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Abstract: In recent years, the application of Deep Neural Networks to gas recognition has been
developing. The classification performance of the Deep Neural Network depends on the efficient
representation of the input data samples. Therefore, a variety of filtering methods are firstly adopted
to smooth filter the gas sensing response data, which can remove redundant information and greatly
improve the performance of the classifier. Additionally, the optimization experiment of the Savitzky–
Golay filtering algorithm is carried out. After that, we used the Gramian Angular Summation Field
(GASF) method to encode the gas sensing response data into two-dimensional sensing images. In
addition, data augmentation technology is used to reduce the impact of small sample numbers on the
classifier and improve the robustness and generalization ability of the model. Then, combined with
fine-tuning of the GoogLeNet neural network, which owns the ability to automatically learn the char-
acteristics of deep samples, the classification of four gases has finally been realized: methane, ethanol,
ethylene, and carbon monoxide. Through setting a variety of different comparison experiments, it
is known that the Savitzky–Golay smooth filtering pretreatment method effectively improves the
recognition accuracy of the classifier, and the gas recognition network adopted is superior to the
fine-tuned ResNet50, Alex-Net, and ResNet34 networks in both accuracy and sample processing
times. Finally, the highest recognition accuracy of the classification results of our proposed route is
99.9%, which is better than other similar work.

Keywords: gas recognition; gas sensor array; Savitzky–Golay smooth filter; sensor data visualization;
Deep Neural Network

1. Introduction

Gas recognition technology based on gas sensor array is widely used, playing an
important role in many fields such as disease prediction [1–3], food safety [4–6], environ-
mental monitoring [7,8], coal mine risk prediction [9], and so on. For example, Liu et al. [9]
adopted the gas sensor array technology to identify and detect the concentration of carbon
monoxide and methane released in the process of coal oxidation or spontaneous combus-
tion. By capturing the slight change of gas release in the initial stage of coal oxidation and
combining with an artificial neural network, the risk prediction ability in a coal mine has
been greatly improved. Methane, ethanol, ethylene, and carbon monoxide are common
flammable gases and are often mixed together in practical situations, such as in a chemical
industrial park. Therefore, it is of practical significance to study the classification and
identification technology of methane, ethanol, ethylene, and carbon monoxide based on
gas sensor array.

Since the time series sensing data may contain redundant data or noise, the perfor-
mance of the classifier largely depends on the input data representation. Efficient input
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data representation is the key to gas classification, which is helpful for training the classified
gas model with efficient input data. For example, Pan et al. [10] proposed a new hybrid
convolutional and recurrent neural network method to achieve fast gas recognition, extract
valuable transient features contained at the beginning of the response curve, and finally
achieve an identification accuracy of 84.06% within a response time as short as 0.5 s, and
increase to 98.28% when the response time is 4 s. Pareek et al. [11] proposed a new 3DCN-
RDN (3D convolution neural-based regression dual network) to achieve gas quantitation
and identification, with a classification accuracy of 94.37%. YongKyung et al. [12] proposed
a new classification method for mixed gases, which is based on the representation of simu-
lated images with several sensor specific channels and the Convolutional Neural Network
(CNN) classifier. He et al. [13] proposed a new hybrid CNN-Bi-LSTM-AM network model
based on Bayesian as an optimization algorithm to realize rapid gas identification. How-
ever, in the process of gas classification, they did not consider the possible redundancy or
noise information in the time series sensing data and did not conduct smooth filtering and
noise reduction pre-processing on the time series sensing data, which would lead to the
decline of classification accuracy.

However, time series sensing data are characterized by relationships between different
attributes, which makes it difficult to obtain complex information and temporal correlations
from sensor responses. Scholars have proposed to encode the time series into different
types of images for visual analysis, which enables computer vision technology to be used
for time series classification. This idea provides a new perspective for us to solve the
classification of time series sensing data. Donner et al. [14] proposed a new method to
analyze the structural nature of the time series of complex systems. By constructing an
adjacency matrix with predefined recursive functions, the time series can be interpreted as a
complex network. Silva et al. [15] use recursive graphs as the representation domain of the
time series classification and measure the similarity between the recursive graphs with the
Campana-Keogh (CK-1) distance, which is a distance based on Kolmogorov complexity. A
video compression algorithm is used to estimate the image similarity, which is a simple and
parameterless time series classification method. Javed et al. [16] used different line graph
techniques to analyze the performance of multiple time series and introduced a graphic
awareness framework for multiple time series. These methods explore how to visualize the
topology and intrinsic properties of the time series. However, their visualization process
did not consider the integrity of the mapping between time series and visual cues, which
would have resulted in a degradation of the classification performance. Wang et al. [17]
proposed a new framework based on the Gramian Angular Summation/Difference Field
(GASF/GADF) and Markov Transition Fields (MTFs) to encode time series into different
types of images, which enables computer vision technology to be used for time series
classification and interpolation. Liu et al. [18] used the Markov Transition Fields (MTFs)
to visualize sensor responses into images. Combined with the Small-Scale Convolutional
Neural Network (SSCNN), gas classification was further realized. Wang et al. [19] took
the whole process of gas reaction as the feature map and used the mixed neural network
to classify the gas, achieving a 95% classification accuracy. Inspired by this, we consider
using the Gramian Angular Summation Field (GASF) method to encode the time series into
two-dimensional sensing images. Because it contains time correlation and can maintain
time dependence, it can be well applied in our experimental research.

