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Abstract: The most advantageous method for detecting dangerous gases and reducing the risk
of potential environmental toxicity effects is the use of innovative gas sensing systems. However,
designing effective sensors requires a complex process of synthesizing functional nanoparticles, which
is a costly process. Additionally, practical operation of the toxic gas sensors always carries a significant
cost along with a considerable risk of hazardous gas emissions. Machine learning algorithms may be
used to accurately automate the behavior of the sensors to eliminate the abovementioned deficiencies.
In the present research, there are three different factors involved in the optimization of NO2 sensing
by means of the response surface methodology (RSM). Two main functions of sensor efficiency,
namely sensitivity and response time, are predicted according to the Fe3O4 additive (%), input NO2

(ppm), and response time/sensitivity, and moreover, the execution of a controlling system of the
sensor network using the Jacobson model is proposed. The machine learning computations are
implemented by Meta.RegressionByDiscretization, M5.Rules, Lazy KStar, and Gaussian Processes
algorithms. The outcomes illustrate that the best gas sensor efficiency predictions are related to
M5.Rules and Lazy KStar, with a correlation coefficient of more than 96%. The best performance
of machine learning computations can be found in the range of 8–10-fold in training and testing
arrangements. Meanwhile, the ANOVA assessment confirmed that the most important features in
the prediction of response time and sensitivity are NO2 concentration and response time, respectively,
with the lowest p-value recorded. The outcomes illustrated that with combinations of RSM, machine
learning, and the Jacobson model as a controller, a decision support system can be presented for the
NO2 gas sensor system.

Keywords: NO2; gas sensor; machine learning; historical data analysis; sensitive analysis;
conceptual modelling

1. Introduction

Adverse air quality has caused enormous difficulties in human health, and unfortu-
nately about 7 million mortalities every year [1]. Lung cancer, heart disease, respiratory
infection, irritating asthma, and neurological misfunctioning are some examples of diseases
that are caused by air pollution [2–4]. This pollution, which is the most harmful to children,
the elderly [5,6], and people with pre-existing health issues [7], can also affect people of all
ages and health conditions. Apart from the obvious health repercussions, air pollution can
cause other results such as damaging agricultural crops, plants, and construction materials
as well as impairing visibility in urban and peri-urban regions [8–10].
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The case pollutant in this paper is NO2, a greenhouse gas and an essential indicator
of air contamination. It also shows the presence of a number of hazardous secondary air
pollutants, including ozone and particulate matter such as PM2.5 and PM10. Due to all of the
aforementioned reasons, networks of sensors have been utilized to monitor environmental
variables [11,12].

In industrial and residential contexts, chemical or physical mode sensors are used to
carry out a range of functions, including prediction, prognostics, forecasting, remaining
effective life estimates, and trend analysis [13–15]. Gas-caused signals, temperature, pres-
sure, strain, and other characteristics are integrated by the chemical and physical modes.
In terms of big data, AI (artificial intelligence), ML (machine learning), and IOT (Internet of
Things), the fourth industrial revolution has given rise to a paradigm shift in interpretation
and data acquisition. AI, particularly machine learning, plays a key role in modelling,
which leads to decision-making and prediction.

