57.42 2.3
200 57.28 2.5
300 56.98 3.0
400 56.52 3.8
500 56.45 3.9

1.94 116.40

100 116.08 0.3
200 115.89 0.4
300 114.77 1.4
400 113.73 2.3
500 113.60 2.4

2.85 174.38

100 173.37 0.6
200 172.90 0.8
300 169.46 2.8
400 168.99 3.1
500 165.45 5.1

6.16 359.28

100 358.02 0.3
200 356.69 0.7
300 351.19 2.3
400 349.58 2.7
500 345.09 3.8

4. Conclusions

We investigated a fully transparent and flexible high-performance pH sensor based
on an a-IGZO TFT transducer with a coplanar dual-gate structure on a PI substrate. The
proposed pH sensor system was constructed by electrically connecting a sensing unit and
an a-IGZO TFT transducer unit prepared on different substrates to protect the transducer
from chemical damage. The transducer unit consists of an ITO FG, SG electrodes, CG,
a-IGZO TFT channel, and ITO S/D electrodes on a flexible PI substrate, which are all
transparent materials. The EG sensing unit was prepared on a separate glass substrate. In
the proposed pH sensor system, we designed a capacitive coupling between the SG and
CG through the FG of the a-IGZO TFT transducer to contribute to sensitivity amplification.
We conducted a DC bias-coupling test and found that the CSG/CCG ratio increased linearly
with the area ratio of the SG to CG (ASG/ACG) and determined the sensitivity amplification.
We measured the potentials of various buffer solutions using a pH sensor composed of
an a-IGZO TFT transducer unit and a SnO2 EG sensing unit and found that the practical
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pH sensitivity was amplified in a linear ratio to CSG/CCG. The amplification ratio could
be determined by the area ratio of the SG to CG, which increased the pH sensitivity to
359.28 mV/pH at a CSG/CCG value of 6.16; this value is significantly larger than the
Nernstian limit of 59.14 mV/pH at room temperature (300 K). In addition, we evaluated
the stability and reliability by measuring the non-ideal behaviors, including the hysteresis
and drift effects. The amplification of sensitivity with an increase in the CSG/CCG ratio was
much larger than the increase in the hysteresis voltage and drift rate, indicating that our
proposed a-IGZO coplanar dual-gate TFT pH sensor is a stable and reliable high-sensitivity
FET-based chemical sensor platform. Finally, the flexibility of the a-IGZO coplanar dual-
gate TFT converter was evaluated via a bending test, and the electrical properties were
maintained without mechanical damage, even after 500 bending cycles, to a diameter of
3 mm. Therefore, the fully transparent and highly sensitive IGZO coplanar dual-gate
TFT-based pH sensor proposed in this study can be applied to wearable and portable
high-performance chemical sensor platforms.
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