A pattern recognition algorithm [20–22] is another key process of gas recognition.
Ha et al. [23] apply the K-Nearest Neighbor (KNN) algorithm in combination with the
Multi-Mode Principle Component Analysis (MPCA), which can be used for process moni-
toring and fault monitoring. Sun et al. [24] proposed a pattern recognition method based
on the Local Mean Decomposition (LMD) envelope spectrum entropy and the Support
Vector Machine (SVM) for classifying leakage aperture categories. However, all the above
methods require feature extraction (typical features include response maximum value,
response time, integral area under response curve, etc.) before pattern recognition, which
undoubtedly increases the difficulty of achieving the target task. As artificial intelligence
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technology has made great progress in multiple fields, Deep Neural Networks (DNN) have
achieved remarkable achievements in the field of artificial intelligence, such as computer
vision [25], natural language processing [26], malware detection [27–29], etc. For example,
Peng et al. [30] have designed a Deep Convolutional Neural Network (DCNN) to classify
four gases. The recognition accuracy is 95.2%, and the training time is 154 s. It is far better
than that of the Support Vector Machine (SVM) and the Multi-Layer Perception (MLP).

The main contributions of this study can be summarized as follows: We illustrate with
examples how Deep Neural Networks can be applied to time series gas sensing data. We use
a variety of filtering methods to pre-process the gas sensing response data for more efficient
input data representations and to improve the performance of the classifier. After that, we
adopted the GASF method to encode the gas sensing response data into two-dimensional
images, and converted the classification and recognition based on the time series gas
sensing data into the classification and recognition of two-dimensional sensing images, and
finally realized the classification of methane, ethanol, ethylene, and carbon monoxide. In
addition, the data enhancement technique is applied in the experimental study to further
improve the performance of the classifier with relatively few data samples. Combined
with fine-tuning the GoogLeNet classification network, gas data samples were trained and
tested. We carried out a variety of comparative experiments under different experimental
settings, including using the 10-fold cross validation method to verify the accuracy of
the algorithm, whether the gas sample data are smoothly pre-processed, whether the
data are data enhanced, dividing the dataset into different proportions, using different
classification network models to identify the gas, comparing the experiments performed
by other researchers on this dataset. The performances of the suggested algorithms in
other UCI gas datasets are presented as well. The experimental results show that the
Savitzky–Golay smooth filtering algorithm can greatly improve the performance of the
neural network gas classification algorithm.

2. Materials and Methods
2.1. Materials

The data used in this experiment are an open-source gas dataset downloaded from UCI
Machine Learning Repository public database [31]. The twin gas sensor arrays dataset is a
time series gas sensor dataset of 8 sensor arrays. The dataset was collected by five identical
sensor arrays, each containing four metal oxide gas sensors, namely TGS2611, TGS2612,
TGS2610, and TGS26028. Each gas sensor operates at two heating voltage levels of 5.65 V
and 5.00 V, resulting in a total of eight sensor combinations. The eight sensors are integrated
in a specially designed circuit board, which is equipped with a temperature control and
signal acquisition module to monitor the operation of the sensors. The experimental setup
is shown in Figure 1 below.

During the signal acquisition process, the same experimental method was used to
measure the gas of 5 sensor arrays, and the measurements were made with different sensor
arrays every day. There are four types of gas tested, namely methane, ethanol, ethylene,
and carbon monoxide. The duration of a single test experiment is 600 s, and the sampling
frequency is 100 Hz. The types of sensors on a single sensor array and the working voltages
of each sensor are shown in Table 1.
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Figure 1. Experimental setup used for data acquisition.

Table 1. Sensor types and operating voltages.

Channel Category of Sensors Operating Voltage

0 TGS2611 5.65 V
1 TGS2612 5.65 V
2 TGS2610 5.65 V
3 TGS2602 5.65 V
4 TGS2611 5.00 V
5 TGS2612 5.00 V
6 TGS2610 5.00 V
7 TGS2602 5.00 V

The different concentration levels of the four measured gases are shown in Table 2.