Government and environmental organizations have begun to establish air monitoring
sites for quality assurance in several regions to collect air quality data. With the aid of
precise instrumentation, these monitoring stations can regularly monitor air quality in
the environment, assess pollutant concentrations, and deliver data to the public as a refer-
ence [16,17]. To increase the spatial density of air quality statistics, a variety of proposals
have been made, including employing mobile laboratories to detect short-term air quality
campaigns [18], mathematical models to interpolate data [19], and novel low-cost sen-
sors to detect air quality [20,21]. Several scientists have concentrated on creating novel
sensing materials to enhance sensor detection. It has been shown that SnO2 nanosur-
faces chemically altered by metal oxides are highly efficient materials for sensing NO2 gas
molecules [22]. In addition, Gholami et al. utilized ZnO nanoparticles to functionalize
multiwall carbon nanotubes for sensing NOx gas [23]. Although more precise gas sensing
may be achieved with novel sensing materials, not all practical needs have been fully met
by low-cost sensors. Contrarily, we see that AI technology has made substantial prior
advancements and is effectively used in a number of industries. As a consequence, gas
sensors have been combined with AI technology, particularly in terms of machine learning,
to provide more precise prediction and detection. As an example, an ANN (artificial neural
network) model was applied with a combination sensor consisting of four QCM (quartz
crystal microbalance) sensors in [24] to detect a variety of organic pollutants. A fabricated
ZnO-based sensor and a model of ANN were used in another investigation to detect the
presence of H2, CH4, and CO gas concentrations [25]. ANN models were also used with
sensors, accounting for pressure, temperature, and humidity. ANN was determined to
be the most efficient technique among multiple linear regressions [26] for the tuning of
affordable industrial sensors for sensing NO, CO2, and CO molecules [27]. In another
study, a ML tuning model was used to enhance sensor efficiency for affordable air quality
surveillance for random forests [28]. A RNN (recurrent neural network) is an alternative
deep learning technique that is widely used to resolve classification issues because of its
gated-unit architecture [29–33]. Another novel method for addressing the deep learning
bottleneck is ensemble modelling [34,35]. The following may be a summary of further
instances in the field: Li et al. [36] estimated ground NO2 concentration levels based on
simulations of climatic factors and surface mass concentrations of nitric acid performed
using the GEOSChem software (https://doi.org/10.5281/zenodo.3507501, accessed on
15 December 2022). They inputted the raster layers into a geologically and chronologically
weighted comprehensive regression NN together with data from NDVI from Terra, the
Sentinel-5P, Aqua, and a digital elevation model. As an alternative, Ghahremanloo et al. [37]
employed deep learning methods from distant sensing information to estimate the ground
daily level of NO2 concentrations using the WRF simulated meteorological parameters via
Aura satellite NO2 retrievals, and interpolated population data. The use of these models
for directly mimicking the behavior of target variables has also been considered in recent
works. GEOS-Chem was used to test in Beloconi and Vounatsou’s study [38] for daily NO2
estimation as well. This model used a variety of other predictors, such as tree cover density,
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nighttime light, land cover, terrain elevation, data from roads, NDVI, and climatic data.
On the other hand, DSS (decision support system) has shown a deep structure to aid the
operation, management, and planning stages of a process in terms of information systems
that support organizational and structural decision-making activities [39,40]. The current
study on gas sensing using machine learning computations with mentioned techniques, to
the best of the authors’ knowledge, for the first time, aims to estimate and predict the sensor
performance based on sensitivity, response time and the Fe3O4 [41] additive concentration
which can potentially increase gas sensing effectiveness. Figure S1 shows the scientometry
analysis of machine learning applications in gas sensors in contemporary situations, indi-
cating their importance in current studies in this field. Furthermore, Figure S2 indicates the
contribution of countries in the field of artificial intelligence in gas-sensor designing.

This paper sequentially investigates: (i) the fabrication and implementation of nanosen-
sors for the detection of NO2 gas; (ii) the design of experiments and optimization followed
by the study of the impact of each effective variable on the nano-gas-sensing system via the
response surface methodology (RSM), and (iii) exploiting the machine learning computations
using Meta.RegressionByDiscretization, M5.Rules, Lazy KStar, and Gaussian Processes algo-
rithms. Soft computation and the system control of gas-sensor operation by means of the
Jacobson model are proposed. Finally, future studies and conclusion are presented.