Table 2. Different concentration levels of measured gases (ppm).

Gas Type Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10

Methane 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0
Ethanol 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0 112.5 125.0
Ethylene 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0 112.5 125.0

Carbon monoxide 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0

The date of the detection of various gas substances of different concentrations by each
sensor array is shown in Table 3.
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Table 3. The testing schedule for each batch of sensor arrays.

Sensor Array The First Test The Second Test The Third Test The Fourth Test

Array 1 4th day 10th day 15th day 21st day
Array 2 1st day 7th day 11th day 16th day
Array 3 2nd day 8th day 14th day 17th day
Array 4 3rd day 9th day - -
Array 5 18th day 22nd day - -

2.2. The Whole Experimental Process

The whole process of the experiment in this paper is as follows: First, in order to
effectively extract the characteristics of the gas to be tested, the response data of the gas
sensor were analyzed. The response data of the gas sensor within the range of important
response and recovery time were retained, and the redundant and interference information
was eliminated. Then, the time series data within the intercepted time range was visualized,
and it was found that the response data of the gas sensor had certain data fluctuations and
contained noise. Therefore, the smooth filtering method was considered to pre-process
the data. In this paper, multiple smooth filtering methods were compared and analyzed,
and the experimental results showed that Savitzky–Golay smooth filtering had the best
classification effect. Therefore, Savitzky–Golay smooth filtering was selected for the basic
experiment. Next, the GASF method was used to convert the pre-processed time series
data into two-dimensional sensing images, and the data enhancement technology was
used to reduce the impact of small samples on the classifier. In addition, the GoogLeNet
classification network was fine-tuned to realize the recognition of four different gases,
namely methane, ethanol, ethylene, and carbon monoxide. The flow chart of the whole
experimental process is shown in Figure 2 below.
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2.3. Data Pre-Processing

According to the literature [31], the specific collection experiment design of this gas
sensor dataset is known. The experimental design of the four gases was the same, and
the test time of a single experiment was 600 s. The process is as follows: First, constant
flow of clean air is circulated through the gas sensor chamber for 50 s to form the initial
stabilization phase of the response, which can be used as a baseline for measuring the
sensor response. Secondly, the selected gas is passed into the sensor gas chamber and
mixed with air according to the required concentration level to produce a gas mixture,
which is circulated for 100 s. Finally, clean air is circulated to remove the gas mixture from
the sensor chamber for the next 450 s.

The dataset used in this paper is 8 channels time series, Xgas =
{

Xgas1, Xgas2, . . . , Xgas8
}

,
where Xgas1, . . . , Xgas8, respectively, represents gas sensor array (TGS2611,TGS2612,. . . ,
andTGS2602) dynamic response data. Gas sensor array data are usually complex, high-
dimensional time signals. To process such complex data, efficient input data representation
is needed to complete the task of identifying gases. Since gas classification requires a large
number of samples for model training, the performance of the classifier largely depends on
the input data representation. Efficient input data representation is the key to gas classi-
fication and helps train the gas classification network model with input data. Otherwise,
without proper input data representation, important information will inevitably be lost,
which will degrade the performance of the classification model. In order to effectively
extract the features of the gas to be identified, the data of the 8 channel time series are
intercepted. In the experiment, the response data within 30–100 s are intercepted as the
classification object. On the one hand, the response data within this time range includes
both the gas response process and the gas recovery process, without losing the important
response data in the gas reaction process. On the other hand, some redundant informa-
tion is removed from the response data in this time range, which improves the efficiency
of network model calculation. The original response data curve of CO gas is shown in
Figure 3 below.
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As can be seen from the above original response data curve of CO gas, the response
of CO gas has certain data fluctuations and noise. In order to reduce the fluctuation
of response data, a variety of smoothing filtering methods are used to pre-process the
original gas response data. Based on the classification experiment results, Savitzky–Golay
smoothing filtering algorithm has the best effect. Therefore, Savitzky–Golay smoothing
filtering algorithm is mainly used in the following years. It is a function commonly used in
curve smoothing processing and is a convolution algorithm based on smoothing time series
data and the least squares principle. The core idea is to carry out order polynomial fitting
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to the data points in a certain length window, so as to get the fitting result. Savitzky–Golay
smoothing filtering (SG smoothing filtering) is actually a weighted average algorithm for
moving windows, but its weighting coefficient is not simply a constant window, but a least
square fitting for a given higher-order polynomial within a sliding window.

The principle of Savitzky–Golay smoothing filtering is as follows: It is assumed
that the width of the sliding time window is n = 2m + 1, and the data point is
x = (−m, −m + 1, . . . , m − 1, and m). The sub-polynomial is used to fit the data points in the
time window. The k − 1 degree polynomial is used to fit the data points in the window,
y = a0 + a1x + a2x2 +. . . + ak−1xk−1. Therefore, n linear equations with k elements are ob-
tained. In order for the system to have a solution, n should be greater than or equal to k.
Generally, n greater than k is selected, and the parameters are fitted by the least square
method, A = {a0, a1, . . . , ak−2, ak−1}.