2. Materials and Methods
2.1. Mechanism of Sensor Creation

This paper considered the operation of a NO2 gas sensor (Fe3O4-rGOQD-SO3H) using
sensitivity analysis, machine learning calculations, and conceptual modelling of the control
process. The NO2 gas sensor was fabricated in five steps. First, GO was fabricated using the
Hummer method [42]. Then, functionalization, generation of some dots on the surface of
GO, and magnetization of GO were performed according to our previous research [43–45].
Then, the chemical structure of the nanosensor was characterized by means of different
analysis techniques such as FESEM (Figure S3), EDX, FT-IR, XRD, TGA, and HRTEM.
Finally, the performance of the fabricated NO2 gas sensor was evaluated with different per-
centages of Fe3O4 loading and considered to detect NO2. Moreover, the NO2 concentration
for the fabricated NO2 gas sensor was selected between 2.5 and 50 ppm. The synthetic NO2
gas sensor was investigated as a highly effective and reusable nanosensor with different
weight contents of Fe3O4 (99, 95, 90, and 85 wt%). The sensor evaluation results showed
that the best results could be obtained by using the mass ratio (X = 15:85 wt%) of Fe3O4
and rGOQDs-SO3H. Based on our results, the optimum temperature, detection range, and
reactivity are improved compared to other studies. Likewise, the fabricated sensor was able
to spontaneously return to its primary conditions by flowing N2 without thermal support
or chemical treatment [45]. Figure 1 shows the simultaneous efficacy of NO2 concentration,
Fe3O4 additive percentage, and sensitivity or response time as independent variables for
gas performance estimation.
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2.2. Optimization and Sensitive Analysis

Design Expert (version 7.0.0) was utilized for sensitivity analysis and optimization of
the operation of the NO2 gas-sensing system. In this investigation, the response surface
methodology (RSM) was exploited to determine the decision support system (DSS) based on
experimental values derived from the actual NO2 nano gas-sensor in operation. The impacts
of three operational factors on the performance of the gas-sensor, which were analyzed by
RSM, were: (i) the percentage of Fe3O4 nanomagnetic agent; (ii) the concentration of NO2
gas (mg/L); and (iii) either a percentage of sensitivity (if the response time is the answer)
or seconds of response time (if the sensitivity is the answer). Moreover, RSM facilitated
the optimized gas sensing process by analyzing the relationships between these three
independent variables. The historical data analysis of the RSM technique was employed to
find the optimum condition. Then, the historical data analysis was directed by RSM to gain
optimal values with higher desirability and obtain the mathematical predictive models
from ANOVA tables. Eventually, after obtaining the optimum values, machine learning
computations, sensitive analysis, and conceptual modelling were executed to obtain the
DSS of the NO2 gas sensor operation.

In the last section of RSM evaluations, the optimal suggestions of the designed model
were presented as per the desirability function. The function determined the accuracy of
the model as per some mathematical computations. When Yi is the predicted response as
per ti (li < ti < ui), desirability of Yi is called di(Yi), and it is computed as Equation (1). In
this equation, s and b are related to power of the equations [46].

di(Yi) =


0 Yi< li
(Yi− li

ti−li
)

s
li ≤ Yi ≤ ti

(Yi−ui
ti−ui

)
b

ti ≤ Yi ≤ ui

0 ui< Y

 (1)

In the following, the overall desirability of n responses (D) is computed as the geomet-
ric average (Equation (2)).

D = (
n

∏
i=1

di(Yi))

1
n (2)

2.3. Machine Learning Computations

In the present study, due to the implementation of a smart system for the prediction of
sensitivity and response time, some different machine learning algorithms were utilized
with the application of WEKA 3.9 software [47]. In this process, first the arranged data were
trained, and in the next step, the outputs were tested for the determination of the algorithms’
performances. In this research, four algorithms including Meta.RegressionByDiscretization,
M5.Rules, Lazy KStar, and Gaussian Processes were utilized. For machine learning compu-
tations and analysis, the data were divided into two sections, including training data and
testing data. The data for both categories were provided based on practical experimental
results. The application of training data, the simultaneous efficacy of variables (Figure 1),
and predictive functions were modeled and the performance of each predictor algorithm
was evaluated by a testing process. In the testing process, the predicted and actual values
were compared through the application of statistical indicators. During both the training
and testing processes, the experimental data were sorted based on the variables (input
data: NO2, Fe3O4 additive %, and sensitivity/response time, output: sensitivity/response
time) according to Figure 1 and then machine learning algorithms were employed for the
implementation of the smart soft-sensor framework.

Data discretization techniques such as Meta.RegressionByDiscretization were used as
one of their classification and reduction solutions. In these data mining methods, tagging
processes can be used to replace real data values. In the mentioned method, in addition to
reducing the size of the data in the learning process, the attributes can also be summarized
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and create better conditions for analysis, which is rarely found in other techniques [48].
In the setting of the WEKA software for this algorithm, some different machine learning
features are adjusted. For example, the random seed for XVal/% Split is set to 1 and also,
the number of leaves and size of the tree are controlled at 7 and 13, respectively.

M5P is known as a machine learning method based on decision trees with regression
functions. In this technique, the logic of data classification is based on the priority of
cause-and-effect relationships between them, which is realized in a binary environment. In
this method, the data clustering structure is modeled as a tree. In the declared algorithm,
standard deviation reduction (SDR) is the main criterion for the assessment of different
conditions’ performance (SDR = sd(M) − ∑Mi

M sd(M), M: Node example set and Mi: ith
input subset) [49]. In this study, the classification process of the M5P model was completed
using 3 rules by means of WEKA software.

The Gaussian regression method works based on the parallel solution of multi-device
equations and sequential substitutions. In this method, the distribution of data is normal-
ized, and the forecasting processes are based on the equations of this distribution [50].
Likewise, for data pattern analysis in the GP technique, kernel machines are applied.

Lazy learning is based on the generalization of search data with a deferred approach.
The logic used in these algorithms is exactly the opposite of enthusiastic techniques. The
term K star is applied by entropic measurement as the instance-based probability transfer-
ring parameter [51]. In the present investigation (in WEKA), -B 20 -M a is applied as the K
star option and also XVal/% Split is set on 1.

2.4. Controlling System of Sensor Network

The controlling system of gas detection was designed by the application of the Jacobson
model as a use-case technique. In this step of the research, the model was created using
EdrawMax 6.8 software, and the main purpose of the scheme was related to controlling the
NO2 gas sensor’s optimum performance. In the following, the structure of the model is
illustrated as per Figure 2. As per the scheme, it can be seen that in the first step, the optimal
conditions of input data include the percentage of Fe3O4 additive as an additive and the
concentration of NO2 as an air pollutant, while sensitivity/response time are determined
based on RSM outcomes. Then, the best amounts of the features are prioritized (as per
ANOVA analysis) and controlled in parallel loops in the concept of the Jacobson technique.
In the Jacobson technique, the relationships among roles, goals, and actors are modeled as
an action plan of an operational process (Jacobson et al., 2016).
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3. Results and Discussions
3.1. Sensitive Analysis and Optimization

The RSM analyses based on the central composite design (CCD) technique were exe-
cuted on the practical results of the NO2 nano gas-sensor. Tables 1 and 2 show the suggested
parameters of the system based on the independent variables of Fe3O4 nanomagnetic agent
(%), NO2 gas (mg/L), and also sensitivity (%) (response time is the answer) or response
time (sensitivity is the answer), respectively. The regression fitness analyses based on the
linear, 2FI, quadratic, and cubic models are shown in Table 1 (for response time answer) and
Table 2 (for sensitivity answer). The outcomes of descriptive statistical analysis including
skewness, kurtosis, standard deviation, etc., for both response time and sensitivity are
demonstrated in Table S1.

Table 1. Statistical parameters based on different regression fit models and R-factors for response
time (s).

Source Std. Dev. R-Squared Adjusted R-Squared Predicted R-Squared PRESS

Linear 68.95459 0.870631 0.85215 0.799389 154,836

2FI 39.13109 0.964289 0.952386 0.911022 68,675.3
Quadratic 29.09954 0.983543 0.973669 0.78265 167,755.1 Suggested

Cubic 23.78363 0.996336 0.982411 −0.32398 1,021,879

Table 2. Statistical parameters based on different regression fit models and R-factors for sensitivity (%).