The biggest feature of Savitzky–Golay smooth filtering is that while filtering noise,
it can ensure that the shape and width of the signal remain unchanged, which can better
retain the information of characteristic peaks and improve the accuracy of input data.
Therefore, based on the advantages of the Savitzky–Golay smooth denoising algorithm
mentioned above, it can be well applied to the gas sensor dataset. As for the selection of
experimental parameters, we compared the influences of different parameter selection on
the gas classification results, as shown in Table 4. When window length increases from 29 to
89, the accuracy first increased, and then decreased. The time consumed kept on increasing
when the window length increased. Window length of 59 provides better accuracy with
little time as well. Based on the experimental results, this paper selects window length as
59 and k value as 3, and performs certain smoothing noise filtering pre-processing on the
8-channel data to improve the quality of input data.

Table 4. The influence of different experimental parameters on experimental results.

Window Length (k = 3) Accuracy Time (One Epoch)

29 98.4% 25.6 s
59 99.9% 26 s
89 99.2% 27.8 s

The comparison of gas response data curve with or without Savitzky–Golay smooth
filtering is shown in Figure 4 below.
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2.4. Images Conversion

With the development of computer vision, Deep Neural Network has shown outstand-
ing performance in image recognition. According to the time correlation embedded in the
gas sensor data, the SG algorithm in the previous section is used to smooth and filter the
time series data into a two-dimensional sensor image, so as to be used for the subsequent
feature learning. Therefore, gas classification and recognition based on time series data are
transformed into gas classification and recognition for two-dimensional sensor images. The
Gramian Angular Field (GAF) method was used to convert the response data of the gas
sensor into a two-dimensional sensor image. The features in the two-dimensional image
were learned by combining with the gas classification network model, and the features
were automatically extracted. Finally, the recognition of four gas types was realized.

The specific implementation process of Gramian Angular Field (GAF) is as follows:
First, scale the sequence data of each channel in the 8-channel time series data of each
test sample, X = {X1, X2, . . . X8} of each test sample, and scale the data range to [0, 1].
The expression is as follows:X̃

t
i =

[
Xt

i −min(Xi)
]
/[max(Xi)−min(Xi)], where X̃

t
i is the

normalized value at time t, St
i is the response value of the ith sensor at time t, and Xi is

the response value of the ith sensor within the sampling time range. The comparison
of gas response data curves with or without Savitzky–Golay smooth filtering after data
normalization is shown in Figure 5a,b below.
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Next, the normalized time series data Xt
i are converted to the polar coordinate system,

that is, the value is regarded as the cosine of the included angle, and the time stamp is
regarded as the radius. The formula expression is shown in (1):ϕ = arccos(X̃

t
i), 0 ≤ X̃

t
i ≤ 1, X̃

t
i ∈ X̃

r = ti
N , ti ε N

(1)

Since the response data values are normalized to the interval of [0, 1], the angle
range is [0, π/2]. The polar coordinate transformation through this formula has significant
advantages because the encoding is bijective, and for a given time series, the result of a
given mapping in the polar coordinate system is unique. Finally, there are two methods to
convert GAF image: GASF (Gramian Angular Summation Fields) and GADF (Gramian
Angular Difference Fields). The formula expression is shown in (2):

GASF =
[
cos
(
ϕi +ϕj

)]
= X̃

′·X̃−
√

I− X̃
2
′
·
√

I− X̃
2

GADF =
[
sin
(
ϕi −ϕj

)]
=

√
I− X̃

2
′
·X̃− X̃

′·
√

I− X̃
2

(2)



Chemosensors 2023, 11, 96 9 of 22

For the conversion of single-channel time series gas sensing data into GAF images,
GASF method was used to convert the data into two-dimensional sensing images, and
the image size of single-channel two-dimensional sensing images was set to 64 × 64. The
single-channel time series data are converted into a single-channel two-dimensional sensor
image (including GASF and GADF methods), as shown in Figure 6 below.
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Figure 6. Single-channel 2D sensor image.