Source Std. Dev. R-Squared Adjusted R-Squared Predicted R-Squared PRESS

Linear 24.05909 0.716192 0.675649 0.534586 19,933.96

2FI 7.598312 0.975737 0.967649 0.915811 3605.856

Quadratic 7.622766 0.97965 0.96744 0.875495 5332.603
Cubic 2.11794 0.999476 0.997486 0.769755 9861.54 Suggested

The significance of the suggested models was statistically evaluated by the regression
coefficients and standard errors of the regression models. The multiple coefficients of
determination (R-squared), adjusted coefficient of determination (adjusted R-squared), and
predictive R-squared are defined to check the standard error, accuracy of the models, and
predictive desirability of the models, respectively.

Comparison between the R-squared, adjusted R-squared, and also predicted R-squared
of different regression models reveals that the quadratic model with 0.98, 0.97, and 0.78
values (Table 1) and the cubic model with 0.999, 0.997, and 0.769 values (Table 2 were
the best regression fits comparatively. Accordingly, the quadratic and cubic models were
applied to acquire the mathematical equations for determining the response time and
sensitivity based on Equations (3) and (4), respectively.

Response time = 669.31687 − 13.44598 ∗ A − 13.88277 ∗ B − 4.98532 ∗ CS + 0.12005 ∗ A ∗ B + 0.052133 ∗ A ∗
CS − 0.012850 ∗ B ∗ CS − 0.042876 ∗ A2 + 0.17070 ∗ B2 + 0.022389 ∗ CS2 (3)

Sensitivity = 878.60286 − 76.87784 ∗ A − 29.19772 ∗ B −4.72585 ∗ CR + 2.61581 ∗ A ∗ B + 0.25920 ∗ A ∗ CR +
0.13863 ∗ B ∗ CR + 2.30169 ∗ A2 + 0.019486 ∗ B2 + 8.13204 × 10−3 ∗ CR2 − 5.26438 × 10−3 ∗ A ∗ B ∗ CR −

0.043170 ∗ A2 ∗ B − 3.72342 × 10−3 ∗ A2 ∗ CR − 0.012299 ∗ A ∗ B2 − 2.09463 × 10−4 ∗ A ∗ CR2 − 6.23848 × 10−4 ∗
B2 ∗ CR − 1.39499 × 10−4 ∗ B ∗ CR2 − 0.022116 ∗ A3 + 2.98711 × 10−3 ∗ B3 − 4.53829 × 10−6 ∗ CR3

(4)

where A is the percentage of Fe3O4 nanomagnetic agents in the nano gas-sensor, B is
the concentration of NO2 gas, CS is the sensitivity percentage, and CR is the response
time. Although both resultant equations for determining the response time and sensitivity
showed ample R-squared and adjusted R-squared values, the low values of the Predicted
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R-squared of 0.782 and 0.769 (Tables 1 and 2) decrease the trustfulness of the equations
for the prediction of these functional factors in gas sensing operation. Therefore, taking
advantage of AI via machine learning technology can be an applicable approach to increase
the accuracy of the predictive models for the DSS.

Analysis of variance (ANOVA) results of both suggested models, (i) quadratic (for
response time as the answer) and (ii) cubic (for sensitivity as the answer), are shown in
Tables S1 and S2, respectively. The probability value (p-value) lower than 0.0001 is attributed
to the significance of the model (Tables S2 and S3). None of the p-values of the variables in
both models are <0.0001, which means that none of the variables individually have a salient
impact on the system response separately. Nonetheless, a comparison between the F values
of Fe3O4 (%), NO2 (mg/L), and sensitivity (%) in Table S2 (0.569, 1.168, and 0.286) implies
the more substantial influence of gas concentration on the response time of the gas sensing
system. Likewise, the slightly higher F value of the response time than gas and magnetic
agent concentration in Table S3 (6.16, 5.11, and 3.875) demonstrated the relatively higher
effectiveness of the response time variable on the system’s sensitivity.