Since the gas response data of each test sample is measured by 8 gas sensors, con-
sidering that the time series data intervals intercepted by all experimental samples are
identical, that is, the time column data of each sample will not affect the performance of the
subsequent gas classification network model, a 3 × 3 two-dimensional combined sensor
image is constructed. Finally, the gas sensor response data of each test sample are processed
by GASF method and converted into a 192 × 192 two-dimensional combination sensor
image. The two-dimensional combination sensor images of the four gases are shown in
Figure 7 below.
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2.5. Data Augmentation Technology

Since the collection and labeling of gas sensor array data are energy-consuming and
costly processes, it is a great challenge. The total number of data samples used in this
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experiment is 640, and the gas recognition network model is easy to over-fit using small
samples. Therefore, data augmentation technology [12] is adopted to increase the number
of experimental samples, reduce the occurrence of over-fitting phenomenon, expand the
decision boundary of the model, and help to improve the generalization ability of the
training model, so that the gas classification model has stronger robustness. GASF method
is used to convert the time series gas sensing data into two-dimensional combined sensing
images. Since the Gram matrix is symmetrical about the diagonal, the sensor response
image obtained is also symmetrical about the diagonal. The data augmentation technology
of the experimental samples includes image mirroring, transformation brightness (bright-
ening and darkening), and angle rotation (90◦ and 180◦). Finally, the total amount of data
samples in this experiment was increased 6 times, from 640 gas data samples to 3840 gas
data samples. After that, the two-dimensional combination sensor image is input into the
gas recognition network to realize the training and testing process of gas classification. The
two-dimensional combined sensor image after the enhancement of single gas sample data
are shown in Figure 8 below.
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2.6. Model Execution

(1) Introduction to the Model

Pytorch framework in deep learning is used and run on GPU to accelerate the cal-
culation and realize the gas recognition model. The fine-tuning of GoogLeNet network
structure for gas recognition is shown in Figure 9 below, which is roughly divided into five
modules. The specific operation process of each module is as follows: Firstly, in the first
module, a convolution layer and a maximum pooling layer are used. In our gas recognition
model, the rectified linear units (ReLUs) are required after the convolution operation. In
the second module, two convolution layers and one maximum pooling layer are used.
Local response normalization is not adopted in the first two modules, because this layer
structure does not play a significant role, so it is discarded to simplify the network model
structure. In the third module, there are two layers of structure, namely inception (3a) layer
and inception (3b) layer, which are divided into four branches. Multi-scale processing is
adopted. Finally, the eigenmatrix of four branches of inception layer is connected in parallel
to the depth direction. After that, the specific experimental operations of the fourth and
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fifth modules are similar to those of inception (3a) and inception (3b) in the third module.
Finally, the output layer is different from the previous neural network output layer, which
adopts three continuous and fully connected layers. This output layer network adopts
the adaptive average pooling layer, which plays a role of dimension reduction on the one
hand and abstracts the global features of the image by combining low-level features on
the other hand. No matter how much the height and width of the input feature matrix
are set, both the height and width of the specified feature matrix can be obtained (the
convolution layer with both height and width of 1 is finally obtained), and then the dropout
with 50% probability of dropping is added. Through the operation of dropout, the number
of neurons and connection weights in the network will be randomly reduced, which can
improve the numerical performance and prevent over-fitting. Finally, the soft-max layer
(activation function) is used as the classifier to identify four different gases: methane,
ethylene, ethanol, and carbon monoxide.
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GoogLeNet network model structure mainly introduces the inception architecture.
The improved inception structure diagram is shown in Figure 10 below, which mainly
integrates the characteristic information of different scales. On the basis of the original
inception structure, a convolution layer with a convolution kernel size of 1 × 1 was added
before the 3 × 3 and 5 × 5 convolution layers, and a convolution layer with a convolution
kernel size of 1 × 1 was added after the pooling layer, in order to reduce the dimension
and model training parameters, so as to reduce the amount of computation.
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(2) Training and testing procedures

1. In the process of model training, Pytorch framework in deep learning is used
and run on GPU to accelerate calculation and realize gas classification and
recognition. In the experiment, the final goal is to classify 4 different gases. For
the multi-gas classification tasks, cross-entropy loss is used as the loss function.
The adaptive moment estimation (Adam) optimization algorithm is used as
the optimization algorithm. Batch size is set to 32, the learning rate to 0.0003,
and iterations to 100. All 2D sensing images are transformed accordingly,
for example, the random aspect ratio is trimmed to 224 × 224 pixels, the
horizontal flip is according to probability p = 0.5, transformed into tensors
and normalized to 0~1, and the image is normalized. The gas classification is
realized in combination with the fine-tuning GoogLeNet network model. It
is worth noting that the two auxiliary classifiers of GoogLeNet are applied in
the training of the model, the loss of the two auxiliary classifiers is multiplied
by the weight and added to the overall loss of the network, and then the back
propagation is carried out, which can prevent the over-fitting of the network
and improve the discriminant power of the classifier at the lower network
layer. In the actual test, the two auxiliary classifiers will not be used.