The effectiveness of the system’s response depends on the combinational efficacies
of all integrated variables. The closeness of the values among independent factors on
system response (in both regression models) provides evidence for this. The efficacy of
each parameter on the system’s response cannot be investigated individually. As a result,
the 3D diagrams can provide a more accurate analysis of the mutual effects of the variables
on the system’s response.

Figure 3 indicates the system’s response (sensitivity and response time) around the
normal diagrams. The closeness of the experimental values to the normal diagrams of
(a) and (b) signals the validity of the proposed technique. According to Figure 3b, it can
be seen that in the condition of predicting the sensitivity of the sensor, the distribution
of the results of the tests is not statistically absolutely normal and has some skewness.
This outcome is completely based on statistical analysis, and due to the non-normality of
this distribution of results, the importance of using artificial intelligence to predict these
functions is more evident.
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Figure 4 represents the 3D plot of interactions among dual independent parameters
on the response time and sensitivity as responses of the system, respectively. As shown in
Figure 4a–c, increasing the NO2 gas concentration leads to the mitigation of demanding
time for the gas sensor system to respond. In addition, in a similar effect, the increment
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of the Fe3O4 magnetization agent of the gas sensor contributes to decreasing the system’s
response time. In the same way, decreasing the sensor’s sensitivity causes an increase in
the time for the system to respond. Moreover, analyses of the 3D diagrams in Figure 4a–c
revealed that the sharper slopes of the diagram on the side of gas concentration (Figure 4a)
and sensitivity (Figure 4b) are due to their higher impact on the response time of the
system. Subsequently, the effective mutual impact of both gas concentration and sensitivity
variables brought a double impact on the response time diagram (Figure 4c).
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Similarly, the dependency of the sensitivity of the system on the variables can be traced
by pursuing the slope variation after differing the NO2 concentration and Fe3O4 (Figure 4d),
response time and Fe3O4 percentage (Figure 4e), and response time and NO2 concentration
(Figure 4f). In agreement with the F value results of Table S3, the response time shows the
highest efficacy on the system’s sensitivity. As shown in Figure 4d–f, a shorter response
time equals a higher sensitivity of the gas sensing system. Furthermore, decreasing the
NO2 concentration increases the sensor’s sensitivity for gas detection.

Tables 3 and 4 present the six calculated optimum values on the basis of the historical
data analysis method of the RSM technique [52–54] for the nano gas-sensor system dis-
tinguished by response time and sensitivity, respectively. According to Table 3, the first
suggested optimum values of the Fe3O4 agent, NO2 gas concentration, and sensitivity are
19.44%, 25.46 mg. L−1, and 95.37%, respectively, which leads to an estimated response time
of 1.976 s. The desirability of this predicted response based on the suggested optimum
variables is depicted in Figure 5a. The high desirability of this model (close to the value 1),
particularly with a high NO2 gas concentration and amount of Fe3O4 agent and constant
sensitivity (95.37), implies the model’s accuracy.

Table 3. Suggested optimized values for desirable lower response time of the gas sensor system.

Number Fe3O4 Additive NO2 Sensitivity Response Time

1 19.44 25.46 95.37 1.97617

2 11.41 42.33 125.7 19.98893

3 8.53 37.59 109.7 27.67409

4 9.92 47.13 114.57 25.29973

5 13.8 36.61 77.71 23.8952

6 11.82 40.25 93.28 18.28288

Table 4. Suggested optimized values for desirable higher sensitivity of the gas sensor system.

Number Fe3O4 Additive NO2 Response Time Sensitivity

1 16.06 36.48 38.24 99.99985

2 2.53 15.7 163.88 99.99991

3 4.07 24.2 57.59 99.99984

4 1.99 9.02 215.99 99.99991

5 8.36 22.53 49.91 99.99987

6 5.29 20.51 89.78 100.0001

Likewise, the first suggested optimum values of the Fe3O4 agent, NO2 gas concentra-
tion, and response time in Table 4 are 16.06%, 36.48 mg. L−1, and 38.24 s, respectively, which
leads to an estimated sensitivity of 99.999%. The desirability of these suggested optimum
values at a constant response time of 38.24 s is depicted in Figure 5b. The noise on the
curve exposes that the system is remarkably sensitive to the gas concentration and Fe3O4
amounts. Although the optimum values of the estimated model contain high desirability,
the significant sensitivity to the independent variables and low predicted R-squared value
of the model increase the demand for employing AI techniques to better study the behavior
of the system.
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3.2. Soft-Computing

According to RSM modelling, it can be found that the predicted-R2 index in quadratic
and cubic equations is less than 0.8 and, therefore, the importance of machine learning
algorithm utilization is clearer than in the past.

The statistical outputs of machine learning calculations for the prediction of response
time as one of the main targets of gas sensor performance assessment are summarized
in Table 5. According to this table, it is clear that the best condition for the estimation
of response time is related to M5Rules and Lazy.KStar algorithms with a 0.97 correlation
coefficient. Furthermore, considering the two selected algorithms, the mean absolute error
(MAE) of the M5Rules is less than that of the other, at 32.4. Therefore, the best performance
is linked to the M5Rules algorithm. The equations of meta.RegressionByDiscretization,
M5Rules, GP are demonstrated in Equations (S1)–(S3), respectively. However, in this
research, for the evaluation of the highest efficiency of each algorithm, the tuning process
of each calculation is performed based on the change in the K-fold value between the
share of training and testing processes. According to Figure 6a, it can be understood that
Lazy.KStar has appropriate precision for all the different folds, while the best performance
of the GP algorithm appeared in more than 2-fold. Additionally, the behavior of both
meta.RegressionByDiscretization and M5Rules is similar to that of GP.

Table 5. The statistical indicators of machine learning computations as per response time.

Response Time—Statistical Indicators GP Meta.RegressionByDiscretization M5Rules Lazy.KStar

Correlation coefficient 0.8306 0.9351 0.974 0.97

Mean absolute error 113.7162 49.2271 32.4638 37.5175

Root mean squared error 142.3465 63.0765 41.4937 47.3799

Relative absolute error 74.72% 32.34% 20.80% 24.04%

Root relative squared error 76.51% 33.90% 22.10% 25.23%

Similarly to the first function (response time), the second one (sensitivity), Lazy.KStar
algorithm, with a correlation coefficient of 0.9888 (Table 6), has the best efficiency for the
prediction of sensitivity. The summarized formulations of the machine learning computa-
tions for the estimation of sensitivity are demonstrated in Equations (S4)–(S6). According
to Figure 6b, it is clear that for GP, M5Rules, and Lazy.KStar, the best condition occurs in
8-fold, while for meta.RegressionByDiscretization, the optimum efficiency is illustrated in
6-fold.
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Table 6. The statistical indicators of artificial intelligence practices based on the sensitivity function.

Sensitivity—Statistical Indicators GP Meta.RegressionByDiscretization Rules.M5Rules Lazy.KStar

Correlation coefficient 0.7555 0.9299 0.9621 0.9888

Mean absolute error 21.06 10.6165 9.125 4.8856

Root mean squared error 27.64 18.0346 11.299 10.3669

Relative absolute error 60.19% 29.73% 26.32% 13.96%

Root relative squared error 61.81% 39.70% 25.48% 23.18%
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3.3. System Control of Gas-Sensor Operation by Jacobson

The conceptual model of a control system based on the Jacobson technique is demon-
strated in Figure 7. In accordance with Figure 6, it can be understood that in the first step,
after designing and synthesizing the gas-sensor in different conditions, the technology
should be operated in the real field. It is clear that in the real execution of the sensor, the
concentration of NO2 gas varies as an air pollution compound.