(3) Process of prediction

In the prediction process, first load the two-dimensional sensor image after gas re-
sponse data conversion. In order to match the input dimension of the network, add a
Batch dimension to the prediction image. By reading the label file generated in the train-
ing process, load the model parameters saved in the training process on the basis of the
model establishment, and finally realize the recognition and prediction of the image. In
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other words, it can accurately predict four different gases: methane, ethylene, ethanol, and
carbon monoxide. The following Figure 11 shows the prediction results, achieving accurate
prediction of carbon monoxide gas.
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3. Results
3.1. Basic Experiment

In the basic experiment, the Savitzky–Golay smooth filtering was carried out on the
response data of the original gas sample. After that, the GASF method was used to encode
the gas sensing response data into two-dimensional sensing images. In addition, data
augmentation technology was also adopted in the experiment to reduce the impact of
small samples on the classifier. The dataset was randomly divided into the training set
and the test set according to the ratio of 8:2. Combined with the fine-tuning GoogLeNet
neural network, the classification of four gases, including methane, ethanol, ethylene, and
carbon monoxide, was finally realized by taking advantage of its automatic learning of
deep-seated sample characteristics. As shown in Figure 12a–c, gas identification achieves a
higher precision, and the convergence is completed in fewer iteration cycles and the final
loss value converges to around zero. In the process of training and testing, the accuracy
has the same upward trend and the two are close. In the process of training and testing,
the loss value also has the same downward trend and the two are close. In addition, when
the accuracy increases, the loss value shows a downward trend, indicating that there is no
over-fitting phenomenon in the experimental method.
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3.2. Comparison Experiments

(1) Influence of the 10-fold cross validation method on the experimental classification results

In the experiment, a 10-fold cross validation method was adopted to verify the accuracy
of the model recognition. The two-dimensional sensor images were divided into ten parts,
nine of which were taken as training data and one as test data for experiment. As shown in
Figure 13a,b, the gas recognition accuracy is 99.9%, and the gas recognition accuracy and
loss rate curves in the training and testing of the model are basically the same. Despite
the small oscillations during the test, the overall accuracy and loss rate curves during the
training and testing process tend to smooth out and eventually stabilize. The confusion
matrix of the experimental classification results is shown in Figure 13c below. It is clear
from the diagram that the model performs well in identifying all four gases.
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(2) The influence of smooth treatment on the experimental classification results.

In order to make the experimental research more persuasive, three smoothing filtering
methods, namely Savitzky–Golay smoothing filtering, Kalman filtering, Gaussian filtering
and moving average filtering, were adopted in the experiment to filter the original gas
response data, respectively. The corresponding accuracy and loss rate results in the test
process are shown in Table 5 below. As can be seen from Table 5, smooth filtering has
well-improved the classification accuracy of the gas identification network. In particular,
the Savitzky–Golay smooth filtering algorithm can better improve the accuracy of gas
identification. Therefore, the subsequent comparison experiments all use the Savitzky–
Golay algorithm for smooth filtering.
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Table 5. The experimental results contrast.

Algorithm Accuracy Loss

With SG smooth filtering 99.9% 0.223
With Kalman filtering 98.2% 0.278

With Gaussian filtering 97.8% 0.324
With moving average filtering 97.2% 0.328
Without SG smooth filtering 93.5% 0.652

(3) The influence of data augmentation on the experimental classification results.

In order to reduce the influence of the small sample data size of the gas sensor array
on the classification network model, the data augmentation network strategy is adopted
in the experiment. The data samples, with or without data augmentation, were trained
and tested, respectively, in the experiment, and the number of iterations was randomly set
to 200. After several experiments, it was proved that the model based on the fine-tuning
GoogLeNet network structure had a fast convergence speed, and when the number of
iterations was 60, it was close to convergence. Therefore, it was appropriate to set the
number of iterations to 100. The experimental results of accuracy and loss rates in the
testing process are shown in Figure 14a,b below. As can be seen from the figure, the gas
sample data after data augmentation makes the classification model more robust, the test
effect more stable, and the convergence faster, as the highest classification accuracy is 99.9%,
and the loss is small. However, for the gas sample data with no data augmentation input
into the classification network model, the test effect has certain data fluctuations, without
good stability. The highest classification accuracy was 98.4%, and the loss was great. It
can be concluded that the data augmentation network strategy can better improve the
classification accuracy of the gas identification network model, so that the gas identification
network model has better robustness and generalization ability.
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(4) The influence of different sample data division ratios on the classification results.

In the experiment, the response data of gas samples were divided into different propor-
tions of training sets and test sets. The two-dimensional sensor response image enhanced
by the data in the previous section was used as the input data of the gas identification
network. During the experiment, the sample data were divided into training sets and test
sets according to various proportions, as shown in Table 6 below.
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Table 6. Data partition ratio.

Partition Ratio Divided Sample Number

9:1 3456:384
8:2 3072:768
7:3 2688:1152

The response data of gas samples are divided according to the division proportion
of different training sets and test sets. The experimental results of the accuracy and loss
rate of the test process are shown in Figure 15a,b below. In general, when dividing the gas
sample data with different proportions of training set and test set, the higher the proportion
of the training set data, the higher the classification accuracy will be, and the higher the
proportion of the test set data, the more stable the classification results of the classifier
will be.
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(5) The influence of different classification network models on the classification results.

The data enhanced two-dimensional sensor images were input into different classifica-
tion network models for a comparison experiment. The experimental results are shown
in the following Table 7. As can be seen from Table 7, the fine-tuned GoogLeNet network
classification model has the highest classification accuracy, followed by the fine-tuned
ResNet50 network, Alex-Net network, and finally, the ResNet34 network. In contrast, the
fine-tuned GoogLeNet network classification model selected by us is more suitable for
the identification of methane, ethanol, ethylene, and carbon monoxide, achieving higher
recognition accuracy and more stable experimental results. The variation trends of accuracy
and loss rate in the training process and the testing process are similar, which indicates that
the method we adopted improves the generalization ability of the classification model.

Table 7. Comparison of experimental results of different classification network models.

Classification Network Accuracy Time (One Epoch)

Fine-tune GoogLeNet 99.9% 26 s
Fine-tune Alex-Net 96.8% 30 s
Fine-tune ResNet34 95.4% 33 s
Fine-tune ResNet50 97.4% 32 s



Chemosensors 2023, 11, 96 18 of 22

(6) Compare and analyze the experimental results with others.

In order to make the experimental results more comparative and persuasive, this paper
will compare them with the classification accuracy obtained by other people’s experiments
on this public dataset. As can be seen from Table 8, compared with the classification
accuracy achieved by other experiments in the table, our gas classification accuracy is
higher, and the classification effect is better.

Table 8. Performance of accuracy compared with other people’s experiments.

Name Model Accuracy

Xiaofang Pan [10] CRNN 98.28%
Vishakha Pareek [11] 3DCNRDN 94.37%

Juan He [13] CNN-Bi-LSTM-AM 84.9%
Ruijie Gu [32] Inception-Time 88.11%
Ruijie Gu [32] MSRSN 94.84%

In this paper

With Savitzky–Golay
smooth-GASF-Fine tune

GoogLeNet
99.9%

Without Savitzky–Golay
mooth-GASF-Fine tune

GoogLeNet
93.5%

(7) Application to different UCI gas datasets.

In order to apply the gas recognition algorithm proposed in this paper to the recogni-
tion of a binary gas mixture, we found the binary gas mixture dataset in the UCI machine
learning library. The binary gas mixture dataset is named the gas sensor array under
dynamic gas mixtures. The gas identification process uses a mixture of carbon monoxide
and ethylene, and finally realizes the identification of air, carbon monoxide, ethylene, and
a mixture of carbon monoxide and ethylene. Carbon monoxide ranges from 0 ppm to
533.33 ppm, and ethylene ranges from 0 ppm to 20 ppm.

The data sample processing process is as follows: when the concentration of any
gas in the mixture of carbon monoxide and ethylene changes, it is divided into one data
sample. Finally, it is divided into 373 binary gas data samples of four types. By using the
Gramian Angular Summation Fields (GASF) method, the binary gas mixture data samples
are converted into two-dimensional sensing images, and the fine-tune GoogLeNet network
model is applied to the binary gas mixture image recognition, which can classify the binary
gas mixture. The experimental results of the accuracy and loss rate of the test process are
shown in Figure 16a,b below. It can be seen from the curve of experimental results that the
gas recognition algorithm can be well applied to a binary gas mixture.
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4. Discussion

As for the classification experimental results under different comparison experiments
obtained in the last section, we will, respectively, discuss as follows:

(1) Firstly, the experiment adopts four different smoothing filtering algorithms to pre-
process the original gas sample data. The experimental results show that, firstly, smoothing
filtering pre-processing greatly improves the classification and identification accuracy of
gas. The highest recognition accuracy is 99.9%. Secondly, among the smoothing filtering
algorithms, the Savitzky–Golay smoothing filtering algorithm has the highest accuracy and
the best effect. Compared with the other three filtering algorithms, the Savitzky–Golay
smoothing filtering algorithm can better retain the information of characteristic peaks and
improve the accuracy of input data. In conclusion, the smooth filtering pre-processing
can filter the noise existing in the signal sample data, reduce the existence of redundant
information without losing important response data information, and obtain efficient input
data representation. The classification accuracy of gas verifies the superiority of the smooth
filtering pre-processing method.