Chemosensors 2023, 11, 126 12 of 15

Chemosensors 2023, 11, x FOR PEER REVIEW 13 of 16 
 

 
Figure 7. The conceptual model of the gas-sensor control system based on the Jacobson model in the 
present study. 

Based on the operation process, sensitivity and response time are examined, and then, 
all signals (including P1-P4 features) can be evaluated under optimum conditions which are 
obtained from RSM analysis. 

In the following, for object 1 (minimizing response time): 
If P1, P2, and P4 are set at optimum conditions, the goal is met. 
Additionally, regarding the second objective (maximizing sensitivity): 
If P1–P3 are equal to the optimal amounts, the purpose is satisfied. 
Therefore, it can be concluded that with the application of the Jacobson technique 

and consideration of the outputs of RSM analysis, a logical control system can be imple-
mented. 

4. Conclusions 
While gas sensing technology involves highly complicated design, invention, and 

operational features, artificial intelligence may aid in addressing these challenges. In this 
study, a soft-sensing method was introduced for the precise estimates of a NO2 gas sensor 
using AI computations. However, before the prediction system, the process is optimized 
with the application of RSM, and the best estimation of Fe3O4 additive (%), input NO2 
(ppm), and sensitivity/response time is introduced according to forecasting both sensitiv-
ity and response time. The outputs of soft-computing demonstrated that the RSM has high 
efficiency for the sensitive analysis of effective factors and, also, the optimization of the 
NO2 gas-sensing process based on both sensitivity and response time could be applied 
(with more than 0.98 R2). Although the predicted R2 of RSM as per the effective features is 
low (less than 0.8), this challenge can be addressed through artificial intelligence (more 
than 0.96). Finally, the conceptual modelling proved that the Jacobson technique has a 
high efficiency for the implementation of the gas-sensor control system. For future studies, 
the present research suggests the application of metaheuristics algorithms for the online 
optimization of the gas sensing process, whereas the deep learning algorithm application 
for the prediction of sensitivity/response time can be attractive for other investigations. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figures S1: The outputs of the Scientometry analysis of machine learning 
applications in gas sensor creation based on keyword occurrence; Figures S2: The contribution of 

Figure 7. The conceptual model of the gas-sensor control system based on the Jacobson model in the
present study.

Based on the operation process, sensitivity and response time are examined, and then,
all signals (including P1–P4 features) can be evaluated under optimum conditions which
are obtained from RSM analysis.

In the following, for object 1 (minimizing response time):
If P1, P2, and P4 are set at optimum conditions, the goal is met.
Additionally, regarding the second objective (maximizing sensitivity):
If P1–P3 are equal to the optimal amounts, the purpose is satisfied.
Therefore, it can be concluded that with the application of the Jacobson technique and

consideration of the outputs of RSM analysis, a logical control system can be implemented.

4. Conclusions

While gas sensing technology involves highly complicated design, invention, and
operational features, artificial intelligence may aid in addressing these challenges. In this
study, a soft-sensing method was introduced for the precise estimates of a NO2 gas sensor
using AI computations. However, before the prediction system, the process is optimized
with the application of RSM, and the best estimation of Fe3O4 additive (%), input NO2
(ppm), and sensitivity/response time is introduced according to forecasting both sensitivity
and response time. The outputs of soft-computing demonstrated that the RSM has high
efficiency for the sensitive analysis of effective factors and, also, the optimization of the
NO2 gas-sensing process based on both sensitivity and response time could be applied
(with more than 0.98 R2). Although the predicted R2 of RSM as per the effective features
is low (less than 0.8), this challenge can be addressed through artificial intelligence (more
than 0.96). Finally, the conceptual modelling proved that the Jacobson technique has a high
efficiency for the implementation of the gas-sensor control system. For future studies,
the present research suggests the application of metaheuristics algorithms for the online
optimization of the gas sensing process, whereas the deep learning algorithm application
for the prediction of sensitivity/response time can be attractive for other investigations.
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mdpi.com/article/10.3390/chemosensors11020126/s1, Figure S1: The outputs of the Scientometry
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