(2) Secondly, gas sample data collection and labeling are energy-consuming and
costly processes. Data augmentation network technology is used to amplify datasets.
On the one hand, the number of training samples is increased; on the other hand, the
generalization ability and robustness of the model can be improved. We carried out a
six-fold data enhancement on the gas sample data used in the experiment, and finally the
highest classification accuracy reached 99.9%, while the highest classification accuracy of
the gas sample without data enhancement was 98.4%. In addition, it can be seen from the
comparison curve of the experimental results of the data classification with or without
data enhancement in the previous section that the gas samples after data enhancement
perform better than those without data enhancement in terms of accuracy and loss rate. The
classification accuracy of gas samples with data enhancement is more stable and converges
faster. Therefore, data enhancement network technology can improve the accuracy of gas
classification to a certain extent.

(3) Thirdly, the gas sample data are divided into training sets and test sets according
to various proportions. The higher the proportion of the training set data, the higher the
classification accuracy will be; the higher the proportion of the test set data, the more
stable the classification results of the classifier. Because the more training gas samples
there are, the more data information they contain, the more features they will learn, and
the higher classification accuracy they can achieve in subsequent tests. At the same time,
setting a certain number of test gas samples of data can improve the generalization ability
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of the model, making the classification results more stable, preventing the occurrence of
overfitting phenomenon, and finding the optimal parameters of the classification network.

(4) Fourthly, the comparison experiments of different classification networks in the
previous section show that the fine-tuned GoogLeNet gas recognition network model
selected is superior to the fine-tuned ResNet50, Alex-Net, and ResNet34 networks, in terms
of classification accuracy, sample processing time, and network connection complexity.
Since fine-tuning the GoogLeNet gas identification network model simplifies the model
structure and has multi-inception structure, which can integrate feature information of
different scales, two auxiliary classifiers are added to the network model to help training,
and the output layer dismisses the fully connected layer and uses the average pooling layer
instead, greatly reducing the model parameters. High gas classification and recognition
accuracy is achieved.

(5) Finally, compared with the classification recognition accuracy of other people’s
experiments on this public dataset, it was found that our experimental research achieved
a higher classification accuracy. Different from other scholars’ experiments, we adopted
different network strategies (data smoothing filtering and data enhancement) to efficiently
optimize the input data samples and we fine-tuned the GoogLeNet gas identification
network model to automatically learn subsequent features and finally achieve a higher
classification accuracy.

(6) In general, we used a variety of smoothing filtering algorithms to pre-process
the gas sensor data, and according to the time correlation embedded in the sensor data,
we used the GASF method to convert the gas sensor data into a two-dimensional sensor
image for the subsequent feature learning. We combined with the fine-tuned GoogLeNet
classification network model to automatically learn the features of the sensor image to
classify the four gases, and achieve a good classification accuracy.

5. Conclusions and Future Outlook

To identify different kinds of gas, we used a variety of smoothing filtering algorithms
to perform data smoothing pretreatments on the multi-channel data representation and
obtain efficient input data representation, improving the performance of the classifica-
tion model. The optimization experiment verifies that the data from the Savitzky–Golay
smoothing filtering algorithm is inputted into the gas classification network, and the final
gas classification accuracy is higher. The smoothing filter pre-processing method plays a
key role in the gas classification experiment, greatly improving the accuracy of the experi-
mental results. Using the time correlation embedded in the sensor data, we used the GASF
method to convert the gas sensor data into two-dimensional sensor image representations.
Further gas classification is achieved using sensor images rather than time series data.
Then, we also use the data enhancement network strategy to reduce the impact of small
samples on the classifier, and to improve the robustness and generalization ability of the
gas identification network model. The model can automatically and comprehensively
extract different features of target gas for subsequent learning to realize the gas classifica-
tion. Different from traditional methods, this model does not need to carry out tedious
steps, such as artificial feature extraction and feature selection for gas sensing data and can
directly classify the converted two-dimensional sensor image with a better classification
performance. In addition, for the dataset samples in this paper, the fine-tuned GoogLeNet
gas identification network model has obvious advantages over the fine-tuned ResNet50,
Alex-Net, and ResNet34 networks. Compared with other advanced methods previously
reported, this method has more advantages. These features help to identify gases in real
time and quickly, with excellent accuracy and robustness, and they are suitable for a wide
range of applications.

In our future work, we aim to find the optimal algorithm to directly classify and
recognize multivariate time series data through more extensive experiments, especially
on multivariate time series datasets. In addition, the time convolution neural network
(TCN) and cyclic neural network (RNN) are considered to process multivariate time series
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data, and a variety of different classification methods are integrated to compare their
classification performance. For another important future work, we hope to apply the
selected method to different applications and different gas sensor array systems to further
evaluate their classification performance and versatility.
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